Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Rozměr: px
Začít zobrazení ze stránky:

Download "Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc."

Transkript

1 Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Rudolf Blažek 2011 BI-PST, LS 2010/11 Evropský sociální fond Praha & EU: Investujeme do vaší

2 Bayesova věta Cvičení Věta o úplném rozkladu pravděpodobnosti Soubor náhodných jevů B 1, B 2,...,B n se nazývá rozkladem množiny jestliže = [ n i=1 B i (disjunktní sjednocení: B i \ B j =? pro každé i 6= j). Věta (Věta o úplném rozkladu pravděpodobnosti) Nechť B 1, B 2,...,B n je rozklad množiny takový, že P(B i ) > 0 pro každé i. Pak Bayesova formule pro každý náhodný jev A. Věta (Bayes) Důkaz. P(A) = nx Podmíněná pravděpodobnost i=1 Bayesova formule P(A B i )P(B i ) ZNechť definice B 1, podmíněné B 2,...,B n je pravděpodobnosti rozklad a aditivity, P n i=1 P(A B i)p(b i )= P množiny takový, že P(B i ) > 0 pro každé ia nechť Anáhodný jev s P(A) n> 0. i=1 P(A Pak \ B i)=p(a). P(B k A) = P(B k)p(a B k ) P n i=1 P(B i)p(a B i ). Roman Kotecký, Rudolf Blažek (FIT ČVUT) Podmíněná pravděpodobnost a nezávislost BI-PST, LS 2010/11, Přednáška 2 8 / 18 2

3 (a) Spočtěte pravděpodobnost, že vyrobený obvod projde testem jako akceptovatelný. Odpověd : Cvičení (b) Splní nyní firma požadavek zákazníka? Rada: Jaká je podmíněná pravděpodobnost, že obvod je plně funkční za předpokladu, že prošel testem jako akceptovatelný? Bayesova věta 2. Dle odhadu 90% vyrobených integrovaných obvodů je plně funkčních. Požadavek zákazníka je však 99% plně funkčních obvodů. Vyrobené obvody jsou proto otestovány. Studie ukázala, že testem projde jako akceptovatelný přibližně 80% plně funkčních a 10% vadných obvodů. (a) Spočtěte pravděpodobnost, že vyrobený obvod projde testem jako akceptovatelný. Odpověd : (b) Splní nyní firma požadavek zákazníka? Rada: Jaká je podmíněná pravděpodobnost, že obvod je plně funkční za předpokladu, že prošel testem jako akceptovatelný? Odpověd : (c) Výroba obvodu stojí 2Kč a jeho test stojí 0.2Kč. Obvody, které neprojdou testem jsou skartovány. Kolik pak celkem stojí dodavatele jeden dodaný obvod? Odpověd : 3

4 Stromový diagram Cvičení,B n of events is called a partition of Example if = [ n i=1 B i (it means nd B i \ B j =? whenever i 6= j). distinction formula) be a partition of such that P(B i ) > 0 for all i. Then bability P(A) = Nakreslete stromový diagram pro příklad Bayes formula \ B i ), by definition of conditional probability and by aditivity, P (A 1 ) P (A c 2 A 1 ) i) = P(A \ B k) P(A) nx i=1 Použijte základní vzorce P(A B i )P(B i ) i) = P n i=1 P(A \ B i)=p(a). = P(B k A) What is the probability that in the sequence of there are no hearts? A i = {i-th card is not he P(A 1 \ A 2 \ A 3 )=P(A 1 )P(A 2 A 1 )P(A 3 A 1 Illustration of the computation with the help of A 1 P (A 2 A 1 ) P (A c 1) P (A 3 A 1 \ A 2 ) IT ČVUT) Statistika pro informatiku MI-SPI, ZS 2011/12, Přednáška 2 6 / 23 A 2 The probability in a given vertex of the tree is Pravděpodobnost values ona the statistika path stemmingbi-pst, from LS2010/11 the root. A 3 P (A 1 \ A 2 \ A 3 ) P (A c 3 A 1 \ A 2 ) P (A 1 \ A 2 \ A c 3) 39/52 4

5 Cvičení Bayesova věta Z analýzy našeho účtu elektronické pošty jsme zjistili, že 30% dosud přijatých zpráv byl spam (nevyžádaná pošta). V 65% spamových zpráv se vyskytuje slovo "kopie". Z legitimních zpráv je slovo "kopie" obsaženo pouze v 15%. Uvažujme nově příchozí zprávu obsahující slovo "kopie". Spočtěte pravděpodobnost, že tato zpráva je spam. Poznámka: Bayesovské filtry spamu opravdu fungují na podobném principu 5

6 Bayesova věta Cvičení Věta o úplném rozkladu pravděpodobnosti Soubor náhodných jevů B 1, B 2,...,B n se nazývá rozkladem množiny jestliže = [ n i=1 B i (disjunktní sjednocení: B i \ B j =? pro každé i 6= j). Věta (Věta o úplném rozkladu pravděpodobnosti) Nechť B 1, B 2,...,B n je rozklad množiny takový, že P(B i ) > 0 pro každé i. Pak Bayesova formule pro každý náhodný jev A. Věta (Bayes) Důkaz. P(A) = nx Podmíněná pravděpodobnost i=1 Bayesova formule P(A B i )P(B i ) ZNechť definice B 1, podmíněné B 2,...,B n je pravděpodobnosti rozklad a aditivity, P n i=1 P(A B i)p(b i )= P množiny takový, že P(B i ) > 0 pro každé ia nechť Anáhodný jev s P(A) n> 0. i=1 P(A Pak \ B i)=p(a). P(B k A) = P(B k)p(a B k ) P n i=1 P(B i)p(a B i ). Roman Kotecký, Rudolf Blažek (FIT ČVUT) Podmíněná pravděpodobnost a nezávislost BI-PST, LS 2010/11, Přednáška 2 8 / 18 6

7 Cvičení Jak spravit falešnou minci? (Úplný rozklad pravděpodobnosti) Hoď 2x mincí (Head / Tail; Panna / Orel): HT - Ty vyhraješ & TH - Já vyhraji HH or TT - zopakuj oba hody HT a TH mají stejnou pravděpodobnost: P(H)P(T) Dokažte: P(Já vyhraji) = 1/2... není to zcela lehké Zopakovat musíme OBA hody, nikoliv přidat jeden Správný postup: (HH)(TT)(TT)(TH) Chybný postup: HHT...výhra Pokud první hod je H, tak takonec vyhraji já! Jinak prohraji. 7

8 Cvičení Jak spravit falešnou minci? (Úplný rozklad pravděpodobnosti) Předpokládejme P(H) = p, P(T)=1-p V každém páru hodů: P(HT) = p (1 p) P(TH) = (1 p) p P(HH or TT) = p 2 + q 2 Spočtěte P(Já vyhraji) a P(Ty vyhraješ) Důležitý trik Úplný rozklad pravděpodobnosti N=počet párů (náhodný stopping time ) P (já vyhraji) = 1X n=1 P (já vyhraji,n = n) 8

9 Cvičení Zajímavost: Jak napálit protivníka? 1)+Postavte minci na hranu na stůl + Udeřte zespodu na desku stolu + Jedna strana je obvykle padne častěji Otestujte si vlastní minci. Navrhněte jak ji otestovat! (Probereme ve statistice) 2)+Držte minci ukazováčkem postavenou na hraně + Roztočte minci na stole cvrnknutím + Naučte se, aby přistála nahoru stranou, do které cvrnkete 9

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/2015

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Historie matematiky a informatiky Cvičení 1

Historie matematiky a informatiky Cvičení 1 Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co

Více

Problém identity instancí asociačních tříd

Problém identity instancí asociačních tříd Problém identity instancí asociačních tříd Autor RNDr. Ilja Kraval Ve školeních a také následně po jejich ukončení se stále častěji objevují dotazy, které se týkají tzv. identity instancí asociační třídy.

Více

Drsná matematika IV 7. přednáška Jak na statistiku?

Drsná matematika IV 7. přednáška Jak na statistiku? Drsná matematika IV 7. přednáška Jak na statistiku? Jan Slovák Masarykova univerzita Fakulta informatiky 2. 4. 2012 Obsah přednášky 1 Literatura 2 Co je statistika? 3 Popisná statistika Míry polohy statistických

Více

Cvičení ze statistiky - 4. Filip Děchtěrenko

Cvičení ze statistiky - 4. Filip Děchtěrenko Cvičení ze statistiky - 4 Filip Děchtěrenko Minule bylo.. Dokončili jsme deskriptivní statistiku Tyhle termíny by měly být známé: Korelace Regrese Garbage in, Garbage out Vícenásobná regrese Pravděpodobnost

Více

š Ě ř š ř Ě š Ť ř š Ě ň š ň Ý š Ť Š š ň š Ťť š Ě ú ú Ě š ř š š Ť š š Ó Ť Ě š ň ř ú š ú ú Ť š š š š š š ť Ý ú š ť š ť šť Ž Ť š š ú š ň š Ý ť š ň Ť ň š ň Ě Ť ý ň š š š Ť š š Ť ú ň ť š ť Ě ň Ť ň š ú ú ť š

Více

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA Poslední aktualizace: 29. května 200 STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY Pro zdárné absolvování předmětu doporučuji věnovat pozornost zejména příkladům označenými hvězdičkou. Příklady

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Klasifikace a predikce. Roman LUKÁŠ

Klasifikace a predikce. Roman LUKÁŠ 1/28 Klasfkace a predkce Roman LUKÁŠ 2/28 Základní pomy Klasfkace = zařazení daného obektu do sté skupny na základě eho vlastností Dvě fáze klasfkace: I. Na základě trénovacích vzorů (u nchž víme, do aké

Více

1. Pravděpodobnost a statistika (MP leden 2010)

1. Pravděpodobnost a statistika (MP leden 2010) 1. Pravděpodobnost a statistika (MP leden 2010) Pravděpodobnost pojmy 1. Diskrétní pravděpodobnostní prostor(definice, vlastnosti, příklad). Diskrétní pravděpodobnostní prostor je trojice(ω, A, P), kde

Více

VY_12_INOVACE_02.14 1/9 1.2.02.14 Vyprávíme a překládáme příběh

VY_12_INOVACE_02.14 1/9 1.2.02.14 Vyprávíme a překládáme příběh 1/9 1.2.02.14 Materiál je určen pro práci žáků 4. 5. ročníku v hodinách informatiky. Navazuje na učivo českého a anglického jazyka. 1. část Žáci dostávají v elektronické podobě první pracovní list obrázky

Více

Lineární Regrese Hašovací Funkce

Lineární Regrese Hašovací Funkce Hašovací Funkce Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost Soukromá střední škola a jazyková škola s právem státní jazykové zkoušky Č. Budějovice,

Více

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES Použité pojmy Platební systém Elektronický platební příkaz Účetní

Více

Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1

Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1 ? Šárka Hudecová Katedra i a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1? Statistika = věda o získávání, zpracování a interpretaci informace obsažené v

Více

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru.

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. Varianta I 1. Definujte pravděpodobnostní funkci. 2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. 3. Definujte Fisher-Snedecorovo rozdělení.

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Testování a spolehlivost. 6. Laboratoř Ostatní spolehlivostní modely

Testování a spolehlivost. 6. Laboratoř Ostatní spolehlivostní modely Testování a spolehlivost ZS 2011/2012 6. Laboratoř Ostatní spolehlivostní modely Martin Daňhel Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Příprava studijního programu Informatika

Více

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných

Více

š č ů š ň č č Ú Ú č č č č Ú ú Ú č ž č Ž Ý Í š Š č Ž ú Í Š ú Č Í Á ÍÁ č ší č š ž č č ů ů č č ň č č ů Ž ú ž č ů č č ů š Š č č č ů ů ů č ž č š š č č Ž č č č š Í č č č čů š š ž š ž č č č č č Í ž ú Í Ž č ů

Více

Úvod do datového a procesního modelování pomocí CASE Erwin a BPwin

Úvod do datového a procesního modelování pomocí CASE Erwin a BPwin Úvod do datového a procesního modelování pomocí CASE Erwin a BPwin (nově AllFusion Data Modeller a Process Modeller ) Doc. Ing. B. Miniberger,CSc. BIVŠ Praha 2009 Tvorba datového modelu Identifikace entit

Více

Ř Í Š Š Č Ť š é é ž é é é Ť š ť Ť ť ž ž Ť Ť š Í Ť Ž č é č č ž é č ž Ť š Ť Ď ž ž é ž Í č ň é Ť ž é é é Č č ž ž ř ž š š č č š ď Ž Č Ť é é Ť č é ž é ž é é é Ť ž ň š Ť Ž č š ž Č é č é š é é Ť Ž é č č š š é

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

Poznámky k předmětu Aplikovaná statistika, 9.téma

Poznámky k předmětu Aplikovaná statistika, 9.téma Poznámky k předmětu Aplikovaná statistika, 9téma Princip testování hypotéz, jednovýběrové testy V minulé hodině jsme si ukázali, jak sestavit intervalové odhady pro některé číselné charakteristiky normálního

Více

Zpráva o průběhu přijímacího řízení na vysokých školách pro akademický rok 2014 2015 na ČVUT v Praze Fakultě dopravní

Zpráva o průběhu přijímacího řízení na vysokých školách pro akademický rok 2014 2015 na ČVUT v Praze Fakultě dopravní Zpráva o průběhu přijímacího řízení na vysokých školách pro akademický rok 2014 2015 dle Vyhlášky MŠMT č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a její změně č. 276/2004 Sb. 1. Informace

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

3 PRAVDĚPODOBNOST. Základní vztahy: Pravděpodobnost negace jevu A: P A 1 P A

3 PRAVDĚPODOBNOST. Základní vztahy: Pravděpodobnost negace jevu A: P A 1 P A 3 RAVDĚODOBNOST Základní vztahy: ravděpodobnost negace jevu A: A 1 A ravděpodobnost sjednocení jevů A,B: A B A B A B - pro disjunktní (neslučitelné) jevy A, B: A B A B ravděpodobnost průniku jevů A, B:

Více

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz Doc. Ing. Michal Korecký, Ph.D. Ing. Václav Trkovský, CSc. Management rizik projektů se zaměřením na projekty v průmyslových podnicích Vydala Grada

Více

Automatika na dávkování chemie automatic dosing

Automatika na dávkování chemie automatic dosing Automatika na dávkování chemie automatic dosing Swimmingpool Technology Autodos 700 Automatické dávkování Autodos Autodos automatic dosing Autodos 700 je jedno-kanálové zaøízení, pro mìøení a dávkování.

Více

DBS Konceptuální modelování

DBS Konceptuální modelování DBS Konceptuální modelování Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze Michal.Valenta@fit.cvut.cz c Michal Valenta, 2010 BIVŠ DBS I, ZS 2010/11 https://users.fit.cvut.cz/

Více

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky)

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Bayesovská síť zachycuje závislosti mezi náhodnými proměnnými Pro zopakování orientovaný acyklický graf

Více

ť Á ČÍ Á ť ť Í Á Í Í ú ť Ů Ů ú ť Ě Ů Ž ť ť Ů Ů Ů Á ť Í Ó Á Ý ň Č Ě Ó Ž ň ť ú ň ť Ě Í Í Í Á Ý ť Í Á Ž Ů ť Ů Ž Ě ť ť ú ť ť ť Ž Ě Ě ť Ů Ů Ě Ů Ě Ž ť Ě Ě Ě Ó Í Ď Ó ť Ě Ě Í Ý Ě Ů Ó Ů ť ť ť É Ž Š Š Š Ž Č Š Š

Více

http://www.zlinskedumy.cz

http://www.zlinskedumy.cz Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Výklad a cvičení z větné stavby, vy_32_inovace_ma_33_01

Více

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení

Více

Karty Prší. Anotace: Abstract: Gymnázium, Praha 6, Arabská 14 předmět Programování, vyučující Tomáš Obdržálek

Karty Prší. Anotace: Abstract: Gymnázium, Praha 6, Arabská 14 předmět Programování, vyučující Tomáš Obdržálek Gymnázium, Praha 6, Arabská 14 předmět Programování, vyučující Tomáš Obdržálek Karty Prší ročníkový projekt, Tomáš Krejča 1E květen 2014 Anotace: Mým cílem bylo vytvořit simulátor karetní hry prší. Hráč

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk

Více

Základy vytěžování dat

Základy vytěžování dat Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha

Více

Diskrétní pravděpodobnost

Diskrétní pravděpodobnost Diskrétní pravděpodobnost Jiří Koula Definice. Konečným pravděpodobnostním prostorem nazveme dvojici(ω, P), kde Ω jekonečnámnožina {ω 1,..., ω n}apfunkcepřiřazujícíkaždépodmnožiněωčíslo zintervalu 0,1,splňujícíP(

Více

PSANÍ. Anglický jazyk 5. třída Hana Stryalová

PSANÍ. Anglický jazyk 5. třída Hana Stryalová PSANÍ Jazyk Úroveň Autor Kód materiálu Anglický jazyk 5. třída Hana Stryalová Aj5-kap-str-psa-06 Z á k l a d o v ý t e x t : Dear Jessica! I am in Spain now. I am here with a Spanish girl. Her name is

Více

Deset přednášek z teorie statistického a strukturního rozpoznávání

Deset přednášek z teorie statistického a strukturního rozpoznávání Monografie Deset přednášek teorie statistického a strukturního roponávání Michail I. Schlesinger, Václav Hlaváč Praha 1999 Vydavatelství ČVUT 1. přednáška Bayesovská úloha statistického rohodování 1.1

Více

Spolehlivost tekutinových systémů The Reliability of Fluid Systems

Spolehlivost tekutinových systémů The Reliability of Fluid Systems Fakulta strojní VŠB Technická univerzita Ostrava Katedra hydromechaniky a hydraulických zařízení Spolehlivost tekutinových systémů The Reliability of Fluid Systems prof. Ing. Jaroslav Kopáček, CSc. Proč

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 2: Metoda nejmenších čtverců LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Doplnění a opakování z

Více

Ž é é ť Ů ž š é Ž Ú Ú ť ď Ň Ě ž Ž Ú Ú ó é Ž é ó Ž ó š š Á é é é ž ó Ž Á ó ó É š š Ž ť Ú Ě Á ó ž ž é é é ž é ž š ť Ú Ž ť Ťť Ů Ú ť ď ď š š š Ž Ú Ú Ť ó š ó ó ó ó ó Ú Ť ó Ť ó Ž Ú Ě Ó ó Ú é ó ť Ý ů é Ž Ž Ý

Více

TECHSTA 2000 ČVUT PRAHA FAKULTA STAVEBNÍ KATEDRA TECHNOLOGIE STAVEB

TECHSTA 2000 ČVUT PRAHA FAKULTA STAVEBNÍ KATEDRA TECHNOLOGIE STAVEB ČVUT PRAHA FAKULTA STAVEBNÍ KATEDRA TECHNOLOGIE STAVEB 1 SBORNÍK PŘEDNÁŠEK Z KONFERENCE Vydalo ČVUT Praha, Stavební fakulta, ČR ZÁŘÍ 2000 Tématické oblasti konference Příprava a modelování realizace staveb

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

IS Restaurace. Semestrální práce. Tomáš Rumíšek V Brně dne 7. 1. 2014 Peter Ševčík

IS Restaurace. Semestrální práce. Tomáš Rumíšek V Brně dne 7. 1. 2014 Peter Ševčík IS Restaurace Semestrální práce Tomáš Rumíšek V Brně dne 7. 1. 2014 Peter Ševčík 1 1. Obsah 2. Neformální specifikace... 3 Informační systém Restaurace... 3 3. Formální specifikace... 3 Funkční požadavky...

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Práce s

Více

Pravděpodobnost vs. Poměr šancí. Pravděpodobnostní algoritmy: Bayesova věta. Bayesova teorie rozhodování. Bayesova věta (teorém) Vzorec. ...

Pravděpodobnost vs. Poměr šancí. Pravděpodobnostní algoritmy: Bayesova věta. Bayesova teorie rozhodování. Bayesova věta (teorém) Vzorec. ... ravděpodobnostní algoritmy: Bayesova věta Fantasy is hardly an escape from reality. It is a way of understanding it. LLoyd Alexander ravděpodobnost vs. oměr šancí ravděpodobnost - poměr počtu jedinců surčitým

Více

7.VY_32_INOVACE_AJ_UMB7, Tázací dovětky.notebook. September 08, 2013

7.VY_32_INOVACE_AJ_UMB7, Tázací dovětky.notebook. September 08, 2013 1 2 3 SPECIAL CASES: 1. After Let s... the question tag is... shall we? 2. After the imperative (Do.../Don t... the tag is usually... will you? 3. Note that we say... aren t I? (=am I not?) instead of

Více

Historie matematiky a informatiky

Historie matematiky a informatiky Evropský sociální fond Investujeme do vaší budoucnosti Historie matematiky a informatiky 2014 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze 1 Co je matematika? Matematika

Více

Komputerizace problémových domén

Komputerizace problémových domén Milan Mišovič (ČVUT FIT) Pokročilé informační systémy MI-PIS, 2011, Přednáška 03 1/19 Komputerizace problémových domén Prof. RNDr. Milan Mišovič, CSc. Katedra softwarového inženýrství Fakulta informačních

Více

Tvorba aplikací v Oracle Application Express

Tvorba aplikací v Oracle Application Express DBS 4. ročník APEX Tvorba aplikací v Oracle Application Express Cílem této lekce je vytvořit kompletní aplikaci v Apexu, postavenou na vzorových tabulkách společnosti Oracle. Postup: 1. Otevřete lekci

Více

Databázové systémy úvod

Databázové systémy úvod Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2012 BI-DBS, ZS 2012/13 https://edux.fit.cvut.cz/courses/bi-dbs/ Michal

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

Úvod do principů objektově orientovaného programování

Úvod do principů objektově orientovaného programování OBSAH DISTANČNÍHO E-LEARNINGOVÉHO KURZU PROFESNÍ RŮST ANALYTIKA OD ZÁKLADŮ (BASE) ÚVOD DO TECHNOLOGIÍ INFORMAČNÍCH SYSTÉMŮ Jak funguje počítač na základní úrovni Základy HTML Skripty ve webovských technologiích

Více

Foster Bohemia s.r.o. Laboratoř měření imisí Immission Measurement Laboratory. Mezi Rolemi 54/10, 158 00 Praha 5, Jinonice, Česká republika

Foster Bohemia s.r.o. Laboratoř měření imisí Immission Measurement Laboratory. Mezi Rolemi 54/10, 158 00 Praha 5, Jinonice, Česká republika Foster Bohemia s.r.o. Laboratoř měření imisí Immission Measurement Laboratory Mezi Rolemi 54/1, 15 Praha 5, Jinonice, Česká republika 1 Identifikace metodou: Identification by the method: Objekt: Building:

Více

Téma 8. Náklady kapitálu. Kapitálová struktura a její optimalizace

Téma 8. Náklady kapitálu. Kapitálová struktura a její optimalizace Téma 8. Náklady kapitálu. Kapitálová struktura a její optimalizace 1. Náklady kapitálu a jejich kvantifikace 2. Kapitálová struktura podniku 3. Působení finanční páky 4. Optimální kapitálová struktura

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Database systems. Normal forms

Database systems. Normal forms Database systems Normal forms An example of a bad model SSN Surnam OfficeNo City Street No ZIP Region President_of_ Region 1001 Novák 238 Liteň Hlavní 10 26727 Středočeský Rath 1001 Novák 238 Bystřice

Více

Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky.

Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Projekt ESF OP VK reg.č. CZ.1.07/2.2.00/28.0209 Elektronické opory a e-learning pro obory výpočtového

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

ALERGICI A ASTMATICI VE ŠKOLE 21. STOLETÍ

ALERGICI A ASTMATICI VE ŠKOLE 21. STOLETÍ Škola a zdraví 21, 2009, Obecné otázky výchovy ke zdraví ALERGICI A ASTMATICI VE ŠKOLE 21. STOLETÍ Marie HAVELKOVÁ, Petr KACHLÍK, Kamila SYNKOVÁ, Martina POKORNÁ Abstrakt: Práce prezentuje výsledky získané

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona Tématická oblast DUM č. CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Anglický jazyk pro obor podnikání

Více

PAINTING SCHEMES CATALOGUE 2012

PAINTING SCHEMES CATALOGUE 2012 Evektor-Aerotechnik a.s., Letecká č.p. 84, 686 04 Kunovice, Czech Republic Phone: +40 57 57 Fax: +40 57 57 90 E-mail: sales@evektor.cz Web site: www.evektoraircraft.com PAINTING SCHEMES CATALOGUE 0 Painting

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Kontingenční tabulky. (Analýza kategoriálních dat)

Kontingenční tabulky. (Analýza kategoriálních dat) Kontingenční tabulky (Analýza kategoriálních dat) Agenda Standardní analýzy dat v kontingenčních tabulkách úvod, KT, míry diverzity nominálních veličin, některá rozdělení chí kvadrát testy, analýza reziduí,

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Informační systémy 2008/2009. Radim Farana. Obsah. Dotazy přes více tabulek

Informační systémy 2008/2009. Radim Farana. Obsah. Dotazy přes více tabulek 5 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Jazyk SQL, Spojení tabulek, agregační dotazy, jednoduché a složené

Více

Statistické vyhodnocování experimentálních dat. Mgr. Martin Čada, Ph.D.

Statistické vyhodnocování experimentálních dat. Mgr. Martin Čada, Ph.D. Statistické vyhodnocování experimentálních dat Mgr. Martin Čada, Ph.D. - Ústav fyziky a biofyziky, PřF JU - E-mail: mcada@prf.jcu.cz - Tel.: 266052418 - Organizace výuky, zkouška, zápočet - Přednášky a

Více

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND.

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND. Pravděpodobnostn podobnostní charateristiy diagnosticých testů, Bayesův vzorec Prof.RND RND.Jana Zvárov rová,, DrSc. Náhodný pous, náhodný n jev Náhodný pous: výslede není jednoznačně určen podmínami,

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

METODY REPREZENTACE A ZPRACOVÁNÍ ZNALOSTÍ V UMĚLÉ INTELIGENCI

METODY REPREZENTACE A ZPRACOVÁNÍ ZNALOSTÍ V UMĚLÉ INTELIGENCI METODY REPREZENTACE A ZPRACOVÁNÍ ZNALOSTÍ V UMĚLÉ INTELIGENCI Radim Jiroušek 2 Obsah 0 Úvod 7 1 Řešení úloh ve stavových prostorech 9 1.1 Definice stavového prostoru........................ 9 1.2 Příklad....................................

Více

POSLECH. Cinema or TV tonight (a dialogue between Susan and David about their plans for tonight)

POSLECH. Cinema or TV tonight (a dialogue between Susan and David about their plans for tonight) POSLECH Jazyk Úroveň Autor Kód materiálu Anglický jazyk 9. třída Zora Smolková aj9-jes-smo-pos-01 Z á k l a d o v ý t e x t : Cinema or TV tonight (a dialogue between Susan and David about their plans

Více

Social Media a firemní komunikace

Social Media a firemní komunikace Social Media a firemní komunikace TYINTERNETY / FALANXIA YOUR WORLD ENGAGED UČTE SE OD STARTUPŮ ANALYSIS -> PARALYSIS POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE

Více

LOGBOOK. Blahopřejeme, našli jste to! Nezapomeňte. Prosím vyvarujte se downtrade

LOGBOOK. Blahopřejeme, našli jste to! Nezapomeňte. Prosím vyvarujte se downtrade název cache GC kód Blahopřejeme, našli jste to! LOGBOOK Prosím vyvarujte se downtrade Downtrade (z GeoWiki) Je to jednání, kterého byste se při výměnách předmětů v keších měli vyvarovat! Jedná se o snížení

Více

Socrates / Comenius Czech rep. 2006/2007

Socrates / Comenius Czech rep. 2006/2007 zobrazit. V pravděpodobně není k dispozici dostatek Restartujte počítač a o zobrazit. V pravděpodobně není k dispozici dostatek Restartujte počítač a o zobrazit. V pravděpodobně není k dispozici dostatek

Více

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

půjčky do 3 tisic jedna noc. Do hlavního vysílacího času se pak mají vrátit některé programy, jako třeba Ozák. Incident 1:Since I started the Qubee

půjčky do 3 tisic jedna noc. Do hlavního vysílacího času se pak mají vrátit některé programy, jako třeba Ozák. Incident 1:Since I started the Qubee půjčky do 3 tisic jedna noc. Do hlavního vysílacího času se pak mají vrátit některé programy, jako třeba Ozák. Incident 1:Since I started the Qubee service on 2nd week of January with 512kbs it was satisfactory

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona Tématická oblast DUM č. CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Anglický jazyk pro obor podnikání

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

Základy pravděpodobnosti poznámky. Jana Klicnarová

Základy pravděpodobnosti poznámky. Jana Klicnarová Základy pravděpodobnosti poznámky Jana Klicnarová 1 V této části připomeneme základní pojmy a vztahy pro práci s náhodou. 0.1 Náhodné jevy Uvažujme situace, které mohou a nemusí nastat a o kterých v nějakém

Více

Podmíněná pravděpodobnost

Podmíněná pravděpodobnost odmíněná pravděpodobnost 5. odmíněná pravděpodobnost 5.. Motivace: Opakovaně nezávisle provádíme týž náhodný pokus a sledujeme nastoupení jevu A v těch pokusech, v nichž nastoupil jev H. odmíněnou relativní

Více

GWAVA antispam a antivir

GWAVA antispam a antivir GWAVA antispam a antivir V rámci opatření proti spamu a virům na ČZU byl implementován antispamový a antivirový systém GWAVA. Systém GWAVA zašle uživateli v případě zachycení nevyžádané pošty do jeho schránky

Více

Kybernalita kriminalita v kybernetickém prostředí

Kybernalita kriminalita v kybernetickém prostředí Kybernalita kriminalita v kybernetickém prostředí Ing. Zdeněk Blažek, CSc. CISM. COMMERZBANK AG Jh. Katedra počítačových systémů Fakulta informačních technologiíí České vysoké učení technické v Praze Zdeněk

Více