Praktická cvičení algoritmů

Rozměr: px
Začít zobrazení ze stránky:

Download "Praktická cvičení algoritmů"

Transkript

1 texty pro distanční studium Ing. Eliška Treterová Ostravská univerzita v Ostravě, Přírodovědecká fakulta Katedra Informatiky a počítačů Ostrava 2003

2 2 Praktická cvičení algoritmů

3 Úvod Jednoduchá proměnná Číselná proměnná Celá čísla Příklady použití jednoduché celočíselné proměnné Korespondenční úkol č Reálná čísla Příklady použití reálné proměnné Znaková proměnná Znaky Příklady použití znakové proměnné Logická proměnná Logické konstanty Příklady použití logické proměnné Korespondenční úkol č Statické datové struktury Řetězec znaků Pole Jednorozměrné pole Dvourozměrné pole Záznam Množina Korespondenční úkol č Uložení dat mimo operační paměť Textový soubor Typový soubor Korespondenční úkol č Závěr Literatura

4 4 Praktická cvičení algoritmů

5 Úvod Studijní text je určen pro zájemce o studium problematiky tvorby algoritmů a jejich zápisu v programovacím jazyku Borland Pascal. Je možné jej využít v předmětu Praktická cvičení algoritmů. Předpokladem úspěšného zvládnutí učiva tohoto studijního textu je dobrá orientace v integrovaném prostředí Borland Pascalu a dobrá znalost základních rysů tohoto programovacího jazyka. Studující musí byt schopen používat jednoduché i strukturované příkazy jazyka Borland Pascal, vytvářet vlastní podprogramy obou dovolených typů procedury a funkce a znát problematiku datových typů. Studijní text je rozdělen do tří velkých kapitol. V úvodní kapitole jsou vysvětleny základní principy práce s jednoduchou proměnnou. Další kapitola se zabývá problematikou uložení dat pomocí datových struktura a jejich následným zpracováním. Třetí kapitola pak je věnována ukládání dat mimo operační paměť počítače. Studující se zde naučí uložit data do externího souboru a následně pak také zpět do operační paměti. Všechny kapitoly a podkapitoly jsou doplněny velkým množstvím příkladů. U každého příkladu je proveden rozbor řešení a je vloženo řešení ve zdrojovém kódu programovacího jazyka Borland Pascal. 5

6 1. Jednoduchá proměnná Cíl: Po prostudování této kapitoly budete schopni: - používat v programech číselné proměnné - zařadit do algoritmů znakovou proměnnou - rozlišit situace, kdy do algoritmů je vhodně zařadit logickou proměnnou Klíčová slova: Proměnná, celé číslo, reálné číslo, znak, logická proměnná, logická konstanta, aritmetické operace, relační operace, logické operace, logický výraz, standardní podprogramy, datový typ, předefinovaná konstanta. Jednoduchá proměnná slouží k uložení jedné hodnoty. Jako hodnota se zde může objevit celé číslo, desetinné číslo, znak nebo logická konstanta. Význam jednoduché proměnné pro programování spočívá především v tom, že často programátor potřebuje různá počítadla, přepínače a pomocné proměnné pro uložení výsledků a mezivýsledků Číselná proměnná V programovacím jazyku Borland Pascal rozlišujeme čísla celá a čísla desetinná. Obecně platí, že čísla desetinná v programování nazýváme reálná. Rozdělení čísel do těchto dvou skupin vychází z odlišného způsobu jejich vnitřního reprezentace a v závislosti na tom i provádění výpočtu Celá čísla Celá čísla se v paměti počítače ukládají přesně. Kladná část čísla je zobrazena ve dvojkové soustavě, záporná čísla se ukládají v doplňkovém kódu. Nejvyšší bit slouží k uložení znaménka. Pokud je tento bit roven nule, je číslo kladné, pokud je roven 1, znamená to, že číslo je záporné. Další bity vymezeného prostoru slouží k uložení vlastní hodnoty. Velikost paměti přidělená jednomu číslu je přesně určena datovým typem proměnné. V Borland Pascalu existuje 5 různých datových typů, kdy nejběžnějším typem je typ INTEGER, který proměnné přiděluje paměť velikosti 16 bitů. Z tohoto prostoru je jeden bit určen pro znaménko a zbývajících 15 bitů pro uložení čísla. Z toho vyplývá, že v tomto prostoru lze uložit libovolné celé číslo z rozmezí až , tj do Překladač Borland Pascalu rozlišuje 5 datových typů pro celá čísla. Typ Množina hodnot (rozsah) Velikost paměti v bytech BYTE SHORTINT

7 WORD INTEGER LONGINT Příklady použití jednoduché celočíselné proměnné. Při použití celočíselné proměnné je vhodné si zapamatovat, které operace Borland Pascal pro celočíselné operace nabízí. Dovolené operace s proměnnými celočíselných typů: a) aritmetické operátory: + sčítání - odčítání * násobení DIV celočíselné dělení MOD zbytek po celočíselném dělení / přesné dělení Použití operace dělení pomocí operátoru / je dovoleno pro celočíselné proměnné, ale výsledek tohoto dělení je reálné číslo (číslo s desetinnou částí). Výsledkem ostatních operací bude celočíselná hodnota. Průvodce studiem: Na tomto místě bych vás chtěla upozornit především na existenci operátorů DIV a MOD. Programátor by se bez nich docela lehce obešel, ale proč je nepoužívat, když jsou k dispozici? Jestliže vypočítáme: 7 : 2 = 3, zbytek je 1 Pak stejné výsledky dostaneme takto: 7 DIV 2 = 3 7 MOD 2 = 1 Vhodnost použití operátorů DIV a MOD a zároveň jejich nahraditelnost je znázorněna v příkladu č.1-1 a příkladu č.1-2. b) relační operátory: = rovná se <> nerovná se > větší než >= větší nebo rovno < menší než <= menší nebo rovno Výsledkem těchto operací je logická hodnota TRUE nebo FALSE! 7

8 Předdefinované celočíselné konstanty - není třeba je zavádět v deklarační části programu. MAXINT - obsahuje největší dovolenou hodnotu, kterou lze uložit do proměnné typu INTEGER, což je MAXLONGINT - obsahuje největší dovolenou hodnotu, kterou lze uložit do proměnné typu LONGINT, což je Průvodce studiem: Je výhodné znát, že existují tzv. předdefinované konstanty. Tyto konstanty pak můžete použít, aniž byste je museli uvádět v deklarační část programu a pak také máte jistotu, že mají vždy stejnou hodnotu. V dalším textu jsou občas použity. Příklad 1-1: Zjistěte celou část podílu celých čísel A,B. Předpoklad: máme deklarovány proměnné Vysl, A a B jako celá čísla. Řešení s využitím operátoru DIV: Vysl := A DIV B; Řešení bez použití operátoru DIV: Vysl := trunc(a/b) ; Výsledek obou řešení je stejný! Druhé řešení je ale zbytečně složité, obvykle se k němu uchýlí programátor, který neví o existenci standardního operátoru DIV. Příklad 1-2: Zjistěte, zda je číslo A dělitelné číslem B. Předpoklad: máme deklarovány proměnné A a B jako celá čísla. Řešení s využitím operátoru MOD: If A MOD B = 0 then { }; Řešení s využitím operátoru DIV a zpětné násobení podílu dělitelem: If (A DIV B) * B = K then { }; Toto řešení je v podstatě správné, ale zbytečně složité. Řešení bez použití operátoru MOD: If (A DIV B) = A/B then { }; If round(a / B) * B = A then { }; Tato řešení jsou poněkud nešikovná, protože vyžadují přechod do reálných čísel. 8

9 Příklad 1-3: Zjistěte, kolikrát musí jet dopravní prostředek o kapacitě K, aby přepravil skupinu cestujících o počtu P. Zajistěte regulérnost vstupní hodnoty a nabídněte možnost opakování celého výpočtu na základě dotazu. Použijeme aritmetické operace DIV a MOD, které jsou pro celá čísla dovolené. Pomocí DIV zjistíme, kolik bude zcela plných dopravních prostředků, a pomocí MOD zjistíme, zda je třeba poslat další dopravní prostředek, který nebude plný. Program PR1_3; K,P,pocet_jizd,zbytek:integer; opakovani:integer; write('zadej pocet cestujicich: '); readln(p); write('zadej kapacitu dopr.prostredku vetsi nez nula:'); readln(k); until (P>0) and (K>0); pocet_jizd:=p div k; zbytek:= p mod k; if zbytek <> 0 then pocet_jizd := pocet_jizd + 1; writeln('dopr.prostredek musi jet',pocet_jizd); Write('opakovat cely vypocet? '); Writeln('1=ano, ostatni cisla = konec programu'); readln(opakovani); until opakovani <> 1; Průvodce studiem: Algoritmus řešení tohoto problému byl vcelku jednoduchý, hlavně proto, že jste využili operátory DIV a MOD. Do programu jsem zařadila nabídku opakování celého výpočtu. To nemá vliv na vlastní algoritmus řešení, ale uživateli programu tím umožníte pohodlným způsobem testovat různé ianty řešení. Často v programech tuto nabídku naleznete. 9

10 Příklad 1-4 Z klávesnice zadáváme předem známý počet celých čísel. Počet vstupních hodnot je uložen v N. Zjistěte kolik ze zadaných hodnot bylo záporných a kolik hodnot bylo dělitelných 5 (použijte operátor MOD). K řešení použijte libovolný příkaz cyklu. Dělitelnost čísla zde chápeme jako situaci, kdy nám po vydělení zůstane zbytek roven nule. K tomuto účelu nám dobře poslouží operátor MOD. Zápornost čísla zjistíme porovnáním čísla s nulou. V programu není zařazena nabídka opakování výpočtu. Pro zamezení automatického návratu do integrovaného prostředí Borland Pascalu po vytištění výsledků je na konci programu vložen příkaz cyklu s podmínkou na konci ve tu: until keypressed; kde keypressed je logická funkce, která vrací hodnotu TRUE při stisku libovolné klávesy. Program PR1_4; i, cislo, pocet, zap, del:integer; Clrscr; Write('Zadejte pocet cisel: '); ReadLn(pocet); del:=0; zap:=0; For i:=1 to pocet do Write('Zadejte cislo: '); ReadLn(cislo); if cislo mod 5 = 0 then inc(del); {del:=del+1} if cislo < 0 then inc(zap); Writeln('Z celk. poctu ', pocet,' cisel bylo: '); Writeln('zapornych : ',zap); Writeln('delitelnych 5: ',del); until keypressed; Příklad 1-5 Sestavte proceduru, která čas zadaný v sekundách převede na hodiny, minuty a sekundy. Načtení času a tisk výsledků bude provedeno v hlavním programu. Zajistěte regulérnost vstupní hodnoty a nabídněte možnost opakování celého výpočtu na základě dotazu. Výsledkem by mělo být vyjádření času v tzv. digitální podobě. Jednoduchým způsobem pomocí operátorů DIV a MOD získáme výsledek. Výpočet má smyl pouze v případě, že na vstupu bude kladné číslo. 10

11 program PR1_5; pocet_sec:longint; h,m,sec:integer; opakovani:integer; procedure prevod(pocet:longint; hod,min,sec:integer); zb:integer; hod:= pocet div 3600; zb:=pocet mod 3600; min:= zb div 60; sec:= zb mod 60; write('zadej cas v sekundach: '); readln(pocet_sec); If pocet_sec <= 0 then writeln('cas zadejte vetsi nez nula!'); until pocet_sec > 0; prevod(pocet_sec,h,m,sec); writeln('cas v hodinach: ',h,':',m,':',sec); Write('opakovat cely vypocet? '); writeln('1=ano, ostatni cisla = konec programu'); readln(opakovani); until opakovani <> 1; Samostatný úkol č1: Vyřešte úkol PR1_5 bez použití operátorů DIV a MOD. Celočíselné dělení nahradíme postupným odčítáním dělitele od dělence. Příklad 1-6 Sestavte funkci, která vypočítá N-tou mocninu reálného čísla Z, řešte i pro případ záporného mocnitele. Funkce bude mít dva formální parametry. Tuto funkci využijte v programu. Platí: z n = z * z* z* z. Pro záporného mocnitele se provede výpočet mocniny s kladným mocnitelem a výsledek pak získáme jako převrácenou hodnotu výsledku. 11

12 Průvodce studiem: Překladač jazyka Borland Pascal obsahuje pouze standardní funkci SQR(x), která vypočítá druhou mocninu čísla x. Pokud potřebujete vypočítat N-tou mocninu nebo umocnit číslo na záporného mocnitele, musíte sestavit potřebný algoritmus sami. Algoritmus výpočtu je vcelku jednoduchý, nezapomeňte správně nastavit ve funkci počáteční hodnotu lokální proměnné V na hodnotu 1. Program PR1_6; cis,vysl:real; moc:integer; Function mocnina(z:real;n:integer):real; i:integer; v:real; v:=1; for I:= 1 to abs(n) do v:=v*z; if n<0 then v:= 1/v; mocnina:=v; Write('Zadej cislo: '); readln(cis); write('zadej mocnitele: '); readln(moc); vysl:=mocnina(cis,moc); writeln('n-ta mocnina cisla: ',vysl:5:2); write('zmackni ENTER: '); readln; Příklad 1-7 Sestavte funkci pro výpočet N!. Funkce bude mít jeden formální parametr. Funkci využijte v programu v programu zajistěte, aby se funkce volala pouze v případě, že lze N! vypočítat. Nabídněte možnost opakování celého výpočtu na základě dotazu. Pro faktoriál přirozeného čísla N platí: N! = 1*2*3*4* *N Pro nulu platí: 0! = 1 Pro záporná čísla není faktoriál definován. Funkce pro výpočet faktoriálu netestuje správnost vstupní hodnoty, to je zajištěno v hlavním programu návratem na opětovné zadání čísla, pokud je číslo záporné. 12

13 Průvodce studiem: Ve funkci, kterou sestavíte pro výpočet faktoriálu, musíte zavést dvě pomocné lokální proměnné. Proměnná i slouží jako řídící proměnná cyklu a proměnná v slouží pro uložení výsledku. Teprve na konci funkce přiřaďte obsah proměnné v do názvu funkce. Pokud byste toto přiřazení neprovedli, funkce by vám v místě svého volání nevracela vypočtenou hodnotu. Také je důležité to, že ve funkce netestuje, zda lze či nelze faktoriál ze zadaného čísla vypočítat. To musíte zajistit v programu dříve, než funkci zavoláte. Vzhledem k tomu, že hodnota faktoriálu roste velmi rychle, je důležité, abyste stanovili návratový typ funkce (a také lokální proměnné v na longint. Pokud by ani tento rozsah nestačil, tak zvolte jako návratový typ funkce datový typ real. Nezapomeňte nastavit počáteční hodnotu proměnné v na jedničku. Kdybyste do v dali nulu, byl by výsledek vašeho výpočtu pořád nulový. Program PR1_7; F,opakovani:integer; vysl:longint; Function FAKT(n:integer):longint; i:integer; v:longint; v:=1; for i:= 1 to n do v:=v*i; fakt:=v; Write('Zadej cislo N intervalu <0,15> '); readln(f); until (f>=0) and (f<=15); vysl:=fakt(f); writeln('faktorial cisla: ',vysl); Write('opakovat cely vypocet? '); writeln('1=ano, ostatni cisla = konec programu'); readln(opakovani); until opakovani <> 1; 13

14 Příklad 1-8 Sestavte funkci, která bude počítat součin dvou celých čísel pomocí postupného sčítání. Řešte i pro záporné hodnoty. Tuto funkci využijte v programu. Nabídněte možnost opakování celého výpočtu na základě dotazu. Základem řešení je to, že násobení dvou celých čísel je ve své podstatě opakované sčítání jednoho činitele. Počet opakování sčítání je dán hodnotou druhého činitele. Např.: 3*4 = Pro záporné hodnoty pak je nutné především zajistit, aby výpočet vždy proběhl. To zajišťuje použití standardní funkce ABS(cis1). Po výpočtu je třeba upravit výsledek pro situaci, kdy cis1 je záporné číslo. Ostatní je v pořádku. Např.: 3*4 = = 12 3*(-4) = (-4) + (-4) + (-4) = -12-3*4 = = 12-3*(-4) = (-4) + (-4) + (-4) =-12 Průvodce studiem: Vyřešení tohoto úkolu je dosti snadné, zvláště, pokud si nepřečtete pozorně zadání a opominete zajistit funkčnost algoritmu i pro záporné hodnoty. Jakmile ale začne student předělávat svůj algoritmus tak, aby dával správné řešení i pro záporné hodnoty, málokdy dojde k řešení, které jsem vám nabídla. Obvykle ke správným výsledkům dospěje, ale v programu bývá velmi mnoho zbytečných rozhodovacích bloků. Proto jsem zařadila tento dosti podrobný rozbor vcelku jednoduchého algoritmu. Program PR1_8; c1,c2,opakovani:integer; vysl:longint; Function soucin(cis1,cis2:integer):longint; i:integer; v:longint; v:=0; for i:= 1 to abs(cis1) do v:=v+cis2; if cis1<0 then v:=-v; soucin:=v; write('zadej 1.cinitele: '); 14

15 readln(c1); write('zadej 2.cinitele: '); readln(c2); vysl:=soucin(c1,c2); writeln(c1,' * ',c2,' = ',vysl); Write('opakovat cely vypocet? '); writeln('1=ano, ostatni cisla = konec programu'); readln(opakovani); until opakovani <> 1; Samostatný úkol č.2 Sestavte program, který vypočítá celočíselný podíl a zbytek po celočíselném dělení dvou celých čísel. Řešte i pro záporné hodnoty dělence a dělitele. Příklad 1-9 Sestavte funkci pro výpočet ciferného součtu přirozeného čísla. Použijte v programu, funkci volejte pouze v případě, že číslo je přirozené. Nabídněte možnost opakování celého výpočtu na základě dotazu. Ciferný součet chápeme jako součet jednotlivých cifer zadaného přirozeného čísla. Např: pro číslo je ciferný součet 10. V algoritmu zjistíme zbytek čísla X po dělení 10 (pomocí MOD), který přičteme do pomocné proměnné, a následně pak číslo X zmenšíme 10 krát (pomocí DIV). Toto vše vložíme do cyklu, který končí v okamžiku, kdy X je rovno 0. Program PR1_9; x:longint; soucet,opakovani:integer; Function ciferny_soucet(a:longint):integer; zb,souc:integer; souc:=0; zb:=a mod 10; souc:=souc+zb; a:=a div 10; until a = 0; ciferny_soucet:=souc; Write('Zadej cislo X >= 0 '); readln(x); until x>=0; 15

16 soucet:=ciferny_soucet(x); writeln('ciferny soucet : ',soucet); Write('opakovat cely vypocet? '); writeln('1=ano, ostatni cisla = konec programu'); readln(opakovani); until opakovani <> 1; Příklad 1-10 Určete počet cifer daného přirozeného čísla X. Pro výpočet sestavte vlastní funkci, kterou volejte jen v případě, že X je vyhovující hodnoty. Nabídněte možnost opakování celého výpočtu na základě dotazu. Algoritmus využívá pro zjištění počtu cifer pouze číselné proměnné. Celý postu spočívá v tom, že vstupní hodnota X je postupně v cyklu zmenšována 10 krát (pomocí DIV) až se bude rovnat nule. Počet průchodů cyklem se rovna počtu cifer. Průvodce studiem: Překladač jazyka Borland Pascal nabízí konverzní proceduru STR, která převede číselnou hodnotu do podoby řetězce. Pak pomocí standardní funkce length můžete zjistíte délku této řetězcové proměnné a bude mít v podstatě počet cifer zadaného čísla. Který způsob v praxi použijete závisí na vašem rozhodnutí. Program PR1_10; poc,opakovani:integer; cis:longint; Function cifry(cislo:longint):integer; p:integer; p:=0; cislo:=cislo div 10; inc(p); until cislo = 0; cifry:=p; Write('Zadej cislo N >= 0 '); readln(cis); until cis>=0; 16

17 poc:=cifry(cis); writeln('pocet cifer: ',poc); Write('opakovat cely vypocet? '); writeln('1=ano, ostatni cisla = konec programu'); readln(opakovani); until opakovani <> 1; Samostatný úkol č3: Sestavte program, který načte přirozené číslo X, a vypočítá k němu číslo, které má stejné cifry, ale v opačném pořadí. Použijte pouze číselné hodnoty (neprovádějte konverzi na řetězec) Korespondenční úkol č. 1 Sestavte v programovacím jazyku Borland Pascal jeden ze samostatných úkolů z této kapitoly Reálná čísla Pro reálná čísla nabízí překladač Borland Pascalu více datových typů. TYP Množina hodnot (rozsah) Velikost paměti v bytech REAL 2.9 * * SINGLE 1.5 * * DOUBLE 5.0 * * EXTENDED 3.4 * * COMP Nejpoužívanější je datový typ REAL. Tento datový typ má přesnost 11 až 12 platných číslic. Dovolené operace s proměnnými reálného datového typu: a) aritmetické: + sčítání - odčítání * násobení / dělení Nelze použít operace DIV a MOD!!! b) relační : = <> > >= < <= Výsledkem těchto operací je logická hodnota TRUE nebo FALSE. Předdefinované reálné konstanty - není třeba je zavádět v deklarační části programu. PI Ludolfovo číslo, které má hodnotu 3,14 17

18 Příklady použití reálné proměnné. Příklad 1-21 Načtěte poloměr R a vypočítejte obvod a obsah kruhu. Ošetřete regulérnost vstupních dat (výpočet má smysl pro R > 0). Nabídněte možnost opakování celého výpočtu na základě dotazu. Program PR1_21; r,opak:integer; obvod,obsah:real; write('zadej polomer (R>=0): '); readln(r); until r>=0; obvod:=2*pi*r; obsah:=pi*sqr(r); writeln('obvod: ', obvod:0:2,' obsah: ',obsah:0:2); Write('opakovat cely vypocet? '); writeln('1=ano, ostatni cisla = konec programu'); readln(opak); until opak <> 1; Průvodce studiem: Algoritmus výpočtu je založen na triviálních matematických vzorcích. Zařadila jsem jej tady proto, že se již nemůžete vyhnout nutnosti použít reálnou proměnnou. I když zadáte poloměr jako celé číslo, použitím PI se nutně dostanete do oboru desetinných čísel. V souvislosti s reálnou proměnnou narazíte na problém tu výpisu čísla na obrazovku. Reálná čísla se vypisuji ve tu E+1. Pokud chcete, aby se reálné číslo vytisklo ve tu se zadaným počtem desetinných míst, musíte vložit do příkazu writeln za název proměnné informaci o počtu míst celkem a o počtu desetinných míst, např.: obsah:10:2 znamená, že číslo na obrazopvce zabere celkem 10 míst a z toho budou dvě desetinná. Příklad 1-22 Sestavte program, který vypočítá kořeny kvadratické rovnice ax 2 +bx+c = 0. Program musí pracovat pro libovolné hodnoty koeficientů a, b,c. Vyjdeme z obecného řešení kvadratické rovnice: x 1, 2 = (-b± D) /2*a, kde D = b 2 4*a*c. Nejdříve vypočteme hodnotu diskriminantu D. Pokud je tato hodnota záporná, znamená to komplexně sdružené kořeny kvadratické rovnice. 18

19 Pak se musíme soustředit na eventuality, které mohu nastat při zadávání vstupních hodnot. Pokud je a = 0, jedná se o lineární rovnici b*x+c=0 a jejím řešením je kořen: x = -(c/b). Program PR1_22; a,b,c,diskr:real; writeln('vypocet korenu kvadraticke rovnice'); writeln('zadej koeficienty a,b,c:); Readln(a); Readln(b); Readln(c); diskr:=b*b - 4*a*c; If diskr<0 then writeln('rovnice ma komplexni koreny.') else if a=0 then write('rovnice je linearni s korenem'); writeln('x = ',(-c)/b:10:3); end else writeln('prvni koren=',-b+sqrt(diskr)/2*a:10:3); writeln('druhy koren=',-b-sqrt(diskr)/2*a:10:3); Příklad 1-23 Sestavte program pro výpočet přepony pravoúhlého trojúhelníka. Hodnoty obou odvěsen načtěte z klávesnice. Zajistěte regulérnost vstupních dat. K výpočtu přepony je použita Pythagorova věta. V algoritmu je zajištěna regulérnost vstupních dat hodnota odvěsen musí být větší než nula. Teprve po splnění této podmínky proběhne výpočet. Program PR1_23; odvesnaa,odvesnab,prepona:real; odp:integer; write('zadej 1.odvesnu: '); readln(odvesnaa); until odvesnaa>0; write('zadej 2.odvesnu: '); readln(odvesnab); until odvesnab>0; prepona:=sqrt(sqr(odvesnaa)+sqr(odvesnab)); writeln('prepona: ',prepona:6:2); 19

20 write('opakovat vypocet? '); writeln('1 = Ano, 2 = Ne'); readln(odp); until (odp=1) or (odp=2); until odp=2; Příklad 1-24 Přečtěte hodnotu úhlu ve stupních a napište hodnoty funkcí sinus a kosinus. Po zobrazení výsledků nabídněte možnost opakování celého výpočtu. Po naplnění stránky (asi 20 řádků) výpis zastavte a zajistěte, aby se další stránka vytiskla až po zmáčknutí klávesy ENTER. Překladač jazyka Borland Pascal má standardní funkce sin(x) a cos(x). Tyto funkce pracují s argumenty v radiánech, proto je třeba zadanou hodnotu úhlu přepočítat (1 stupeň = PI/180 rad.). Pro zajištění průchodnosti řešení je v programu zařazeno volání procedury, která provede záměnu dolní a horní hranice intervalu v případě, že dolní hranice je větší než hranice horní. Záměna se provádí bez dotazu nebo upozornění uživatele na chybu. program PR1_24; stup1,stup2,i,k:integer; rad:real; procedure zmena( a,b:integer); pom:integer; pom:=a; a:=b; b:=pom; function radian (stupne:integer):real; radian:=stupne*(pi/180); procedure hlavicka; writeln(' Stupne sin(x) cos(x) '); writeln('================================'); write('zadejte prvni hodnotu: '); readln(stup1); write('zadejte druhou hodnotu: '); 20

21 readln(stup2); if stup1>stup2 then zmena(stup1,stup2); hlavicka; k:=0; for i:= stup1 to stup2 do k:=k+1; rad:=radian(i); writeln(' ',i:3,sin(rad):13:5,cos(rad):12:5); if k=20 then k:=0; writeln('pro pokr. stiskni cokoli.'); readkey; if i<>stup2 then hlavicka; Samostatný úkol č. 4 Doplňte do převodní tabulky další sloupec, ve kterém znázorněte hodnoty funkce tangens. Pro funkci tangens není v prostředí Borland Pascalu standardní funkce, proto musíme tangens vypočítat takto: tg(x) = sin(x)/cos(x). Také musíme dát pozor na to, že funkce tangens není pro některé hodnoty definována. Příklad 1-25 Vypočítejte hodnotu Eulerova čísla e pomocí součtu řady: Výpočet ukončete, až bude rozdíl sousedních členů řady menší než zadaná hodnota, tzn. že bude platit: 1/n 1/(n+1) < zadaná hodnota. V takto zadaném úkolu neznáme dopředu počet opakování výpočtu, proto můžeme použít příkaz cyklu s podmínkou na začátku nebo s podmínkou na konci. Jako výhodnější se zde jeví příkaz cyklu s podmínkou na konci, jako ukončující podmínka zde slouží porovnání rozdílu Program PR1_25; n:integer; e,clen,rozdil:real; Write('rozdil sousednich clenu 0=konec '); readln(rozdil); 21

22 rozdil := abs(rozdil); If rozdil <> 0 then e:=0; n:=1; clen:=1; INC(n); clen := clen/n; e:=e + clen; until (clen - clen/n) < rozdil; writeln('e = ',e:10:8); until rozdil = 0; Průvodce studiem: Proměnná typu Real je pro programátora důležitá. Pokud ale máte jistotu, že při výpočtech zůstanete v oboru celých čísel, využijte toho a reálné proměnné nezavádějte. Použitím celočíselných proměnných bude mít váš program menší nároky na paměť a také výpočty budou rychlejší Znaková proměnná Znaková proměnná dovoluje zařadit do programu práci se znaky. Programátor pak může například zlepšit komunikaci s uživatelem Znaky. Do znakové proměnné můžeme uložit libovolný znak z ASCII tabulky. Je rozdíl mezi malým a velkým písmenem, protože malá a velká písmena jsou v ASCII tabulce uložena na jiných místech. Znaková proměnná zabere v operační paměti 1 B. V paměti se ukládá ve dvojkové soustavě číselná hodnota ASCII kódu. ACSII kód je vzájemně jednoznačné přiřazení mezi znakem a číslem (pořadí v ASCII tabulce). Průvodce studiem: Znakovou konstantu poznáme ve zdrojovém textu podle toho, že je znak uzavřen mezi apostrofy. Toto lze ale použít pouze pro zobrazitelné znaky. Pokud budete potřebovat přiřadit nebo vytisknout nezobrazitelný znak, pak musíte znát jeho pořadí v ASCCI tabulce. Zápis pak provedete tak, že napíšete symbol # a celé číslo bez znaménka vyjadřujícího pořadí znaku v ASCII tabulce. Např.: #7 zvonek nebo #13 enter Stejný význam jako znak # má funkce CHR( ). #7 a CHR(7) dávají stejný výsledek (zvonek). 22

23 Můžeme použít pouze relační operace: = rovná se <> nerovná se > větší než >= větší nebo rovno < menší než <= menší nebo rovno Standardní funkce ORD(x) funkce, která vrací číslo (pořadí) znaku v ASCII tabulce, tj. číslo z intervalu CHR(c) funkce, která vrací znak, který odpovídá danému číslu v ASCII tabulce PRED(x) funkce, která vrací znak, který v ASCII tabulce má pořadové číslo o 1 menší než znak uvedený jako argument funkce SUCC(x) funkce, která vrací znak, který v ASCII tabulce má pořadové číslo o 1 větší než znak uvedený jako argument funkce UPCASE(x)..funkce, která převádí malé písmeno na velké. Pokud je argumentem funkce jiný znak než malé písmeno, zůstává argument beze změny Příklady použití znakové proměnné Příklad 1-31 Sestavte program, pro výpis části tabulky ASCII kódů. Zadávejte počáteční a koncovou hodnotu ASCII kódu (vstup omezte na interval ). Po naplnění obrazovky, výpis zastavte. Výstup upravte do tabulky takto: ASCII znak Hodnoty ASCCI kódu se pohybují v intervalu Pro každé číslo z tohoto intervalu můžeme pomocí standardní funkce CHR(x) získat odpovídající znak. Omezení dolní hranice intervalu na větší nebo rovno 32 je proto, že znaky s číslem nižším než 32 jsou nezobrazitelné. Program PR1_31; Var poc,kon,i,radek:integer; procedure zamena( a,b:integer); pom:integer; pom:=a; a:=b; b:=pom; 23

24 write('zadej poc.hodnotu.. cislo z <32,255>: '); readln(poc); until (poc>=32) and (poc<=255); write('zadej konc.hodnotu..cislo z <32,255>: '); readln(kon); until (kon>=32) and (kon<=255); zamena(poc,kon); writeln(' ASCII znak'); writeln(' '); radek:=0; for i:=poc to kon do writeln( i:8,' ',chr(i)); radek:=radek+1; if radek = 20 then write('zmackni ENTER: '); readln; radek:=0; writeln(' ASCII znak'); writeln(' '); write('zmackni ENTER: '); readln; Příklad 1-32 Sestavte program, který načítá z klávesnice znaky. Pokud bude znak malé písmeno, převede jej na písmeno velké pomocí standardní funkce UpCase. Pokud bude znakem velké písmeno, převede jej pomocí vlastní funkce DnCase. Ostatní znaky zůstanou nezměněny. Znaky načítejte opakovaně, program ukončete po zadání znaku *. Funkce pro převod velkého písmena na malé je založena na tom, že rozdíl ASCII hodnoty malého a velkého písmena je stejný pro všechna písmena abecedy. Ve funkci je tento rozdíl uložen do konstanty. Pokud je pak argumentem funkce velké písmeno, dojde k přičtení zjištěného rozdílu k jeho ASCII hodnotě a pak následuje zjištění znaku, který odpovídá vypočtené číselné hodnotě. Program PR1_32; znak:char; 24

25 Function DownCase(z:char):char; const posun = ord('a') - ord('a'); if (z>='a')and(z<='z') then z:=chr(ord(z)+posun) ; DownCase:=z; znak:=' '; while znak <> '*' do write('zadej znak, * = ukonceni programu: '); readln(znak); if (znak>='a') and (znak <='Z') then znak:=downcase(znak) else if (znak>='a') and (znak <='z') then znak:=upcase(znak); writeln('znak po konverzi: ',znak); Příklad 1-33 Sestavte program, který bude číst větu jako posloupnost písmen a mezer ukončenou tečkou. Zjistěte, kolik má věta písmen. V zadání je uveden požadavek na načítání věty jako posloupnosti písmen. Samozřejmě celou větu chceme zadat na jednom řádku, a proto je nutné pro načítání jednotlivých znaků použít proceduru READ (ne READLN). Po skončení cyklu ale musíme zařadit jednou proceduru READLN bez parametrů, protože potřebujeme načíst klávesu ENTER, která zadávání věty ukončuje. Program PR1_33; znak:char; pocet:integer; writeln('zadej vetu ukoncenou teckou!'); read(znak); if (znak <> ' ' ) and (znak <> '.') then INC(pocet); until znak = '.'; readln; writeln('veta ma :',pocet,' pismen'); writeln('zmackni ENTER'); readln; 25

26 Průvodce studiem: Načítání věty znak po znaku budete zařazovat, jen když se vám to bude pro řešení algoritmu zdát výhodné. Programovací jazyk Borland Pascal totiž umožňuje pracovat s proměnnou typu STRING a pak je možné provést načtení věty jedním příkazem READLN. Je to rychlejší a pohodlnější. Podrobnější informace a příklady pro práci s proměnnou typu STRING jsou v kapitole 2.1. Řetězec znaků. Příklad 1-34 Sestavte program, který bude číst větu jako posloupnost písmen a mezer ukončenou tečkou. Zkontrolujte, zda po písmenech h,k,r není písmeno i nebo í. Větu zde načítáme opět znak po znaku pomocí příkazu READ a v pomocné logické proměnné si pamatujeme, zda došlo k definované chybě. Pokud chceme v řešení uvažovat malá i velká písmena a také krátká i dlouhá písmena, tak podmínka zjišťující výskyt písmene je dosti dlouhá. Jako elegantní řešení se tady nabízí použití množinového operátoru IN, který znamená je prvkem. Relace pak má hodnotu TRUE, pokud proměnná na levé straně výrazu nabude hodnoty uvedené v hranatých závorkách. Program PR1_34; znak:char; chyba:boolean; chyba := false; writeln('zadej vetu ukoncenou teckou!'); read(znak); if znak IN ['h','h','k','k','r','r'] then read(znak); if znak IN ['i','i',í,í] then chyba := true; until znak = '.'; readln; if chyba then writeln('chyba-vyskyt i po h,k,r') else writeln('bez chyby!'); writeln('zmackni ENTER'); rea dln; 26

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu: Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

ALGORITMIZACE A PROGRAMOVÁNÍ

ALGORITMIZACE A PROGRAMOVÁNÍ Metodický list č. 1 Algoritmus a jeho implementace počítačovým programem Základním cílem tohoto tematického celku je vysvětlení pojmů algoritmus a programová implementace algoritmu. Dále je cílem seznámení

Více

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Maturitní otázky z předmětu PROGRAMOVÁNÍ

Maturitní otázky z předmětu PROGRAMOVÁNÍ Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu PROGRAMOVÁNÍ 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu ověřování správnosti

Více

Paměť počítače. alg2 1

Paměť počítače. alg2 1 Paměť počítače Výpočetní proces je posloupnost akcí nad daty uloženými v paměti počítače Data jsou v paměti reprezentována posloupnostmi bitů (bit = 0 nebo 1) Připomeňme: paměť je tvořena řadou 8-mi bitových

Více

Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false

Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false Logické operace Datový typ bool může nabýt hodnot: o true o false Relační operátory pravda, 1, nepravda, 0, hodnoty všech primitivních datových typů (int, double ) jsou uspořádané lze je porovnávat binární

Více

for (i = 0, j = 5; i < 10; i++) { // tělo cyklu }

for (i = 0, j = 5; i < 10; i++) { // tělo cyklu } 5. Operátor čárka, - slouží k jistému určení pořadí vykonání dvou příkazů - oddělím-li čárkou dva příkazy, je jisté, že ten první bude vykonán dříve než příkaz druhý. Např.: i = 5; j = 8; - po překladu

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

1 PRVOCISLA: KRATKY UKAZKOVY PRIKLAD NA DEMONSTRACI BALIKU WEB 1

1 PRVOCISLA: KRATKY UKAZKOVY PRIKLAD NA DEMONSTRACI BALIKU WEB 1 1 PRVOCISLA: KRATKY UKAZKOVY PRIKLAD NA DEMONSTRACI BALIKU WEB 1 1. Prvocisla: Kratky ukazkovy priklad na demonstraci baliku WEB. Nasledujici program slouzi pouze jako ukazka nekterych moznosti a sluzeb,

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 19. září 2011 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Doporučená literatura web: http://marian.fsik.cvut.cz/zapg

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 21. září 2009 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Organizace předmětu Přednášky 1. 5. Základní

Více

24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) HODINOVÁ DOTACE: 1

24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) HODINOVÁ DOTACE: 1 24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE AUTOR DOKUMENTU: MGR. MARTINA SUKOVÁ DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 UČIVO: STUDIJNÍ OBOR: PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) INFORMAČNÍ TECHNOLOGIE

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Klasický podprogram, který nazýváme procedura. Jedná se v podstatě o příkaz. 1

Klasický podprogram, který nazýváme procedura. Jedná se v podstatě o příkaz. 1 Kapitola 3 Podprogramy Jak již název napovídá, podprogram je část programu ( malý program), která může být kdykoliv v příkazové části programu (hlavního, velkého programu) aktivována. V jazyce Pascalu

Více

Algoritmy a datové struktury 1

Algoritmy a datové struktury 1 Modul 1 Vývojové diagramy a příkazy jazyka Borland Pascal Text pro distanční studium Ing. Eliška Treterová Ostravská univerzita v Ostravě, Přírodovědecká fakulta Katedra Informatiky a počítačů Ostrava

Více

Object Pascal je přísně typový procedurální jazyk, který umožňuje jak strukturované, tak objektově orientované programování.

Object Pascal je přísně typový procedurální jazyk, který umožňuje jak strukturované, tak objektově orientované programování. Delphi lekce 6 Minimum z Object Pascalu Vrátíme se ještě k základům Object Pascalu. Struktura programu Object Pascal je přísně typový procedurální jazyk, který umožňuje jak strukturované, tak objektově

Více

Číselné soustavy. Binární číselná soustava

Číselné soustavy. Binární číselná soustava 12. Číselné soustavy, binární číselná soustava. Kódování informací, binární váhový kód, kódování záporných čísel. Standardní jednoduché datové typy s pevnou a s pohyblivou řádovou tečkou. Základní strukturované

Více

Úvod do programování

Úvod do programování Úvod do programování Základní literatura Töpfer, P.: Algoritmy a programovací techniky, Prometheus, Praha učebnice algoritmů, nikoli jazyka pokrývá velkou část probíraných algoritmů Satrapa, P.: Pascal

Více

Kód. Proměnné. #include using namespace std; int main(void) { cout << "Hello world!" << endl; cin.get(); return 0; }

Kód. Proměnné. #include <iostream> using namespace std; int main(void) { cout << Hello world! << endl; cin.get(); return 0; } Jazyk C++ Jazyk C++ je nástupcem jazyka C. C++ obsahuje skoro celý jazyk C, ale navíc přidává vysokoúrovňové vlastnosti vyšších jazyků. Z toho plyne, že (skoro) každý platný program v C je také platným

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

LEKCE 6. Operátory. V této lekci najdete:

LEKCE 6. Operátory. V této lekci najdete: LEKCE 6 Operátory V této lekci najdete: Aritmetické operátory...94 Porovnávací operátory...96 Operátor řetězení...97 Bitové logické operátory...97 Další operátory...101 92 ČÁST I: Programování v jazyce

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Přijímací zkouška z informatiky Dz

Přijímací zkouška z informatiky Dz Přijímací zkouška z informatiky Dz Každý příklad je hodnocen osmi body. Je dovoleno používat počítací stroje a není dovoleno používat matematické tabulky. Hodnotí se nejen výsledek, ale i postup. 1. Určete

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

Makro. PDF vytvořeno zkušební verzí pdffactory Pro www.fineprint.cz

Makro. PDF vytvořeno zkušební verzí pdffactory Pro www.fineprint.cz Makro Je posloupnost příkazů, která je uložena pod určitým názvem a kterou lze spustit jedinou akcí. (příkaz, klávesová zkratka nebo stisknutí tlačítka) Lze je jednoduše tvořit záznamem činnosti. Postup:

Více

2 Strukturované datové typy 2 2.1 Pole... 2 2.2 Záznam... 3 2.3 Množina... 4

2 Strukturované datové typy 2 2.1 Pole... 2 2.2 Záznam... 3 2.3 Množina... 4 Obsah Obsah 1 Jednoduché datové typy 1 2 Strukturované datové typy 2 2.1 Pole.................................. 2 2.2 Záznam................................ 3 2.3 Množina................................

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Typy Základní (primitivní) datové typy Deklarace Verze pro akademický rok 2012/2013 1 Typy v jazyce Java Základní datové typy (primitivní datové typy) Celočíselné byte, short,

Více

9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include

9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include <stdio.h> 9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include int main(void) { int dcislo, kolikbcislic = 0, mezivysledek = 0, i; int vysledek[1000]; printf("zadejte

Více

Čtvrtek 3. listopadu. Makra v Excelu. Obecná definice makra: Spouštění makra: Druhy maker, způsoby tvorby a jejich ukládání

Čtvrtek 3. listopadu. Makra v Excelu. Obecná definice makra: Spouštění makra: Druhy maker, způsoby tvorby a jejich ukládání Čtvrtek 3. listopadu Makra v Excelu Obecná definice makra: Podle definice je makro strukturovanou definicí jedné nebo několika akcí, které chceme, aby MS Excel vykonal jako odezvu na nějakou námi definovanou

Více

2 Datové typy v jazyce C

2 Datové typy v jazyce C 1 Procedurální programování a strukturované programování Charakteristické pro procedurální programování je organizace programu, který řeší daný problém, do bloků (procedur, funkcí, subrutin). Původně jednolitý,

Více

Martin Hejtmánek hejtmmar@fjfi.cvut.cz http://kmlinux.fjfi.cvut.cz/ hejtmmar

Martin Hejtmánek hejtmmar@fjfi.cvut.cz http://kmlinux.fjfi.cvut.cz/ hejtmmar Základy programování Martin Hejtmánek hejtmmar@fjfi.cvut.cz http://kmlinux.fjfi.cvut.cz/ hejtmmar Počítačový kurs Univerzity třetího věku na FJFI ČVUT Pokročilý 21. května 2009 Dnešní přednáška 1 Počátky

Více

VY_32_INOVACE_08_2_04_PR

VY_32_INOVACE_08_2_04_PR Ing. Petr Stránský VY_32_INOVACE_08_2_04_PR Příkazy vstupu - definice Výstupním zařízením může být obrazovka, tiskárna nebo soubor. Jednotlivé údaje se zapisují pomocí příkazu WRITE nebo WRITELN. Příkaz

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Řídicí struktury, standardní metody Problematika načítání pomocí Scanner Některé poznámky k příkazům Psaní kódu programu Metody třídy Math Obalové třídy primitivních datových

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý Autor: Mgr. Dana Kaprálová VZORCE A VÝPOČTY Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2 Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Klíčové pojmy: Cyklus, řídící proměnná, inicializace, test podmínky, přerušení cyklu, vnořování cyklů.

Klíčové pojmy: Cyklus, řídící proměnná, inicializace, test podmínky, přerušení cyklu, vnořování cyklů. Příkazy cyklu v C# Kapitola vysvětluje použití tří typů cyklů for, while a -while a plňuje jejich použití řau příkladů programů v jazyku C#. V jazyku C by šlo pouze k záměně funkcí pro vstup a výstup.

Více

2 Ukládání dat do paměti počítače

2 Ukládání dat do paměti počítače Projekt OP VK Inovace studijních oborů zajišťovaných katedrami PřF UHK Registrační číslo: CZ..7/../8.8 Cíl Studenti budou umět zapisovat čísla ve dvojkové, osmičkové, desítkové a v šestnáctkové soustavě

Více

Název předmětu: Školní rok: Forma studia: Studijní obory: Ročník: Semestr: Typ předmětu: Rozsah a zakončení předmětu:

Název předmětu: Školní rok: Forma studia: Studijní obory: Ročník: Semestr: Typ předmětu: Rozsah a zakončení předmětu: Plán předmětu Název předmětu: Algoritmizace a programování (PAAPK) Školní rok: 2007/2008 Forma studia: Kombinovaná Studijní obory: DP, DI, PSDPI, OŽPD Ročník: I Semestr: II. (letní) Typ předmětu: povinný

Více

Standardní algoritmy vyhledávací.

Standardní algoritmy vyhledávací. Standardní algoritmy vyhledávací. Vyhledávací algoritmy v C++ nám umožňují vyhledávat prvky v datových kontejnerech podle různých kritérií. Také se podíváme na vyhledávání metodou půlením intervalu (binární

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Základy programování a algoritmizace úloh. Ing. Hodál Jaroslav, Ph.D. VY_32_INOVACE_25 09

Inovace a zkvalitnění výuky prostřednictvím ICT Základy programování a algoritmizace úloh. Ing. Hodál Jaroslav, Ph.D. VY_32_INOVACE_25 09 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Inovace a zkvalitnění výuky prostřednictvím ICT Základy programování a algoritmizace úloh Operátory Autor:

Více

Zápis programu v jazyce C#

Zápis programu v jazyce C# Zápis programu v jazyce C# Základní syntaktická pravidla C# = case sensitive jazyk rozlišuje velikost písmen Tzv. bílé znaky (Enter, mezera, tab ) ve ZK překladač ignoruje každý příkaz končí ; oddělovač

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Stručný návod k programu Octave

Stručný návod k programu Octave Stručný návod k programu Octave Octave je interaktivní program vhodný pro technické výpočty. Je nápadně podobný programu MATLAB, na rozdíl od něho je zcela zadarmo. Jeho domovská vebová stránka je http://www.octave.org/,

Více

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

7 Formátovaný výstup, třídy, objekty, pole, chyby v programech

7 Formátovaný výstup, třídy, objekty, pole, chyby v programech 7 Formátovaný výstup, třídy, objekty, pole, chyby v programech Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost formátovanému výstupu,

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_33_05 Škola Střední průmyslová škola Zlín Název projektu, reg. č. Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávací oblast Vzdělávání v informačních a komunikačních

Více

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Aritmetické operace a obvody pro jejich realizaci

Aritmetické operace a obvody pro jejich realizaci Kapitola 4 Aritmetické operace a obvody pro jejich realizaci 4.1 Polyadické číselné soustavy a jejich vlastnosti Polyadické soustavy jsou určeny přirozeným číslem z, kterému se říká základ nebo báze dané

Více

Základní jednotky používané ve výpočetní technice

Základní jednotky používané ve výpočetní technice Základní jednotky používané ve výpočetní technice Nejmenší jednotkou informace je bit [b], který může nabývat pouze dvou hodnot 1/0 (ano/ne, true/false). Tato jednotka není dostatečná pro praktické použití,

Více

nesvadba@ngstranky.cz

nesvadba@ngstranky.cz V jednoduchých uvozovkách echo retezec ; V dvojitých uvozovkách echo retezec ; Syntaxe heredoc $text =

Více

Programovací jazyk PASCAL Turbo

Programovací jazyk PASCAL Turbo Obsah 1 Programovací jazyk PASCAL Turbo 5 11 Základní prostředky pro zápis programu 5 111 Lexikální symboly jazyka 6 12 Struktura programu 7 13 Část definicí a deklarací 8 131 Deklarace návěští 8 132 Definice

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

MAXScript výukový kurz

MAXScript výukový kurz MAXScript výukový kurz Díl čtvrtý jazyk MAXScript, část I. Jan Melichar, březen 2008 Jan Melichar (aka JME) strana 1 OBSAH ÚVOD... 4 ZÁKLADNÍ PŘÍKAZY... 5 OPERÁTORY... 6 PROMĚNNÉ... 6 POLE... 7 ZÁVĚREM...

Více

ALGORITMY A PROGRAMOVÁNÍ (ÚVOD)

ALGORITMY A PROGRAMOVÁNÍ (ÚVOD) Algoritmy a algoritmizace ALGORITMY A PROGRAMOVÁNÍ (ÚVOD) aneb pohled do programátorské kuchyně Algoritmus je postup nebo návod, jak řešit nějakou libovolnou úlohu (např. kuchařka, návod na použití, obsluhu,

Více

Už známe datové typy pro representaci celých čísel i typy pro representaci

Už známe datové typy pro representaci celých čísel i typy pro representaci Dlouhá čísla Tomáš Holan, dlouha.txt, Verse: 19. února 2006. Už známe datové typy pro representaci celých čísel i typy pro representaci desetinných čísel. Co ale dělat, když nám žádný z dostupných datových

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Základy programování Proměnné Procedury, funkce, události Operátory a podmínková logika Objekt Range a Cells, odkazy Vlastnosti, metody a události

Základy programování Proměnné Procedury, funkce, události Operátory a podmínková logika Objekt Range a Cells, odkazy Vlastnosti, metody a události Petr Blaha Základy programování Proměnné Procedury, funkce, události Operátory a podmínková logika Objekt Range a Cells, odkazy Vlastnosti, metody a události Cykly Základní funkce (matematické, textové,

Více

15. Projekt Kalkulačka

15. Projekt Kalkulačka Projekt Kalkulačka strana 143 15. Projekt Kalkulačka 15.1. Základní popis, zadání úkolu Pracujeme na projektu Kalkulačka, který je ke stažení na java.vse.cz. Po otevření v BlueJ vytvoříme instanci třídy

Více

Ing. Igor Kopetschke TUL, NTI

Ing. Igor Kopetschke TUL, NTI ALGORITMY A DATOVÉ STRUKTURY 1. Organizace dat v paměti, datové typy Ing. Igor Kopetschke TUL, NTI http://www.nti.tul.cz Jednotlivé body Ukládání a a organizace dat Vnitřní paměť Vnější paměť Přístup k

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

Úvod do programování. Úvod do programování. ing. Miroslav Jílek 2009, SJOP Poděbrady

Úvod do programování. Úvod do programování. ing. Miroslav Jílek 2009, SJOP Poděbrady Úvod do programování ing. Miroslav Jílek 2009, SJOP Poděbrady 1 Obsah 1) Algoritmus 2 2) Vývojový diagram 4 3) Příklady vývojových diagramů 9 4) Úvod do programování v Pascalu 13 5) Příklady programů s

Více

VYTVÁŘENÍ DATABÁZÍ, VKLÁDÁNÍ ÚDAJŮ

VYTVÁŘENÍ DATABÁZÍ, VKLÁDÁNÍ ÚDAJŮ Úvod do problematiky VYTVÁŘENÍ DATABÁZÍ, VKLÁDÁNÍ ÚDAJŮ Databáze je uspořádaná množina velkého množství informací (dat). Příkladem databáze je překladový slovník, seznam PSČ nebo telefonní seznam. Databáze

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

Excel Matematické operátory. Excel předdefinované funkce

Excel Matematické operátory. Excel předdefinované funkce Excel Matematické operátory a) Sčítání + příklad =A1+A2 sečte obsah buněk A1 a A2 b) Odčítání - příklad =A1-A2 odečte hodnotu buňky A2 od hodnoty buňky A1 c) Násobení * příklad =A1*A2 vynásobí obsah buněk

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Učební materiály (využívány průběžně): Poznámky Umí provádět operace

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4

Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4 Uložení dat v počítači Data = užitečné, zpracovávané informace Kódování (formát) dat = způsob uložení v počítači (nutno vše převést na čísla ve dvojkové soustavě) Příklady kódování dat Text každému znaku

Více

Základní vzorce a funkce v tabulkovém procesoru

Základní vzorce a funkce v tabulkovém procesoru Základní vzorce a funkce v tabulkovém procesoru Na tabulkovém programu je asi nejzajímavější práce se vzorci a funkcemi. Když jednou nastavíte, jak se mají dané údaje zpracovávat (některé buňky sečíst,

Více

MQL4 COURSE. By Coders guru www.forex-tsd.com. -4 Operace & Výrazy

MQL4 COURSE. By Coders guru www.forex-tsd.com. -4 Operace & Výrazy MQL4 COURSE By Coders guru www.forex-tsd.com -4 Operace & Výrazy Vítejte ve čtvrté lekci mého kurzu MQL4. Předchozí lekce Datové Typy prezentovaly mnoho nových konceptů ; Doufám, že jste všemu porozuměli,

Více

Implementace LL(1) překladů

Implementace LL(1) překladů Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu

Více

FUNKCE 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

FUNKCE 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika FUNKCE 3 Autor: Mgr. Dana Kaprálová Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Školní kolo soutěže Mladý programátor 2015, kategorie A, B

Školní kolo soutěže Mladý programátor 2015, kategorie A, B Doporučené hodnocení školního kola: Hodnotit mohou buď učitelé školy, tým rodičů nebo si žáci, kteří se zúčastní soutěže, mohou ohodnotit úlohy navzájem sami (v tomto případě doporučujeme, aby si žáci

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

ANOTACE vytvořených/inovovaných materiálů

ANOTACE vytvořených/inovovaných materiálů ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 IV/2 Inovace a

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více