Variabilita měření a statistická regulace procesu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Variabilita měření a statistická regulace procesu"

Transkript

1 Variabilita měří a statistická rgulac procsu Ig. Darja Noskivičová, CSc. Katdra kotroly a řízí jakosti, VŠB-TU Ostrava Abstrakt: Efktivost využití statistických mtod pro aalýzu a řízí procsů j odvislá mj. od účiosti měřícího systému a způsobilosti měřidl. Chyby měří mohou v vlké míř ovlivit schopost správě aalyzovat vlastí variabilitu procsu a vhodě s tak promítout do rozhodováí o ralizaci zásahů do procsu. Přdložý příspěvk s zabývá aalýzou vlivu chyb měří a účiost rgulačích diagramů a mtodikou aalýzy systmatické chyby měří (straost, založou a aplikaci rgulačích diagramů. Klíčová slova:, chyby měří, rgulačí diagramy, straost, variabilita měří. Úvod Každý závěr bo rozhodutí plyoucí z aplikac statistických mtod jsou podmíěy kvalitou aalyzovaých dat. Také účiost rgulačích diagramů j ovlivěa výskytm chyb měří. Chyby měří jsou spojy s objktiví xistcí variability měří. Druhy variability lz rozčlit do 5 katgorií: straost (systmatická chyba, opakovatlost, rprodukovatlost, stabilita, liarita. Chyba měří ε j dáa rozdílm mzi aměřou (mpirickou hodotou x i a pravou hodotou x měřé vličiy, tj. ε = x i x. ( Takto vyjádřá chyba s azývá chybou absolutí. Někdy s udává jako rlativí chyba ε r, pro ktrou platí: ε ε r ε =, popř. ε r =. (% ( x x Chyby měří mohou být způsoby: přsostí měřidl ( způsobo apř. dodržováím tolrací u jdotlivých součástí přístroj, chybami justac při motáži přístroj, špatou kostrukcí přístroj... talom použitým k kalibraci měřidla bo špatým sřízím měřidla měřicí silou, tlakm (můž vyvolat dformaci měřého objktu měřicí mtodou prostřdím (zjméa tplotou oprátorm (chyby zaviěé dokoalostí lidských smyslů, chyby z dbalosti, opatrosti, zalosti. Abstrahujm-li od hrubých chyb, způsobých apř. správým provdím měří, správým čtím údajů, použitím vadého přístroj apod., člím chyby měří do dvou základích skupi, a to a chyby systmatické (straost a chyby áhodé. Chyby systmatické jsou vyvoláy vlivy, ktré působí trval a jdozačě co do smyslu a vlikosti (apř. systmatické zaokrouhlováí hodot a vyšší hodoty, kostrukčí přsosti přístroj, přsosti ormálu, chyby pozorováí, vliv měřicí síly či tlaku, okolí tplota. Systmatická chyba j taková chyba, ktrá při opakovaém měří též hodoty daé vličiy za stjých podmík zůstává stjá (v absolutí hodotě i zaméku. Systmatické chyby člím a: - -

2 systmatické chyby zámé (mají určitou hodotu a zaméko a lz j odstrait vhodou korkcí, systmatické chyby zámé (mají určité zaméko a jsou zahruty do jistoty měří. Při výpočtu jistoty s s imi pracuj jako s áhodými chybami. Ozačím-li si vlikost systmatické chyby c, pak pro aměřou hodotu měřé vličiy platí: x i = x + c. (3 Protož pravé hodoty x přdstavují ralizac áhodé proměé X (měřé vličiy a aměřé hodoty x i přdstavují ralizac mpirické proměé X,, platí: X = X + c (4 V skutčosti tdy při statistickém vyhodocováí dat pracujm s mpirickou proměou X, ikoliv s pravou proměou X. Chyby áhodé jsou vyvoláy pravidlými áhodými vlivy, ktré působí dl okamžitých podmík jdotlivých měří. Chovají s jako áhodá proměá a lz j popsat pomocí ormálího rozdělí. Náhodé chyby s spolu s zámými systmatickými chybami zahrují do jistoty měří. Náhodé chyby měří můžm modlovat pomocí áhodé proměé V. Njčastěji s v praxi vyskytuj případ, kdy mzi zakm jakosti X a áhodou chybou měří V j aditiví vztah (Mittag,H.J. ad Ri,H., 993. Pak v skutčosti pracujm s áhodou proměou X = X + V.(Přdpokládá s, ž X a V jsou statisticky závislé proměé.. Chyby měří a účiost rgulačího diagramu Účiost rgulačího diagramu lz vyjádřit ásldově: Rgulačí mz jsou staovy v takové vzdálosti od střdí přímky, aby: sigál o tom, ž procs j statisticky stabilí (zvládutý, i když v skutčosti j statisticky stabilí, byl vydává co jméě často (co jmší riziko zbytčého sigálu α, sigál o tom, ž došlo k přípusté odchylc procsu, byl vydá co jdřív ( co jmší riziko chybějícího sigálu β, rsp. co jvětší pravděpodobost odhalí přípusté odchylky -β. Výzam rizik α a β, rsp. pravděpodobosti -β j patrý z obrázku. a b c µ j požadovaá průměrá úrovň rgulovaé vličiy µ j průměrá úrovň rgulovaé vličiy po změě procsu Obr. Riziko zbytčého sigálu α a riziko chybějícího sigálu β Hodota α s azývá riziko zbytčého sigálu a přdstavuj pravděpodobost zbytčého hldáí vymzitlého vlivu a základě iformac z rgulačího diagramu o tom, ž procs í v statisticky zvládutém stavu (apř. bod mimo akčí mz, i když v skutčosti - -

3 k žádé výzamé změě procsu došlo (obr. a. S tímto správým závěrm jsou spojy áklady a pokus ajít příčiu xistujícího problému. hodota β s riziko chybějícího sigálu a j to pravděpodobost, ž rgulačí diagram odhalí přípustou změu procsu včas (všchy body daého tstového kritéria lží uvitř rgulačích mzí a tvoří žádé áhodé sskupí. S tímto správým závěrm jsou zas spojy áklady vyvolaé tím, ž s do procsu včas zasáhlo. Na obr. b a c j situac zobraza pro posu střdí úrově rgulovaé vličiy z µ a µ. Hodota (-β, obcě azývaá silofukc tstu, zd vyjadřuj pravděpodobost dtkc přípusté změy procsu, ktrá má být včas odhala. Za přdpokladu, ž xistuj žádá chyba měří, lz riziko α (tj. jho pravou hodotu, staovit z vztahu: UCL µ LCL µ α = P(X > UCL + P(X < LCL = - Φ( + Φ(. (5 Pravděpodobost včasého odhalí přípusté odchylky v procsu -β (tj. pravou hodotu této pravděpodobosti pak určím z vztahu: UCL µ LCL µ -β = P(X > UCL + P(X < LCL = - Φ( + Φ(. (6 kd µ j přípustá úrovň střdí hodoty rgulovaé vličiy, µ j přípustá úrovň střdí hodoty rgulovaé vličiy, j přípustá směrodatá odchylka rgulovaé vličiy, UCL µ Φ( j hodota distribučí fukc ormovaého ormálího rozdělí v bodě UCL µ (. Chyby měří tdy ovlivňují rozhodováí o tom, zda j uté učiit zásah do procsu (apř. sřídit ho bo zda procs pochat bz zásahu. V další kapitol j provda aalýza změ rizika α a pravděpodobosti -β u rgulačího diagramu pro výběrové průměry ( x.. Rozbor vlivu systmatické chyby Působí-li pouz systmatická chyba měří c, pak v skutčosti pracujm s pravou áhodou vličiou X, al s mpirickou áhodou proměou X, pro ktrou platí: X = X + c (7 Systmatická chyba měří c působí již v fázi tvorby rgulačího diagramu Jstliž systmatická chyba c již kotamiovala hodoty měřé vličiy, z ichž byly vypočítáy střdí přímka, horí rgulačí mz a dolí rgulačí mz, pak pracujm s jjich pravou hodotou CL, UCL a LCL, al s jjich mpirickými hodotami CL, UCL a LCL, pro ktré platí: CL = CL + c, (8 UCL = UCL + c (9 LCL = LCL + c ( +Vyjdm-li z vztahů (5 a (6, upravých pro tstovací charaktristiku v rgulačím diagramu pro výběrové průměry ( x, pak mpirickou hodotu rizika zbytčého sigálu α a pravděpodobost odhalí přípusté odchylky (-β staovím z vztahů: - 3 -

4 UCL c ( µ c α =P( X > UCL + P( X < LCL = - Φ( + + / + LCL c ( µ c Φ( + + / ( UCL c ( µ c (-β =P( X > UCL +P( X < LCL =- Φ( + + / + LCL c ( µ c Φ( + + / (. Jak j vidět z vzorců ( a (, systmatická chyba c s vyruší. Z toho ply, ž v situaci, kdy systmatická chyba c ovlivila i výpočt střdí přímky a rgulačích mzí, platí: α = α (3 (-β = - β. (4 Systmatická chyba měří působila v fázi tvorby rgulačího diagramu Jstliž s systmatická chyba projví až po zavdí rgulačího diagramu, pracujm s pravými rgulačími mzmi UCL a LCL, al do rgulačího diagramu zazamávám hodoty tstovací charaktristiky X = X + c. Empirickou hodotu rizika zbytčého sigálu pak vypočtm dl vztahu: UCL ( µ c α = P( X > UCL + P( X < LCL = - Φ( + LCL ( µ c + Φ( +. (5 / / a mpirickou hodotu pravděpodobosti odhalí přípusté odchylky staovím dl vztahu: UC ( µ c (-β = P( X > UCL + P( X < LCL = - Φ( + LCL ( µ c + Φ( + (6 / / Z vztahů (5 a (6 ply, ž v tomto případě systmatická chyba c ovliví výši rizika zbytčého sigálu a pravděpodobosti odhalí přípusté odchylky. Jak pro c >. tak pro c < p platí: α > α (7 (-β > - β. (8. Rozbor vlivu áhodé chyby měří Njvýzamějším případm áhodé chyby j aditiví áhodá chyba, ktrou si ozačím V. Za přdpokladu, ž působí systmatická chyba měří, lz mpirickou proměou X popsat ásldově: X = X + V, (9 (přdpokládá s, ž X a V jsou statisticky závislé áhodé proměé. Pro pravou proměou X platí X~N( µ, a pro áhodou chybu V platí V~N(, V. Chyba V má žádý vliv a úrovň procsu µ. Na rozdíl od systmatické chyby má áhodá chyba vliv a účiost rgulačího diagramu jak v situaci, kdy jsou touto chybou kotamiováy již rgulačí mz použitého rgulačího diagramu, tak thdy, když áhodá chyba zač působit až v fázi aplikac rgulačího diagramu

5 Opět bud pro ilustraci použit rgulačí diagram pro výběrové průměry ( x. Jstliž působí áhodá chyba V, pak v skutčosti do rgulačího diagramu vyáším mpirické hodoty tstovací charaktristiky, tj. X = X + V, pro ktrou platí X ~N( µ, x. Zavdm-li vztah pro rlativí rozptyl chyby měří V r =, ( pak lz vyjádřit ásldově: x + V x = = x =. ( Náhodá chyba působí již v fázi tvorby rgulačího diagramu V tomto případě pracujm s mpirickými rgulačími mzmi UCL = µ + 3 x = µ + 3, ( LCL = µ 3 x = µ 3, (3 Riziko zbytčého sigálu pak staovím takto: α = P( X > UCL + P( X < LCL UCL µ LCL µ = - Φ ( (4 Platí: α = α. Empirickou hodotu pravděpodobosti včasého odhalí přípusté odchylky staovím dl vztahu: (-β = P( X > UCL + P( X < LCL UCL µ LCL µ = - Φ ( (5 Platí, ž pravděpodobost (-β < (-β a s rostoucím r jjí hodota klsá. Náhodá chyba působí až v fázi zavdí rgulačího diagramu: V tomto případě v rgulačím diagramu pracujm s pravými rgulačími mzmi UCL a LCL: UCL = µ + 3 x = µ + 3 (6 LCL = µ 3 x = µ 3. (7 Riziko zbytčého sigálu pak staovím z vztahu: α UCL µ LCL µ = P( X > UCL + P( X < LCL = - Φ (. (8 Platí, ž α > α a s rostoucím r

6 Pro určí pravděpodobosti odhalí přípusté odchylky použijm v tomto případě vztah: (-β UCL µ LCL µ = P( X > UCL + P( X < LCL = - Φ (. (9 Hodota (-β > (-β a s rostoucím r rost. 3. Mtodika aalýzy a staoví systmatické chyby (straosti pomocí rgulačích diagramů Výsldky kalibrac lz doplit o statistickou aalýzu dat získaých při kalibraci a umožit tak objktivější rozhodováí o sřízí měřícího přístroj. V litratuř (Pyzdk.T., 99 j popsáa ásldující mtodika založá a aplikaci rgulačích diagramů pro idividuálí hodoty a klouzavé průměry.. Změří sldovaého zak jakosti u talou bo vybraého produktu miimálě 5x (utost dodržt chroologii aměřých hodot, a jstliž jsou všchy hodoty stjé, al liší s od pravé hodoty j uté sřízí měřícího přístroj a pravou hodotu b v ostatích případch s pokračuj bodm.. Výpočt klouzavých průměrů z dvou po sobě aměřých hodot. 3. Sstrojí prosté tabulky čtostí hodot klouzavých průměrů, výpočt čtostí, kumulativích čtostí a kumulativích čtostí v %. 4. Výpočt hodot COF a COF p dl vztahů: R R 5 xt COF = +, (3 R j hodota klouzavého rozpětí, u íž kumulativí čtost v % přsahuj 5%, 5 R j hodota klouzavého rozpětí ásldující v tabulc čtosti po hodotě xt RC + COF 6 p =,.( R. 5 RC j součt čtostí klouzavých rozpětí v zbývajících řádcích tabulky čtostí (počítáo od řádku pro R dál, 5 j počt hodot klouzavých průměrů. 5. Výpočt horí (UCL a dolí (LCL rgulačí mz pro rgulačí diagram pro idividuálí hodoty dl vztahů: UCL = x + 3 COF,.CV (3 LCL = x 3 COF,.CV (33 x j pravá hodota měřé vličiy, (3

7 CV j kritická hodota ormovaého ormálího rozdělí odpovídající hodotě COF p. 6. Výpočt střdí přímky a rgulačích mzí pro diagram pro klouzavé průměry. 7. Sstrojí rgulačích diagramů pro idividuálí hodoty a klouzavé průměry. 8. Aalýza rgulačích diagramů: a všchy hodoty v diagramu pro idividuálí hodoty lží uvitř rgulačích mzí í třba provádět rkalibraci měřidla. b ěktrá hodota v diagramu pro idividuálí hodoty lží mimo horí bo dolí rgulačí mz j třba kompzovat systmatickou chybu měří. c v diagramu pro idividuálí hodoty lží ěktré body jak mimo horí, tak mimo dolí rgulačí mz bo diagram pro klouzavé průměry vykazuj stabilitu přd rkalibrací měřidla j třba vyhldat a odstrait působí vymzitlé příčiy variability procsu měří. 4. Závěr Jak bylo ukázáo v kapitol tohoto příspěvku, systmatické i áhodé chyby ovlivňují účiost rgulačích diagramů. Působí-li daá chyba jak v fázi výpočtů rgulačích mzí, tak v fázi aplikac rgulačího diagramu, pak s měí pouz pravděpodobost odhalí přípusté odchylky procsu, rsp. riziko chybějícího sigálu. Jstliž však daá chyba působí až v fázi zavdí rgulačího diagramu, měí s jak riziko zbytčého sigálu, tak riziko chybějícího sigálu. Proto j třba tyto chyby miimalizovat, popř. miimalizovat jjich dopady a uvdá rizika. Systmatickou chybu lz aalyzovat pomocí mtodiky využívající rgulačích diagramů, ktrá j stručě popsaá v kapitol 3 v tomto příspěvku. Další typy variability (rprodukovatlost, opakovatlost lz aalyzovat apř. zámou mtodou R&R, ktrá také využívá rgulačích diagramů (blíž apř. (Pyzdk,T., Litratura KAZANUKA, T.: Th ffct of masurmt rror o th powr of charts. Joural of Quality tchology, vol. 8, o., April 986. MITTAG,H.J. AND RINNE,H.: Statistical mthods of quality assurac. Lodo: Chapma&Hall, s. MLČOCH,I. A SLIMÁK,I : Řízí kvality a strojírská mtrologi. Praha: SNTL/Alfa, 987. PYZDEK, T. 99. Pyzdk s Guid to SPC. Applicatios ad Spcial Topics (Vol.. Tusco, Arizoa: ASQC Quality Prss. Quality Publishig, Ic. ISBN X. TOŠENOVSKÝ, J. A NOSKIEVIČOVÁ, D.: Statistické mtody pro zlpšováí jakosti. Ostrava: Motax,. 36 s. Kotakt a autora:

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

OVMT Přesnost měření a teorie chyb

OVMT Přesnost měření a teorie chyb Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národí iformačí středisko pro podpor jakosti Kozltačí středisko statistických metod při NIS-PJ Výpočet koeficietů reglačích diagramů pro obecé riziko Ig. Václav Chmelík, CSc Ústav strojíreské techologie,

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Kapitola 2. Bohrova teorie atomu vodíku

Kapitola 2. Bohrova teorie atomu vodíku Kapitola - - Kapitola Bohrova tori atomu vodíku Obsah:. Klasické modly atomu. Spktrum atomu vodíku.3 Bohrův modl atomu vodíku. Frack-Hrtzův pokus Litratura: [] BEISER A. Úvod do modrí fyziky [] HORÁK Z.,

Více

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Zpracování a prezentace výsledků měření (KFY/ZPM)

Zpracování a prezentace výsledků měření (KFY/ZPM) Jihočká uivrzita Pdagogická fakulta katdra fyziky Zpracováí a prztac výldků měří (KFY/ZPM) tručý učbí tt Pavl Kříž Čké Budějovic 005 Úvod Přdmět Zpracováí a prztac výldků měří (ZPM) volě avazuj a přdmět

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ 3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,

Více

1 ROVNOMĚRNOST BETONU KONSTRUKCE

1 ROVNOMĚRNOST BETONU KONSTRUKCE ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály Aalýza a zpracováí sigálů 3. Číselé řady, jejich vlastosti a základí operace, áhodé sigály Diskrétí sigál fukce ezávislé proměé.!!! Pozor!!!! : sigáleí defiová mezi dvěma ásledujícími vzorky ( a eí tam

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národí iformačí střediso pro podporu vality Problémy s uazateli způsobilosti a výoosti v praxi Dr.Jiří Michále, CSc. Ústav teorie iformace a automatizace AVČR Uazatel způsobilosti C p Předpolady: ormálí

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Lineární a adaptivní zpracování dat. 9. Modely časových řad II.

Lineární a adaptivní zpracování dat. 9. Modely časových řad II. Lieárí a adaptiví zpracováí dat 9. Modely časových řad II. Daiel Schwarz Ivestice do rozvoje vzděláváí Opakováí K čemu je dobré vytvářet modely procesů geerující časové řady? Dekompozice časový řad: jaké

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Algoritmus RSA. Vilém Vychodil. 4. března 2002. Abstrakt

Algoritmus RSA. Vilém Vychodil. 4. března 2002. Abstrakt Algoritmus RSA Vilém Vychodil 4. břza 2002 Abstrakt Násldující podpůrý txt stručě shruj základí problmatiky při šifrováí algoritmm RSA. Sm spadá j samotý pricip algoritmu, al i základí mtody grováí vlkých

Více

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

Lineární a adaptivní zpracování dat. 8. Modely časových řad I. Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Exponenciální funkce a jejich "využití" - A (Tato doplňková pomůcka nemůže v žádném případě nahradit systematickou matematickou přípravu.

Exponenciální funkce a jejich využití - A (Tato doplňková pomůcka nemůže v žádném případě nahradit systematickou matematickou přípravu. Josf PUNČOCHÁŘ: Epociálí fukc a ich "využití" ld Epociálí fukc a ich "využití" - A (Tato doplňková pomůcka můž v žádém případě ahradit systmatickou matmatickou přípravu. Epociálí fukc dfiováa obcě vztahm

Více

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/ Teto projekt je spolufiacová Evropským sociálím fodem a Státím rozpočtem ČR IoBio CZ..07/2.2.00/28.008 Připravil: Ig. Vlastimil Vala, CSc. Metody zkoumáí ekoomických jevů Kapitola straa 3 Metoda Z řeckého

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy 3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy

Více

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.). STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A ); 1 PSE 1 Náhodý pokus, áhodý jev. Operace s jevy. Defiice pravděpodobosti jevu, vlastosti ppsti. Klasická defiice pravděpodobosti a její použití, základí kombiatorické vzorce. 1.1 Teoretická část 1.1.1

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

VLIV MODIFIKACE MATICE HMOTNOSTI NA VÝSLEDKY MODÁLNÍ ANALÝZY

VLIV MODIFIKACE MATICE HMOTNOSTI NA VÝSLEDKY MODÁLNÍ ANALÝZY VLIV MODIFIKACE MAICE HMONOSI NA VÝSLEDKY MODÁLNÍ ANALÝZY omáš Brzobohatý, Alxadros Markopoulos Fakulta strojí, katdra mchaiky VŠB-U Ostrava, řída 7. listopadu, 78 Abstrakt Při řší dyamických úloh mtodou

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Statistika pro metrologii

Statistika pro metrologii Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých

Více

HODNOCENÍ KVALITY MATERIÁLU PRI SÉRIOVÉ PRODUKCI ODLITKU Z NIKLOVÝCH SLITIN PRO NÁROCNÉ PROVOZNÍ PODMÍNKY

HODNOCENÍ KVALITY MATERIÁLU PRI SÉRIOVÉ PRODUKCI ODLITKU Z NIKLOVÝCH SLITIN PRO NÁROCNÉ PROVOZNÍ PODMÍNKY HODNOCENÍ KVALITY MATERIÁLU PRI SÉRIOVÉ PRODUKCI ODLITKU Z NIKLOVÝCH SLITIN PRO NÁROCNÉ PROVOZNÍ PODMÍNKY MATERIAL QUALITY EVALUATION IN SERIES PRODUCTION OF INVESTMENT CAST PARTS FROM NICKEL BASE ALLOYS

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tty - NOV NOV tty provádí pomocí aalýzy rozptylů NOV ouhré tty pro víc ěž dva výběry. NOV paramtrcká ttováí charaktrtk z zámých rozdělí pokud

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p)

0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p) . Příklad Při průzkumu trhu projevilo 63 z dotázaých zákazíků zájem o iovovaý výrobek, který má být uvede a trh se zákazíky. Odvoďte a odhaděte proceto a počet zájemců v populaci s 95% spolehlivostí. Následě

Více

Testování statistických hypotéz

Testování statistických hypotéz Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky

Více

Popisná statistika. Zdeněk Janák 9. prosince 2007

Popisná statistika. Zdeněk Janák 9. prosince 2007 Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35

Více

SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz

SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaisr, Emil Košťál xkaisrj@fld.cvut.cz ČVUT, Fakulta lktrotchnická, katdra Radiolktroniky Tchnická 2, 166 27 Praha 6 1. Úvod Článk s

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tsty - NOV NOV tsty s rovádí s omocí aalýzy roztylů NOV souhré tsty ro víc ěž dva výběry. NOV aramtrcká tstováí charaktrstk z zámých rozdělí

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb

Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb Příloha č. 7 Dodatku ke Smlouvě o službách Systém měřeí kvality Služeb Dodavatel a Objedatel se dohodli a ahrazeí Přílohy C - Systém měřeí kvality Služeb Obchodích podmíek Smlouvy o službách touto Přílohou

Více

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

Fotometrie a radiometrie Důležitou částí kvantitativního popisu optického záření je určování jeho mohutnosti

Fotometrie a radiometrie Důležitou částí kvantitativního popisu optického záření je určování jeho mohutnosti Učbí txt k přášc UFY1 Fotomtri a raiomtri Fotomtri a raiomtri Důlžitou částí kvatitativího popisu optického září j určováí jho mohutosti B, jsou přímo měřitlé, a proto rgtických charaktristik. Samoté vktory

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

1 Úvod { }.[ ] A= A A, (1.1)

1 Úvod { }.[ ] A= A A, (1.1) Obsah Obsah... Úvod... 3 Základí pojmy počtu pravděpodobosti... 7. Základí statistické pojmy... 7. Fukce áhodých veliči... 8.3 Charakteristiky áhodých veliči... 0.4 Některá rozděleí pravděpodobosti....5

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více