Převyprávění Gödelova důkazu nutné existence Boha

Rozměr: px
Začít zobrazení ze stránky:

Download "Převyprávění Gödelova důkazu nutné existence Boha"

Transkript

1 Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie), výrokem již dokázaným nebo vznikl z předchozích členů posloupnosti pomocí definovaných odvozovacích pravidel. Důkaz výroku Φ: Důkaz, jehož posledním členem je Φ. Důkaz výroku Φ sporem:důkaz,jehožprvnímčlenemjevýrok Φavněmžsevyskytují výrokyθa Θ. Komentář: Velká řecká písmena označují libovolný správně utvořený výrok, symbol Φ označuje negaci výroku Φ. Axiomy: Výrokové logiky v1) Φ Ψ Φ) v2) Φ Ψ Θ) ) Φ Ψ) Φ Θ) ) v3) Φ Ψ) Φ Ψ) Φ ) v4) Φ Φ Modální logiky m1) Φ Ψ) Φ Ψ) m2) Φ Φ m3) Φ Φ m4) Φ Φ, Φ Φ Predikátové logiky p1) ξ)φ Φ p2) ξ)φ ξ) Φ, ξ)φ ξ) Φ Komentář: Symbol označuje implikaci. Pomocí implikace a negace jsou definovány další výrokovéspojky & konjunkce)a ekvivalence):φ & Ψjedefinovánajako Φ Ψ); Φ ΨjedefinovánajakoΦ Ψ) & Ψ Φ). Axiomyv1) v4) jsou axiomy klasického výrokového počtu. To znamený, že všechny výrokové tautologie lze dokázat a dokazatelný výrokneobsahující kvantifikátory ani modality) je tautologií. Modální symboly, resp., označují nutnost, resp. možnost. Axiomym1) m3) jsou axiomy modálního výrokového počtu S5. Druhá formule vm4) je důsledkem první a naopak; tyto formule vyjadřují vztah mezi nutností a možností. Podobně druhá formulep2) je důsledkem první a naopak; vyjadřují vztah mezi obecným a existenčním kvantifikátorem. Axiomp1) se nazývá axiom specifikace. Pokud se proměnná ξ ve formuli Φ vyskytuje, lze každý její výskyt v konsekventuna pravé straně implikace) nahradit libovolnou jinou proměnnou nebo konstantou. Keklasickémupredikátovémupočtupatříještěaxiomdistribucetj. ξ)φ Ψ) Φ ξ)ψ ) pokudproměnná ξneníveformuliφpodstatněvolná)aaxiomyrovnosti.axiomdistribuce nebudeme potřebovat, potřebné důsledky axiomů rovnosti jsou shrnuty v odvozovacím pravidle op3). 1

2 Odvozovací pravidla: op1) Φ Ψ,Φ Ψ. op2) Φ & Ψ Φ. Φ & Ψ Ψ. Φ,Ψ Φ & Ψ. op3) Je-li Φ Ψ dokazatelným výrokem, axiomem, postulátem nebo definicí, pak každý výskyt ΦlzenahraditΨ. op4) Φ Φ. op5) Φ ξ)φ. op6) ξ)φξ) Φα); přitom α je symbol, který se v důkazu dosud neobjevil. op7) ξ)φξ) Φα); přitom α je symbol, který se v důkazu objevil před výrokem ξ)φξ). Komentář:ZápisΦ 1,Φ 2... Ψ 1,Ψ 2,...vyjadřuje,ževýrokyΨ 1,Ψ 2,...lzeodvoditzvýroků Φ 1,Φ 2...,tj.ževýrokyΦ 1,Φ 2...jsouvdůkazupředvýrokyΨ 1,Ψ 2,.... Pravidloop1) je klasický modus ponens. Pravidlaop2) pro odvození pomocí konjunkce jsou důsledkemop1) a definice konjunkce. Pravidloop3) vyjadřuje substituci výroků. Pravidloop4) je odvozovacím pravidlem modálního výrokového počtu S5. Pravidloop5) je pravidlem generalizace klasického predikátového počtu. Proměnná ξ musí samozřejmě být ve výroku Φ volná. Pravidlaop6) aop7) jsou pravidly konkretizace. Jako cvičení dokážeme tři tvrzení, která budou v dalších úvahách potřebná. Důkazy zapisujeme pořádcích,každýřádekmásvéčísloajekněmupřipojenkomentář,kterýaxiomnebotvrzení bylo použito nebo z kterých řádků a jakého odvozovacího pravidla daný řádek plyne. Při použití pravidlaop3) je také uvedena použitá ekvivalence. Cv1 Φ Φ D.:1. Φ Φ m3) 2. Φ Φ 1.op3) a b b a 3. Φ Φ 2.op3)m4) 4. Φ Φ 3.op3)m4) 5. Φ Φ 4.op3) a a q.e.d. 2

3 Cv2 Φ Ψ) Φ Ψ) D.: 1. Φ Ψ) Φ Ψ) ) 2. Ψ Φ) Φ Φ) m1) 3.Φ Ψ) & Φ Ψ) 1.op3) a b) a & b 4. Φ Ψ) 3.op2) 5. Φ & Ψ 4.op3) a b) a & b 6. Φ 5.op2) 7. Ψ 5.op2) 8. Ψ 7.m4) 9.Φ Ψ 3.op2) 10. Ψ Φ 9.op3) a b b a 11. Ψ Φ) 10.op4) 12. Ψ Φ 2.11.op1) 13. Φ op1) 14. Φ 13.m4) 6.14.spor,q.e.d Cv3 Φξ) Ψ ) ζ)φζ) Ψ ) Φξ) ) ) D.: 1. ) Ψ ζ)φζ) Ψ 2. Φξ) Ψ ) & ζ)φζ) Ψ ) 1.op3) a b) a & b 3. ζ)φζ) Ψ ) 2.op2) 4. ζ)φζ) & Ψ 3.op3) a b) a & b 5. ζ)φζ) 4.op2) 6. Φα) 5.op6) 7. Ψ 4.op2) 8.Φξ) Ψ 2.op2) 9. Ψ Φξ) 8.op3) a b b a 10. Φξ) 7. 9.op1) 11. ξ) Φξ) 10.op5) 12. Φα) 11.op7) spor, q.e.d. 3

4 Gödelův systém: Abeceda:Objekty: a, b, c,...,x, y, z Vlastnostiobjektůunárnípredikáty): A, B, C,..., X, Y, Z Vztahy mezi vlastnostmi a objektybinární predikát): X Rel y ap. Vlastnosti vlastnostípredikáty druhého řádu): A, B, C,... Primitivní predikát druhého řádu: P Definice: Gx) X) PX) Xx) ) XEssa Xa) & Y) Ya) z) Xz) Yz) )) Na) X) XEssa x)xx) ) Postuláty:A1) PX) P X) A2) PX) & x) Xx) Yx) )) PY) A3) PX) PX) A4) PG) A5) PN) Komentář: Symboly z konce abecedy budou označovat proměnné, symboly ze začátku abecedy konstanty. Mlčkysepředpokládá,žepokud Xjevlastnost,paktaké Xjevlastnost;lzejichápatjako nepřítomnost vlastnosti X. Interpretacejedinéhopredikátudruhéhořádu P: PX) vlastnost Xjedobrá positive).[alternativně: vlastnost Xjeperfekcedokonalost), vlastnost Xjepotencionalitaschopnost).] Vlastnost Gjebožskost,vlastnost býtibohem.bůhjeten,kterýmávšechnydobrévlastnosti dokonalosti, potencionality). Vztah XEssxvyjadřuje,ževlastnost X jeessencíobjektu x.essencejetakovávlastnost, kterou objekt má, a každá jeho vlastnost je nutným důsledkem této essence. Vlastnost N lze interpretovat jako nutnou existenci, příčinu sebe samacausa sui). Objekt má tuto vlastnost, pokud má essenci a jeho bytí je nutným důsledkem této essence. PostulátyA1) A3) zavádějí používání primitivního predikátu P. Nepřítomnost dobré vlastnosti není dobrá, nutný důsledek dobré vlastnosti je dobrá vlastnost, dobrá vlastnost je nutně v každém možném světě) dobrá. Analogicky lze postuláty číst, pokud P interpretujeme jako perfekce nebo potencionality. PostulátA4) říká, že mít všechny dobré vlastnosti je dobré, postuláta5) vyjadřuje, že být nutněvdůsledkutoho,čímje,stručně býttím,čimje jedobrávlastnost. Při důkazech budeme používat nejen definice a postuláty, ale také jejich bezprostřední důsledky. Např. X) PX) Xa) ) Ga)jebezprostřednímdůsledkemdefinicevlastnosti G, P X) P X) je bezprostředním důsledkem postulátua1) a podobně. Gödelův systém je teorie v predikátovém počtu druhého řádu, tj. kvantifikujeme proměnné a vlastnostipredikáty prvního řádu), k němuž jsou přidány modální operace. Modality nutnosti a možnosti však budeme přiřazovat pouze formulím prvního řádu; odvozovací pravidloop4) budeme aplikovat pouze v případě, že formule Φ je prvního řádu.jinak řečeno, s modalitou nutnostipočítámejenna bezpečnépůdě logikyprvníhořádu.)jedinouvýjimkoujevyjádření nutné platnosti predikátu druhého řádu P explicitně vyjádřené v postulátua3). Pokud bychom připustili neomezené používání modálních operátorů a,a3) by nebyl nezávislým postulátem, ale důsledkem pravidlaop4).přesněji, negace postulátua3) by vedla ke sporu.) 4

5 T1 Věta PX) x)xx) Je-li nějaká vlastnost dobrá, může existovat objekt, který ji má.) D.: 1. PX) )Xx) ) 2. Xx) Xx) Xx) ) v1) 3. x) Xx) ) x) Xx) m2) 4. x) Xx) Xx) p1) 5. PX) P X) A1) 6. PX) & x) Xx) Xx) )) P X) A2) 7. PX) & x)xx) 1.op3) Φ Ψ) Φ & Ψ 8. x)xx) 7.op2) 9. x)xx) 8.m4) 10. x) Xx) 9.p2) 11. x) Xx) op1) 12. Xx) op1) 13. Xx) Xx) 2.12.op1) 14. x) Xx) Xx) ) 13.op5) 15. x) Xx) Xx) ) 14.op4) 16. PX) 7.op2) 17. PX) & x) Xx) Xx) )) op2) 18. P X) op1) 19. P X) op1) spor, q.e.d. C1Důsledek x)gx) Je možné, že Bůh existuje.) D.: 1. PG) A4) 2. PG) x)gx) T1 3. x)gx) 1. 2.op1) q.e.d. 5

6 L1Lemma Gx) X) Xx) PX) ) Každá vlastnost, kterou Bůh má, je dobrá.) D.: 1. Gx) X) Xx) PX) )) 2. GX) X) PX) Xx) ) definice G 3. Gx) & X) Xx) PX) ) 1.op3) Φ Ψ) Φ & Ψ 4. Gx) 3.op2) 5. X) Xx) PX) ) 3.op2) 6. X) Xx) PX) ) 5.p2) 7. X) Xx) & PX) ) 6.op3) Φ Ψ) Φ & Ψ 8. Ax) & PA) 7.op6) 9. Ax) 8.op2) 10. PA) 8.op2) 11. P A) P A) A1) 12. PA) P A) 11.op3) Φ Φ 13. P A) op1) 14. X) PX) Xx) ) 2.4.op1) 15. P A) Ax) 14.op7) 16. Ax) op1) spor, q.e.d. L2Lemma Gx) & Yx) PY) D.: 1. Gx) & Yx) PY) ) 2. PY) PY) A3) 3. Gx) X) Xx) PX) L1 4. Gx) & Yx) ) & PY) 1.op3) Φ Ψ) Φ & Ψ 5. Gx) & Yx) 4.op2) 6. Gx) 5.op2) 7. X) Xx) PX) 3.6.op1) 8. Yx) PY) 7.op7) 9. Yx) 5.op2) 10. PY) 8.9.op1) 11. PY) 2.10.op1) 12. PY) 4.op2) spor, q.e.d. 6

7 L3Lemma Gx) & Yx) z) Gz) Yz) ) D.: 1. Gx) & Yx) z) Gz) Yz) )) 2. PY) PY) m2) 3. P Y) P Y) A1) 4. Gx) & Yx) PY) L2 5. Gx) & Yx) ) & z) Gz) Yz) ) 1.op3) Φ Ψ) Φ & Ψ 6. Gx) & Yx) 5.op2) 7. z) Gz) Yz) ) 5.op2) 8. z) Gz) Yz) ) 7.p2) 9. z) Gz) & Yz) ) 8.op3) Φ Ψ) Φ & Ψ 10. Ga) & Ya) 9.op6) 11. Ga) 10.op2) 12. Ga) X) Xa) PX) ) L1 13. X) Xa) PX) ) op1) 14. Ya) P Y) 13.op7) 15. Ya) 10.op2) 16. P Y) op1) 17. P Y) 3.16.op1) 18. PY) 4.6.op1) 19. PY) 2.18.op1) 20. Py) 19.op3) Φ Φ spor, q.e.d. L4Lemma Gx) & Yx) z) Gz) Yz) ) D.: 1. Gx) & Yx) z)) Gz) Yz) )) 2. Gx) & Yx) z) Gz) Yz) ) L3 3. Gx) & Yx) ) & z)) Gz) Yz) ) 1.op3) Φ Ψ) Φ & Ψ 4. Gx) & Yx) 3.op2) 5. z)) Gz) Yz) ) 3.op2) 6. z) Gz) Yz) ) 2.4.op1) 7. z)) Gz) Yz) ) 6.op4) 5.7.spor,q.e.d. 7

8 L5Lemma Gx) Y) Yx) z) Gz) Yz) )) D.: 1. Gx) Y) Yx) z) Gz) Yz) ))) 2. Gx) & Y) Yx) z) Gz) Yz) ) 1.op3) Φ Ψ) Φ & Ψ 3. Y) Yx) z) Gz) Yz) ) 2.op2) 4. Y) Yx) z) Gz) Yz) ) 3.p2) 5. Ax) z) Gz) Az) ) 4.op6) 6. Ax) & z) Gz) Az) ) 5.op3) Φ Ψ) Φ & Ψ 7. z) Gz) Az) ) 6.op2) 8. Gx) & Ax) z) Gz) Az) ) L4 9. z) Gz) Az) ) Gx) & Ax) ) 8.op3)Φ Ψ Ψ Φ 10. Gx) & Ax) ) 7.9.op1) 11. Gx) 2.op2) 12. Ax) 6.op2) 13. Gx) & Ax) op2) spor, q.e.d. T2Věta Gx) GEssx Všechny vlastnosti Boha nutně plynou z jeho božství.) D.: 1. Gx) Y) Yx) z) Gz) Yz) )) L5 2. Gx) Gx) & Y) Yx) z) Gz) Yz) )) 1.op3)Φ Ψ Φ Φ & Ψ) 3. Gx) GEssx 2.op3)definicerelaceEss q.e.d. 8

9 L6 Lemma Gx) y)gy) Je-li Bůh myslitelný, pak nutně existuje.) D.: 1. Gx) y)gy) ) 2. PN) A5) 3. Gx) X) PX) Xx) ) definice G 4. Nx) X) XEssx y)xy) ) definice N 5. Gx) GEssx T2 6. Gx) & y)gy) 1.op3) Φ Ψ) Φ & Ψ 7. Gx) 6.op2) 8. X) PX) Xx) ) 3.7.op1) 9. PN) Nx) 8.op7) 10. Nx) 2.9.op1) 11. X) XEssx y)xy) ) 4.10.op1) 12. GEssx y)gy) 11.op7) 13. GEssx 5.7.op1) 14. y)gy) op1) 15. y)gy) 6.op2) spor, q.e.d. T3Věta y)gy) Bůh existuje nutně.) D.: 1. z)gz) 2. Gx) y)gy) L6 3. y)gy) y)gy) Cv1 4. z)gz) y)gy) ) z)gz) y)gy) ) Cv2 5. Gx) y)gy) ) z)gz) y)gy) ) Cv3 6. z)gz) y)gy) C op1) 7. z)gz) y)gy) 4. 6.op1) 8. y)gy) 1. 7.op1) 9. y)gy) 3. 8.op1) q.e.d. 9

F3011 Fyzika, filozofie a myšlení. Masarykova univerzita, Přírodovědecká fakulta Ústav matematiky a statistiky Křest anský sbor Brno

F3011 Fyzika, filozofie a myšlení. Masarykova univerzita, Přírodovědecká fakulta Ústav matematiky a statistiky Křest anský sbor Brno Gödelův důkaz nutné existence Boha p. 1/10 F3011 Fyzika, filozofie a myšlení 24. října 2008 Gödelův důkaz nutné existence Boha Zdeněk Pospíšil Masarykova univerzita, Přírodovědecká fakulta Ústav matematiky

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16 Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ

Více

Výroková a predikátová logika - X

Výroková a predikátová logika - X Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2018/2019 1 / 16 Rozšiřování teorií Extenze o definice Rozšiřování

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Hilbertovský axiomatický systém

Hilbertovský axiomatický systém Hilbertovský axiomatický systém Predikátová logika H 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 24. října 2008 Specifikace H 1 Jazyk L H1 přejímáme jazyk predikátové logiky

Více

Formální systém výrokové logiky

Formální systém výrokové logiky Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 1 / 16 Tablo metoda v PL Důsledky úplnosti Vlastnosti

Více

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika. Teoretická informatika Tomáš Foltýnek Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox

Více

Úvod do výrokové a predikátové logiky

Úvod do výrokové a predikátové logiky Úvod do výrokové a predikátové logiky Eva Ondráčková Na této přednášce se seznámíte se základy výrokové a predikátové logiky. Zjistíte, že podstatou logiky není vyplňování pravdivostních tabulek ani negování

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Výroková a predikátová logika - XII

Výroková a predikátová logika - XII Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

Sémantika predikátové logiky

Sémantika predikátové logiky Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem

Více

Výroková logika. Sémantika výrokové logiky

Výroková logika. Sémantika výrokové logiky Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový

Více

λογος - LOGOS slovo, smysluplná řeč )

λογος - LOGOS slovo, smysluplná řeč ) MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho

Více

Základy logiky a teorie množin

Základy logiky a teorie množin Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu

Více

Predikátová logika. Z minula: 1. jazyk logiky 1. řádu. 2. term a formule. 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy

Predikátová logika. Z minula: 1. jazyk logiky 1. řádu. 2. term a formule. 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy 1 Predikátová logika Z minula: 1. jazyk logiky 1. řádu 2. term a formule 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy 5. vázané a volné výskyty proměnných ve formuli 6. otevřené

Více

Systém přirozené dedukce výrokové logiky

Systém přirozené dedukce výrokové logiky Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému

Více

Základy matematické logiky

Základy matematické logiky OBSAH 1 Základy matematické logiky Obsah 1 Úvod 2 1.1 Předmět matematiky.......................... 2 1.2 Nástin historie.............................. 2 1.3 Axiomatická výstavba matematických teorií.............

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7 1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není

Více

Logika. 6. Axiomatický systém výrokové logiky

Logika. 6. Axiomatický systém výrokové logiky Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,

Více

1. Predikátová logika jako prostedek reprezentace znalostí

1. Predikátová logika jako prostedek reprezentace znalostí 1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn

Více

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,

Více

ZÁKLADY LOGIKY A METODOLOGIE

ZÁKLADY LOGIKY A METODOLOGIE ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie

Více

LOGIKA VÝROKOVÁ LOGIKA

LOGIKA VÝROKOVÁ LOGIKA LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

Výroková a predikátová logika - XI

Výroková a predikátová logika - XI Výroková a predikátová logika - XI Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XI ZS 2014/2015 1 / 21 Další dokazovací systémy PL Hilbertovský kalkul

Více

Bůh a logika. Od Descarta ke Gödelovi. Masarykova univerzita, Přírodovědecká fakulta, Ústav matematiky a statistiky

Bůh a logika. Od Descarta ke Gödelovi. Masarykova univerzita, Přírodovědecká fakulta, Ústav matematiky a statistiky Bůh a logika Od Descarta ke Gödelovi Zdeněk Pospíšil Masarykova univerzita, Přírodovědecká fakulta, Ústav matematiky a statistiky Křesťanský sbor Brno Seminář KMa PdF MU v Brně Středa 13. dubna 2016 Úvod

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

Matematické důkazy Struktura matematiky a typy důkazů

Matematické důkazy Struktura matematiky a typy důkazů Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

1. Matematická logika

1. Matematická logika Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 1. Matematická logika Základem každé vědy (tedy i matematiky i fyziky) je soubor jistých znalostí. To, co z těchto izolovaných poznatků

Více

Logika Libor Barto. Výroková logika

Logika Libor Barto. Výroková logika Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....

Více

Okruh č.3: Sémantický výklad predikátové logiky

Okruh č.3: Sémantický výklad predikátové logiky Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

Dokazuje matematika existenci Boha? Masarykova univerzita, Přírodovědecká fakulta Ústav matematiky a statistiky

Dokazuje matematika existenci Boha? Masarykova univerzita, Přírodovědecká fakulta Ústav matematiky a statistiky Dokazuje matematika existenci Boha? Zdeněk Pospíšil Masarykova univerzita, Přírodovědecká fakulta Ústav matematiky a statistiky Křesťanský sbor Brno Úvod Vznik matematiky Vytváření novověké matematiky

Více

Logické programy Deklarativní interpretace

Logické programy Deklarativní interpretace Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou

Více

Výroková a predikátová logika - X

Výroková a predikátová logika - X Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2015/2016 1 / 22 Herbrandova věta Úvod Redukce nesplnitelnosti na

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Rovnost lze vyjádřit jako predikát, např. můžeme zvolit, že P(x, y) reprezentujetvrzení xjerovnoy.

Rovnost lze vyjádřit jako predikát, např. můžeme zvolit, že P(x, y) reprezentujetvrzení xjerovnoy. Rovnost Jedním z nejdůležitějších druhů relací je rovnost(identita). Prvkyxayjsousirovny,cožzapisujeme x =y, jestližesejednáojedenatentýžprvek. Rovnost lze vyjádřit jako predikát, např. můžeme zvolit,

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

SINGULÁRNÍ VÝROKY: Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je.

SINGULÁRNÍ VÝROKY: Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je. Studijní text Co je singulární výrok SINGULÁRNÍ VÝROKY: PETR Petr je veselý. Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je. Příklad: Pavel je

Více

Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu

Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu

Více

Logika a logické programování

Logika a logické programování Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho

Více

Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Logika pro každodenní přežití Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

platné nejsou Sokrates je smrtelný. (r) 1/??

platné nejsou Sokrates je smrtelný. (r) 1/?? Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice

Více

Základy logiky Logika a logické systémy. Umělá inteligence a rozpoznávání, LS

Základy logiky Logika a logické systémy. Umělá inteligence a rozpoznávání, LS Základy logiky 22. 4. 2015 Umělá inteligence a rozpoznávání, LS 2015 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování,

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2018/2019 1 / 13 Dokončené tablo Chceme, aby dokončená bezesporná

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Predikátová logika: Axiomatizace, sémantické stromy, identita. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13

Predikátová logika: Axiomatizace, sémantické stromy, identita. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13 Predikátová logika: Axiomatizace, sémantické stromy, identita (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 13 Axiomatizace predikátové logiky Axiomatizace predikátové logiky Definice Hilbertovský

Více

1. MATEMATICKÁ LOGIKA A MNOŽINY

1. MATEMATICKÁ LOGIKA A MNOŽINY . MATEMATICKÁ LOGIKA A MNOŽINY Průvodce studiem V následující kapitole si připomeneme některé význačné poznatky z matematické logiky a teorie množin, tvořící základ množinově logického aparátu. S celou

Více

Výroková a predikátová logika - XIII

Výroková a predikátová logika - XIII Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které

Více

Matematická indukce, sumy a produkty, matematická logika

Matematická indukce, sumy a produkty, matematická logika Matematická indukce, sumy a produkty, matematická logika 8.9. -.0.009 Matematická indukce Jde o následující vlastnost přirozených čísel: Předpokládejme:. Nějaké tvrzení platí pro.. Platí-li tvrzení pro

Více

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška devátá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. Obsah 1 Úvod do fuzzy logiky 2 Úvod do aplikací fuzzy logiky 3 Výroková

Více

Matematika pro informatiky KMA/MATA

Matematika pro informatiky KMA/MATA Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

7 Jemný úvod do Logiky

7 Jemný úvod do Logiky 7 Jemný úvod do Logiky Základem přesného matematického vyjadřování je správné používání (matematické) logiky a logických úsudků. Logika jako filozofická discipĺına se intenzivně vyvíjí už od dob antiky,

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

1 Pravdivost formulí v interpretaci a daném ohodnocení

1 Pravdivost formulí v interpretaci a daném ohodnocení 1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří

Více

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat,

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, 1 Matematická logika 1.1 Výroky, operace s výroky Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, měli být schopni

Více

Logika, výroky, množiny

Logika, výroky, množiny Logika, výroky, množiny Martina Šimůnková 23. srpna 2017 Učební text k předmětu Matematická analýza pro studenty FP TUL Jazyk matematiky Budeme používat dva jazyky: jazyk matematiky a běžně používaný jazyk.

Více

Cvičení ke kursu Klasická logika II

Cvičení ke kursu Klasická logika II Cvičení ke kursu Klasická logika II (12. května 2017) 1. Nechť P a Q jsou unární a R binární predikát. Dokažte, že následující formule jsou logicky platné, ale obrátíme-li (vnější) implikaci, ve všech

Více

Rezoluční kalkulus pro výrokovou logiku

Rezoluční kalkulus pro výrokovou logiku AD4M33AU Automatické uvažování Rezoluční kalkulus pro výrokovou logiku Petr Pudlák Výroková logika Výhody Jednoduchý jazyk. Rozhodnutelnost dokazatelnosti i nedokazatelnosti. Rychlejší algoritmy. Nevýhody

Více

1 REZOLUČNÍ FORMÁLNÍ DŮKAZY

1 REZOLUČNÍ FORMÁLNÍ DŮKAZY Vážená kolegyně / vážený kolego, součástí Vašeho rozšiřujícího studia informatiky je absolvování předmětu Logika pro učitele 2, jehož cílem je v návaznosti na předmět Logika pro učitele 1 seznámení se

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

I. Úvodní pojmy. Obsah

I. Úvodní pojmy. Obsah I. Úvodní pojmy Obsah 1 Matematická logika 2 1.1 Výrok,logickéoperátory,výrokovéformuleaformy... 2 1.2 Logickávýstavbamatematiky... 3 1.2.1 Základnímetodydůkazůmatematickýchvět..... 3 1.2.2 Negacevýroků.....

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17

Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17 Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní

Více

Výroková a predikátová logika - IV

Výroková a predikátová logika - IV Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy Úvod do matematiky Mgr. Radek Horenský, Ph.D. Důkazy Matematika a matematické chápání jako takové je založeno na logické výstavbě. Základními stavebními prvky jsou definice, věty a důkazy. Definice zavádějí

Více

1. Matematická logika

1. Matematická logika MATEMATICKÝ JAZYK Jazyk slouží člověku k vyjádření soudů a myšlenek. Jeho psaná forma má tvar vět. Každá vědní disciplína si vytváří svůj specifický jazyk v úzké návaznosti na jazyk živý. I matematika

Více

verze 29/9/09 textu o logice, aritmetice a M. Bizzarrimu.

verze 29/9/09 textu o logice, aritmetice a M. Bizzarrimu. 1 verze 29/9/09 Toto je prozatím definitivní verze provizorního textu o logice, aritmetice a množinách. věnováno Laskavým čtenářům a čtenářkám, kteří navštěvovali tyto přednášky. poděkování Za upozornění

Více

Řešení: Ano. Řešení: Ne.

Řešení: Ano. Řešení: Ne. 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je

Více

10. Techniky formální verifikace a validace

10. Techniky formální verifikace a validace Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie

Více

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická

Více

1 Úvod do matematické logiky

1 Úvod do matematické logiky 1 Úvod do matematické logiky Logikou v běžném slova smyslu rozumíme myšlenkovou cestu, která vede k určitým závěrům. Logika je také formální věda, která zkoumá způsob vyvozování závěrů. Za zakladatele

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Matematická analýza pro informatiky I. Limita funkce

Matematická analýza pro informatiky I. Limita funkce Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz

Více