Převyprávění Gödelova důkazu nutné existence Boha

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Převyprávění Gödelova důkazu nutné existence Boha"

Transkript

1 Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie), výrokem již dokázaným nebo vznikl z předchozích členů posloupnosti pomocí definovaných odvozovacích pravidel. Důkaz výroku Φ: Důkaz, jehož posledním členem je Φ. Důkaz výroku Φ sporem:důkaz,jehožprvnímčlenemjevýrok Φavněmžsevyskytují výrokyθa Θ. Komentář: Velká řecká písmena označují libovolný správně utvořený výrok, symbol Φ označuje negaci výroku Φ. Axiomy: Výrokové logiky v1) Φ Ψ Φ) v2) Φ Ψ Θ) ) Φ Ψ) Φ Θ) ) v3) Φ Ψ) Φ Ψ) Φ ) v4) Φ Φ Modální logiky m1) Φ Ψ) Φ Ψ) m2) Φ Φ m3) Φ Φ m4) Φ Φ, Φ Φ Predikátové logiky p1) ξ)φ Φ p2) ξ)φ ξ) Φ, ξ)φ ξ) Φ Komentář: Symbol označuje implikaci. Pomocí implikace a negace jsou definovány další výrokovéspojky & konjunkce)a ekvivalence):φ & Ψjedefinovánajako Φ Ψ); Φ ΨjedefinovánajakoΦ Ψ) & Ψ Φ). Axiomyv1) v4) jsou axiomy klasického výrokového počtu. To znamený, že všechny výrokové tautologie lze dokázat a dokazatelný výrokneobsahující kvantifikátory ani modality) je tautologií. Modální symboly, resp., označují nutnost, resp. možnost. Axiomym1) m3) jsou axiomy modálního výrokového počtu S5. Druhá formule vm4) je důsledkem první a naopak; tyto formule vyjadřují vztah mezi nutností a možností. Podobně druhá formulep2) je důsledkem první a naopak; vyjadřují vztah mezi obecným a existenčním kvantifikátorem. Axiomp1) se nazývá axiom specifikace. Pokud se proměnná ξ ve formuli Φ vyskytuje, lze každý její výskyt v konsekventuna pravé straně implikace) nahradit libovolnou jinou proměnnou nebo konstantou. Keklasickémupredikátovémupočtupatříještěaxiomdistribucetj. ξ)φ Ψ) Φ ξ)ψ ) pokudproměnná ξneníveformuliφpodstatněvolná)aaxiomyrovnosti.axiomdistribuce nebudeme potřebovat, potřebné důsledky axiomů rovnosti jsou shrnuty v odvozovacím pravidle op3). 1

2 Odvozovací pravidla: op1) Φ Ψ,Φ Ψ. op2) Φ & Ψ Φ. Φ & Ψ Ψ. Φ,Ψ Φ & Ψ. op3) Je-li Φ Ψ dokazatelným výrokem, axiomem, postulátem nebo definicí, pak každý výskyt ΦlzenahraditΨ. op4) Φ Φ. op5) Φ ξ)φ. op6) ξ)φξ) Φα); přitom α je symbol, který se v důkazu dosud neobjevil. op7) ξ)φξ) Φα); přitom α je symbol, který se v důkazu objevil před výrokem ξ)φξ). Komentář:ZápisΦ 1,Φ 2... Ψ 1,Ψ 2,...vyjadřuje,ževýrokyΨ 1,Ψ 2,...lzeodvoditzvýroků Φ 1,Φ 2...,tj.ževýrokyΦ 1,Φ 2...jsouvdůkazupředvýrokyΨ 1,Ψ 2,.... Pravidloop1) je klasický modus ponens. Pravidlaop2) pro odvození pomocí konjunkce jsou důsledkemop1) a definice konjunkce. Pravidloop3) vyjadřuje substituci výroků. Pravidloop4) je odvozovacím pravidlem modálního výrokového počtu S5. Pravidloop5) je pravidlem generalizace klasického predikátového počtu. Proměnná ξ musí samozřejmě být ve výroku Φ volná. Pravidlaop6) aop7) jsou pravidly konkretizace. Jako cvičení dokážeme tři tvrzení, která budou v dalších úvahách potřebná. Důkazy zapisujeme pořádcích,každýřádekmásvéčísloajekněmupřipojenkomentář,kterýaxiomnebotvrzení bylo použito nebo z kterých řádků a jakého odvozovacího pravidla daný řádek plyne. Při použití pravidlaop3) je také uvedena použitá ekvivalence. Cv1 Φ Φ D.:1. Φ Φ m3) 2. Φ Φ 1.op3) a b b a 3. Φ Φ 2.op3)m4) 4. Φ Φ 3.op3)m4) 5. Φ Φ 4.op3) a a q.e.d. 2

3 Cv2 Φ Ψ) Φ Ψ) D.: 1. Φ Ψ) Φ Ψ) ) 2. Ψ Φ) Φ Φ) m1) 3.Φ Ψ) & Φ Ψ) 1.op3) a b) a & b 4. Φ Ψ) 3.op2) 5. Φ & Ψ 4.op3) a b) a & b 6. Φ 5.op2) 7. Ψ 5.op2) 8. Ψ 7.m4) 9.Φ Ψ 3.op2) 10. Ψ Φ 9.op3) a b b a 11. Ψ Φ) 10.op4) 12. Ψ Φ 2.11.op1) 13. Φ op1) 14. Φ 13.m4) 6.14.spor,q.e.d Cv3 Φξ) Ψ ) ζ)φζ) Ψ ) Φξ) ) ) D.: 1. ) Ψ ζ)φζ) Ψ 2. Φξ) Ψ ) & ζ)φζ) Ψ ) 1.op3) a b) a & b 3. ζ)φζ) Ψ ) 2.op2) 4. ζ)φζ) & Ψ 3.op3) a b) a & b 5. ζ)φζ) 4.op2) 6. Φα) 5.op6) 7. Ψ 4.op2) 8.Φξ) Ψ 2.op2) 9. Ψ Φξ) 8.op3) a b b a 10. Φξ) 7. 9.op1) 11. ξ) Φξ) 10.op5) 12. Φα) 11.op7) spor, q.e.d. 3

4 Gödelův systém: Abeceda:Objekty: a, b, c,...,x, y, z Vlastnostiobjektůunárnípredikáty): A, B, C,..., X, Y, Z Vztahy mezi vlastnostmi a objektybinární predikát): X Rel y ap. Vlastnosti vlastnostípredikáty druhého řádu): A, B, C,... Primitivní predikát druhého řádu: P Definice: Gx) X) PX) Xx) ) XEssa Xa) & Y) Ya) z) Xz) Yz) )) Na) X) XEssa x)xx) ) Postuláty:A1) PX) P X) A2) PX) & x) Xx) Yx) )) PY) A3) PX) PX) A4) PG) A5) PN) Komentář: Symboly z konce abecedy budou označovat proměnné, symboly ze začátku abecedy konstanty. Mlčkysepředpokládá,žepokud Xjevlastnost,paktaké Xjevlastnost;lzejichápatjako nepřítomnost vlastnosti X. Interpretacejedinéhopredikátudruhéhořádu P: PX) vlastnost Xjedobrá positive).[alternativně: vlastnost Xjeperfekcedokonalost), vlastnost Xjepotencionalitaschopnost).] Vlastnost Gjebožskost,vlastnost býtibohem.bůhjeten,kterýmávšechnydobrévlastnosti dokonalosti, potencionality). Vztah XEssxvyjadřuje,ževlastnost X jeessencíobjektu x.essencejetakovávlastnost, kterou objekt má, a každá jeho vlastnost je nutným důsledkem této essence. Vlastnost N lze interpretovat jako nutnou existenci, příčinu sebe samacausa sui). Objekt má tuto vlastnost, pokud má essenci a jeho bytí je nutným důsledkem této essence. PostulátyA1) A3) zavádějí používání primitivního predikátu P. Nepřítomnost dobré vlastnosti není dobrá, nutný důsledek dobré vlastnosti je dobrá vlastnost, dobrá vlastnost je nutně v každém možném světě) dobrá. Analogicky lze postuláty číst, pokud P interpretujeme jako perfekce nebo potencionality. PostulátA4) říká, že mít všechny dobré vlastnosti je dobré, postuláta5) vyjadřuje, že být nutněvdůsledkutoho,čímje,stručně býttím,čimje jedobrávlastnost. Při důkazech budeme používat nejen definice a postuláty, ale také jejich bezprostřední důsledky. Např. X) PX) Xa) ) Ga)jebezprostřednímdůsledkemdefinicevlastnosti G, P X) P X) je bezprostředním důsledkem postulátua1) a podobně. Gödelův systém je teorie v predikátovém počtu druhého řádu, tj. kvantifikujeme proměnné a vlastnostipredikáty prvního řádu), k němuž jsou přidány modální operace. Modality nutnosti a možnosti však budeme přiřazovat pouze formulím prvního řádu; odvozovací pravidloop4) budeme aplikovat pouze v případě, že formule Φ je prvního řádu.jinak řečeno, s modalitou nutnostipočítámejenna bezpečnépůdě logikyprvníhořádu.)jedinouvýjimkoujevyjádření nutné platnosti predikátu druhého řádu P explicitně vyjádřené v postulátua3). Pokud bychom připustili neomezené používání modálních operátorů a,a3) by nebyl nezávislým postulátem, ale důsledkem pravidlaop4).přesněji, negace postulátua3) by vedla ke sporu.) 4

5 T1 Věta PX) x)xx) Je-li nějaká vlastnost dobrá, může existovat objekt, který ji má.) D.: 1. PX) )Xx) ) 2. Xx) Xx) Xx) ) v1) 3. x) Xx) ) x) Xx) m2) 4. x) Xx) Xx) p1) 5. PX) P X) A1) 6. PX) & x) Xx) Xx) )) P X) A2) 7. PX) & x)xx) 1.op3) Φ Ψ) Φ & Ψ 8. x)xx) 7.op2) 9. x)xx) 8.m4) 10. x) Xx) 9.p2) 11. x) Xx) op1) 12. Xx) op1) 13. Xx) Xx) 2.12.op1) 14. x) Xx) Xx) ) 13.op5) 15. x) Xx) Xx) ) 14.op4) 16. PX) 7.op2) 17. PX) & x) Xx) Xx) )) op2) 18. P X) op1) 19. P X) op1) spor, q.e.d. C1Důsledek x)gx) Je možné, že Bůh existuje.) D.: 1. PG) A4) 2. PG) x)gx) T1 3. x)gx) 1. 2.op1) q.e.d. 5

6 L1Lemma Gx) X) Xx) PX) ) Každá vlastnost, kterou Bůh má, je dobrá.) D.: 1. Gx) X) Xx) PX) )) 2. GX) X) PX) Xx) ) definice G 3. Gx) & X) Xx) PX) ) 1.op3) Φ Ψ) Φ & Ψ 4. Gx) 3.op2) 5. X) Xx) PX) ) 3.op2) 6. X) Xx) PX) ) 5.p2) 7. X) Xx) & PX) ) 6.op3) Φ Ψ) Φ & Ψ 8. Ax) & PA) 7.op6) 9. Ax) 8.op2) 10. PA) 8.op2) 11. P A) P A) A1) 12. PA) P A) 11.op3) Φ Φ 13. P A) op1) 14. X) PX) Xx) ) 2.4.op1) 15. P A) Ax) 14.op7) 16. Ax) op1) spor, q.e.d. L2Lemma Gx) & Yx) PY) D.: 1. Gx) & Yx) PY) ) 2. PY) PY) A3) 3. Gx) X) Xx) PX) L1 4. Gx) & Yx) ) & PY) 1.op3) Φ Ψ) Φ & Ψ 5. Gx) & Yx) 4.op2) 6. Gx) 5.op2) 7. X) Xx) PX) 3.6.op1) 8. Yx) PY) 7.op7) 9. Yx) 5.op2) 10. PY) 8.9.op1) 11. PY) 2.10.op1) 12. PY) 4.op2) spor, q.e.d. 6

7 L3Lemma Gx) & Yx) z) Gz) Yz) ) D.: 1. Gx) & Yx) z) Gz) Yz) )) 2. PY) PY) m2) 3. P Y) P Y) A1) 4. Gx) & Yx) PY) L2 5. Gx) & Yx) ) & z) Gz) Yz) ) 1.op3) Φ Ψ) Φ & Ψ 6. Gx) & Yx) 5.op2) 7. z) Gz) Yz) ) 5.op2) 8. z) Gz) Yz) ) 7.p2) 9. z) Gz) & Yz) ) 8.op3) Φ Ψ) Φ & Ψ 10. Ga) & Ya) 9.op6) 11. Ga) 10.op2) 12. Ga) X) Xa) PX) ) L1 13. X) Xa) PX) ) op1) 14. Ya) P Y) 13.op7) 15. Ya) 10.op2) 16. P Y) op1) 17. P Y) 3.16.op1) 18. PY) 4.6.op1) 19. PY) 2.18.op1) 20. Py) 19.op3) Φ Φ spor, q.e.d. L4Lemma Gx) & Yx) z) Gz) Yz) ) D.: 1. Gx) & Yx) z)) Gz) Yz) )) 2. Gx) & Yx) z) Gz) Yz) ) L3 3. Gx) & Yx) ) & z)) Gz) Yz) ) 1.op3) Φ Ψ) Φ & Ψ 4. Gx) & Yx) 3.op2) 5. z)) Gz) Yz) ) 3.op2) 6. z) Gz) Yz) ) 2.4.op1) 7. z)) Gz) Yz) ) 6.op4) 5.7.spor,q.e.d. 7

8 L5Lemma Gx) Y) Yx) z) Gz) Yz) )) D.: 1. Gx) Y) Yx) z) Gz) Yz) ))) 2. Gx) & Y) Yx) z) Gz) Yz) ) 1.op3) Φ Ψ) Φ & Ψ 3. Y) Yx) z) Gz) Yz) ) 2.op2) 4. Y) Yx) z) Gz) Yz) ) 3.p2) 5. Ax) z) Gz) Az) ) 4.op6) 6. Ax) & z) Gz) Az) ) 5.op3) Φ Ψ) Φ & Ψ 7. z) Gz) Az) ) 6.op2) 8. Gx) & Ax) z) Gz) Az) ) L4 9. z) Gz) Az) ) Gx) & Ax) ) 8.op3)Φ Ψ Ψ Φ 10. Gx) & Ax) ) 7.9.op1) 11. Gx) 2.op2) 12. Ax) 6.op2) 13. Gx) & Ax) op2) spor, q.e.d. T2Věta Gx) GEssx Všechny vlastnosti Boha nutně plynou z jeho božství.) D.: 1. Gx) Y) Yx) z) Gz) Yz) )) L5 2. Gx) Gx) & Y) Yx) z) Gz) Yz) )) 1.op3)Φ Ψ Φ Φ & Ψ) 3. Gx) GEssx 2.op3)definicerelaceEss q.e.d. 8

9 L6 Lemma Gx) y)gy) Je-li Bůh myslitelný, pak nutně existuje.) D.: 1. Gx) y)gy) ) 2. PN) A5) 3. Gx) X) PX) Xx) ) definice G 4. Nx) X) XEssx y)xy) ) definice N 5. Gx) GEssx T2 6. Gx) & y)gy) 1.op3) Φ Ψ) Φ & Ψ 7. Gx) 6.op2) 8. X) PX) Xx) ) 3.7.op1) 9. PN) Nx) 8.op7) 10. Nx) 2.9.op1) 11. X) XEssx y)xy) ) 4.10.op1) 12. GEssx y)gy) 11.op7) 13. GEssx 5.7.op1) 14. y)gy) op1) 15. y)gy) 6.op2) spor, q.e.d. T3Věta y)gy) Bůh existuje nutně.) D.: 1. z)gz) 2. Gx) y)gy) L6 3. y)gy) y)gy) Cv1 4. z)gz) y)gy) ) z)gz) y)gy) ) Cv2 5. Gx) y)gy) ) z)gz) y)gy) ) Cv3 6. z)gz) y)gy) C op1) 7. z)gz) y)gy) 4. 6.op1) 8. y)gy) 1. 7.op1) 9. y)gy) 3. 8.op1) q.e.d. 9

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu

Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Řešení: Ano. Řešení: Ne.

Řešení: Ano. Řešení: Ne. 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je

Více

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz) Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

4.9.70. Logika a studijní předpoklady

4.9.70. Logika a studijní předpoklady 4.9.70. Logika a studijní předpoklady Seminář je jednoletý, je určen pro studenty posledního ročníku čtyřletého studia, osmiletého studia a sportovní přípravy. Cílem přípravy je orientace ve formální logice,

Více

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 1 Cílem tohoto semináře je efektivní uvedení

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

Klauzulární logika. Znalostní báze. Šárka Vavrečková

Klauzulární logika. Znalostní báze. Šárka Vavrečková Klauzulární logika Znalostní báze Šárka Vavrečková Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě sarka.vavreckova@fpf.slu.cz 26. listopadu 2007 (Znalostní báze) Klauzulární

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Deskripce a existence: uctívali Řekové olympské bohy?

Deskripce a existence: uctívali Řekové olympské bohy? Kapitola 4 Deskripce a existence: uctívali Řekové olympské bohy? Přestože jsme se v minulé kapitole zabývali subjekty a predikáty, existuje ještě jeden typ výrazů, který může vystupovat jako podmět oznamovací

Více

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE. 2009 Tomáš Michek

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE. 2009 Tomáš Michek UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE 2009 Tomáš Michek Univerzita Pardubice Fakulta elektrotechniky a informatiky Program pro výuku a testování základů výrokové a

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo.

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace má tyto dílčí úkoly: 1) Naučit žáky číst číslice a správně vyslovovat názvy čísel. 2) Naučit žáky zapisovat čísla v

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

EO_03. Specifikační jazyk světa ontologie

EO_03. Specifikační jazyk světa ontologie EO_03 Specifikační jazyk světa ontologie Obsah přednášky Faktická znalost. Významový trojúhelník. Ontologický rovnoběžník. Stata& fakta. Ontologie světa. Gramatika specifického jazyka světa ontologie (1/2)

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 10 ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 ROZHODOVÁNÍ TEORIÍ POMOCÍ SAT ŘEŠIČE (SMT)

Více

ŘEŠENÉ ZÁPOČTOVÉ TESTY Z VÝROKOVÉ A PREDIKÁTOVÉ LOGIKY

ŘEŠENÉ ZÁPOČTOVÉ TESTY Z VÝROKOVÉ A PREDIKÁTOVÉ LOGIKY Poznámka: Tento materiál je souborem řešených zápočtových testů ze zimního semestru 2012/2013 k přednášce Výroková a predikátová logika na MFF UK v Praze. Nejedná se o oficiální materiál k přednášce, nebyl

Více

Analytické myšlení TSP MU výroková logika II.

Analytické myšlení TSP MU výroková logika II. Analytické myšlení TSP MU výroková logika II. Lehký úvod do výrokové logiky pro všechny, kdo se hlásí na Masarykovu univerzitu Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

J. Zendulka: Databázové systémy 4 Relační model dat 1

J. Zendulka: Databázové systémy 4 Relační model dat 1 4. Relační model dat 4.1. Relační struktura dat... 3 4.2. Integritní pravidla v relačním modelu... 9 4.2.1. Primární klíč... 9 4.2.2. Cizí klíč... 11 4.2.3. Relační schéma databáze... 13 4.3. Relační algebra...

Více

ale třeba i výroky, kde se za modifikátorem nachází složený výrok jako

ale třeba i výroky, kde se za modifikátorem nachází složený výrok jako Modální logika Nejběžnějším výrokovým modifikátorem, se kterým se setkáváme v přirozeném jazyce je negace. Operátor negace je jedním z klíčových spojek klasické logiky. Běžně se ovšem v přirozeném jazyce

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 Verze: 20121012 01MA1 2011/12 Obsah Zkouška z předmětu 01MA1.............................. 4 Literatura....................................... 4 Logika........................................

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Logika pro informatiky (a příbuzné obory)

Logika pro informatiky (a příbuzné obory) VŠB Technická univerzita Ostrava Logika pro informatiky (a příbuzné obory) učební text Doc. RNDr. Marie Duží, CSc. Ostrava 2012 Vydavatelství VŠB-TU Ostrava Vydání této publikace je spolufinancováno Evropským

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Základy fuzzy logiky 1

Základy fuzzy logiky 1 A Tutorial Základy fuzzy logiky 1 George J. Klir Petr Osička State University of New York (SUNY) Binghamton, New York 13902, USA gklir@binghamton.edu Palacky University, Olomouc, Czech Republic prepared

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Ě ÁÁ Ú é é ý ů ý ů é ý ů é é ú Ž ý ů é ů é é Ě ÁÁ Ú é Ý ž ý ž ý ý ů ž ů ň é Ž ý Ž ů ý é é é é ý ž Í Ě ÁÁ Ú é é ň é Ž ý ž Ž Í ý é ý Í ů ý ý ý é ý é ý é ň Ž Ž Ě ÁÁ Ú é é ý Ý é é ý Ž Í Í é ž Í Ž Ě ÁÁ Ú é

Více

1.4.3 Složené výroky konjunkce a disjunkce

1.4.3 Složené výroky konjunkce a disjunkce 1.4.3 Složené výroky konjunkce a disjunkce Předpoklady: 010402 Složené výroky = souvětí, výroky složené z více jednoduchých výroků. Výrok: Číslo 5 je sudé a je prvočíslo. Sestavený ze dvou výroků: 1. výrok:

Více

Uˇcebn ı texty k st atn ı bakal aˇrsk e zkouˇsce Obecn a informatika 8. z aˇr ı 2011 1

Uˇcebn ı texty k st atn ı bakal aˇrsk e zkouˇsce Obecn a informatika 8. z aˇr ı 2011 1 Učební texty k státní bakalářské zkoušce Obecná informatika 8. září 2011 1 Vážený študent/čitatel, toto je zbierka vypracovaných otázok pre bakalárske skúšky Informatikov. Otázky boli vypracované študentmi

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

1.4.2 Složené výroky konjunkce a disjunkce

1.4.2 Složené výroky konjunkce a disjunkce 1.4.2 Složené výroky konjunkce a disjunkce Předpoklady: 1401 Složené výroky = souvětí, výroky složené z více jednoduchých výroků Výrok: Číslo 5 je sudé a je prvočíslo. Sestavený ze dvou výroků: 1. výrok:

Více

Uˇcebn ı texty k st atn ı bakal aˇrsk e zkouˇsce Obecn a informatika 4. z aˇr ı 2011 1

Uˇcebn ı texty k st atn ı bakal aˇrsk e zkouˇsce Obecn a informatika 4. z aˇr ı 2011 1 Učební texty k státní bakalářské zkoušce Obecná informatika 4. září 2011 1 Vážený študent/čitatel, toto je zbierka vypracovaných otázok pre bakalárske skúšky Informatikov. Otázky boli vypracované študentmi

Více

Kapitola 3: Relační model. Základní struktura. Relační schéma. Instance relace

Kapitola 3: Relační model. Základní struktura. Relační schéma. Instance relace - 3.1 - Struktura relačních databází Relační algebra n-ticový relační kalkul Doménový relační kalkul Rozšířené operace relační algebry Modifikace databáze Pohledy Kapitola 3: Relační model Základní struktura

Více

Negace výroku. Příklad 1. Rozhodněte, zda jsou věty výroky, u výroků určete pravdivostní hodnotu:

Negace výroku. Příklad 1. Rozhodněte, zda jsou věty výroky, u výroků určete pravdivostní hodnotu: Základní pojmy výrokové logiky Výrok je každé sdělení, o němž má smysl říci, zda je pravdivé nebo nepravdivé. Přitom může nastat pouze jedna možnost. Výroky označujeme obvykle velkými písmeny A, B, C Pravdivému

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. Výroková logika I Výroková logika se zabývá výroky. (Kdo by to byl řekl. :-)) Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. U výroku

Více

Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5.

Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. Primární a sekundární výskyt označující fráze Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. 2012 Russellovo rozlišení jména a popisu Označující fráze Primární a sekundární

Více

LOGICA LUDUS Jaroslav Peregrin, FLÚ AV ČR a FF UK, Praha www.cuni.cz/~peregrin

LOGICA LUDUS Jaroslav Peregrin, FLÚ AV ČR a FF UK, Praha www.cuni.cz/~peregrin LOGICA LUDUS Jaroslav Peregrin, FLÚ AV ČR a FF UK, Praha www.cuni.cz/~peregrin Vymezení logického kalkulu, či vymezení nějaké teorie vyjádřené v jeho rámci se obvykle skládá ze tří součástí: (1) Syntaktická

Více

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA ve studiu učitelství 1. stupně základní školy Vilma Novotná, Bohuslav Pisklák Ostrava 2003 Obsah I. Úvod do teorie množin a matematické logiky

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1.

= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1. 4 4 = 8 8 8 = 5 + 19 1 = 4 = 11 : 1 k > 0 k 4k x 1 x x k + (1 x) 4k = k x + 4 4x = x = x 1 x = 1 = : 1. v h h s 75 v 50 h s v v 50 s h 75 180 v h 90 v 50 h 180 90 50 = 40 s 65 v 80 60 80 80 65 v 50 s 50

Více

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda.

Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda. m_1_vyrok_priklady 6.5.011 1/9 m_1_vyrok_priklady 6.5.011 /9 Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda. A: Číslo 6 je dělitelné 5-ti. (nepravda)

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Učební texty k státní bakalářské zkoušce Správa počítačových systémů. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Správa počítačových systémů. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Správa počítačových systémů študenti MFF 15. augusta 2008 1 Vážený študent/čitateľ, toto je zbierka vypracovaných otázok pre bakalárske skúšky Informatikov. Otázky

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Úvod. Zdroj textu - http://agora.metaphysica.skaut.org/vyplyvani.rtf

Úvod. Zdroj textu - http://agora.metaphysica.skaut.org/vyplyvani.rtf Úkoly 1) Projděte dokument a opravte jej tak, aby používal k formátování pouze styly a. Správně označte příslušné typy nadpisů b. Barevné odstavce a texty kurzívou c. Je vhodné použít pro barevné texty

Více

Deset přednášek z teorie statistického a strukturního rozpoznávání

Deset přednášek z teorie statistického a strukturního rozpoznávání Monografie Deset přednášek teorie statistického a strukturního roponávání Michail I. Schlesinger, Václav Hlaváč Praha 1999 Vydavatelství ČVUT 1. přednáška Bayesovská úloha statistického rohodování 1.1

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

Reziduovaná zobrazení

Reziduovaná zobrazení Reziduovaná zobrazení Irina Perfilieva Irina.Perfilieva@osu.cz 1. března 2015 Outline 1 Reziduované zobrazení 2 Izotónní/Antitónní zobrazení Definice Necht A, B jsou uspořádané množiny. Zobrazení f : A

Více

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické

Více

WSH Windows Script Hosting. OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007

WSH Windows Script Hosting. OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007 WSH Windows Script Hosting OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007 Co je skript? Skriptování nástroj pro správu systému a automatizaci úloh Umožňuje psát skripty jednoduché interpretované programové

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou

1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou Algebraické výrazy výrazy s promnnou S výrazy jsme se setkali v matematice a fyzice již mnohokrát. Pomocí výraz zapisujeme napíklad matematické vzorce. Vyskytují se v nich jednak ísla, kterým íkáme konstanty

Více

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

TEORIE ZPRACOVÁNÍ DAT

TEORIE ZPRACOVÁNÍ DAT Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta

Více

Výbor textů k moderní logice

Výbor textů k moderní logice Mezi filosofií a matematikou 5 Logika 20. století: mezi filosofií a matematikou Výbor textů k moderní logice K vydání připravil a úvodními slovy opatřil Jaroslav Peregrin 2006 Mezi filosofií a matematikou

Více