7.1. Jistina, úroková míra, úroková doba, úrok

Rozměr: px
Začít zobrazení ze stránky:

Download "7.1. Jistina, úroková míra, úroková doba, úrok"

Transkript

1 7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina částka, která byla půjčena a budeme ji označovat J 0. J částka po roce J = J 0 + ú J 2 částka po drou letech J 2 = J + ú a podobně Úroková míra udává výši úroku za určité období v procentech, označujeme ji p. Úroková sazba vyjádření úrokové míry desetinným číslem, které označujeme i. p i = Jestliže úroková míra p = 7 %, potom úroková sazba i = 0,07. Úrok úroková hodnota je částka v Kč, kterou obdrží věřitel po uplynutí určité doby ( úrokovací doby ), značíme ú. Úroková doba je časový úsek, po kterou je jistina půjčena nebo uložena v peněžním ústavu, označujeme ji t. Udává se v letech, měsících a dnech. Úrokovací období je časový úsek, na který je vázána úroková míra. Zpravidla rok, ale může být např. pololetí, čtvrtletí, měsíc. Základní vztahy : Úrok za jedno úrokovací období ú = J 0. i Úrok za úrokovací dobu t ú = ú. t ú = J 0. i. t p J0 Použijeme-li vztah i = ú =. p. t 7.2. Jednoduché úrokování Úrokovací doba bude kratší nebo rovna úrokovacímu období. Příklad : Určete výši úroku, kterou požaduje banka za půjčení částky Kč na šest měsíců při úrokové míře 3 % za rok Zápis : J 0 = Kč p = 3 % t = 0,5 roku Řešení : a) % %. x x = 560 ú = , 5 = Kč J0 b) ú =. p. t Úrok činí Kč. ú = , ú = Kč Příklad : Jak velký úrok musí splatit podnikatel, který si půjčil na 9 měsíců částku Kč při

2 4,5 % za rok? Příklad 2 : Podnikatel J. K. si půjčil v bance částku Kč na doplnění prostředků k nákupu sezónních zásob. Ve smlouvě s bankou se dohodl, že půjčku splatí za půl roku a úrok bude činit 4 % ročně. Příklad : Podnikatel uložil jako termínovaný vklad na půl roku částku Kč při úrokové míře 7 % za půl roku. Určete úrok, který získá po uplynutí této doby. Zápis : J 0 = Kč i = 0,07 t = ú = J 0. i. t ú = ,07. ú = Kč Podnikatel získal na úrocích Kč Poznámka : při výpočtu jsme dosadili t =, protože úrokovací doba půl roku byla rovna úrokovacímu období. Zapamatujte si : Při výpočtu úroku musíme za t dosadit vždy zlomek z daného úrokovacího období. Například za 5 měsíců při ročním úrokovacím období t = 5 2 za 5 měsíců při půlročním úrokovacím období t = 5 6 Příklad 3 : Obchodník si vzal na osm měsíců úvěr 000.-Kč při roční úrokové míře %. Kolik korun bude muset obchodník bance vrátit? Příklad 4 : Vypočítejte úrok, který vynese jistina Kč při roční úrokové míře 5 % za tři měsíce. Příklad 5 : Tetička darovala Pavlovi k narozeninám spořitelní knížku s vkladem Kč uložených na roční úrok %. Kolik Kč bude mít Pavel na knížce za půl roku? V peněžních ústavech úrok narůstá nejen po letech, ale i po měsících a dokonce i po dnech. Pro tyto výpočty má úrokovací měsíc 30 dnů a tedy úrokovací rok dnů. Ze dvou dnů den vložení a den výběru počítáme vždy jen jeden den. Příklad : 4. března 2002 si pan Novák půjčil Kč na roční 4 % úrok. Kolik Kč bude muset zaplatit 25. srpna 2002? Řešení : ) určení počtu dní půjčky březen : 7 dní ( počítáme den půjčky ) duben, květen, červen, červenec = 20 dní srpen : 24 dní ( nepočítáme den zaplacení ) = 6 dní Jiný způsob : t počet dnů úrokovací doby d den vkladu d 2 den splátky m měsíc vkladu m 2 měsíc splátky t = 30. ( m 2 m ) + ( d 2 d ) VÝPOČET : t = 30. ( 8 3 ) + ( 25 4 ) t = ) zápis J 0 = Kč i = 0,4 t = 6 2 t = 6 dní

3 3) výpočet úroku ú = J 0. i. t ú = ,4. 6 ú = Kč 4) výpočet částky, kterou bude pan Novák platit x = x = Kč 5) odpověď Pan Novák 25. srpna 2002 zaplatí za půjčku Kč. Příklad 6 : Vypočítejte výši úroku pana X.Y., který měl od 2. dubna do 8. října 2002 půjčku v bance na roční 8 % úrok ve výši Kč. Příklad 7 : Vypočtěte 9 % roční úrok z částky Kč za dobu od 2. května do 30. července Příklad 8 : Podnikatel si půjčil 6. ledna Kč, 2. února Kč a 8. března Kč na roční 2 % úrok. Kolik Kč bude muset zaplatit 3. prosince 999? Příklad : Pan Adam splatil úvěr a úroky částkou Kč. Půjčka byla splacena po 270 dnech a to při ročním úroku 5 %. Jak velký úvěr si vzal pan Adam? Zápis : J = Kč t = 270 i = 0,5 neznámá J 0 ú = J 0. i. t J = J 0 + ú J = J 0 + J 0. i. t = J 0. ( + i. t ) J = J 0. ( + i. t ) = J 0. ( + 0, ) J 0 = Kč Pan Adam si vzal půjčku ve výši Kč. Příklad 9 : Na vkladní knížce, která byla zřízena 4. května 2000 na roční úrok 9 % bylo 3. prosince částka Kolik byla původní jistina? Příklad 0 : Půjčka i s ročními úroky ve výši 2 % byla splacena po 327 dnech. Kolik činily vlastní úroky? Příklad : Pan Novinka si půjčil 2. ledna Kč při roční úrokové míře 2 %. Který den musel zaplatit dluh, jestliže s bankou se vyrovnal částkou Kč. Příklad 2 : Paní Mrázková si půjčila. března 2000 částku Kč v bance na 2 % roční úvěr.. srpna 2000 splatila Kč a. října dalších Kč. Kolik dlužila bance. ledna 200? 7.3. Složené úrokování Složené úrokování je takové úrokování, kdy úroková doba je rovna aspoň dvěma celým úrokovacím obdobím. Nejdříve vypočítáme příklad na složené úrokování za pomoci našich znalostí jednoduchého úrokování. Příklad : Pan Pavel si uložil na vkladní knížku do banky částku Kč s roční úrokovou mírou ve výši 5 %. Kolik Kč bude mít na knížce za tři roky? 3

4 Řešení : l. fáze kolik bude mít na knížce po roce J = J 0. ( + i. t ) J = ( + 0,05. ) 2. fáze kolik bude mít na knížce po dvou letech J 2 = J. ( + i. t ) J 2 = ( + 0,05. ) 3. fáze kolik bude mít na knížce po třech letech J 3 = J 2. ( + i. t ) J 3 = ( + 0,05. ) J = Kč J 2 = Kč J 3 = Kč 4. fáze odpověď Za tři roky bude mít na knížce Kč. Pro výpočty tohoto typu můžeme používat vzorce : J n = J 0. r n, kde J 0 je počáteční jistina J n je jistina po n úrokovacích období ( zpravidla letech ) n je počet let r je úročitel, kde r = + i. t J n = J 0. ( + i. t ) n Daný příklad tedy můžeme vypočítat : J n = J 0. ( + i. t ) n J 3 = ( + 0,05. ) J 3 = 3 89,50 Kč Příklad 3 : Na kolik Kč vzroste částka za 5 let při roční úrokové míře 5 %? Příklad 4 : Jakou částku vložil pan Novák do banky při roční úrokovací míře 6 %, jestliže po třech letech mu banka vyplatila 5 955,08 Kč? V životě však není tak jednoduché. Banky, stejně jako ostatní podnikatelé, platí daně státu. Proto i úroky občanů banka musí zdanit. Proto náš vzorec J n = J 0. ( + i. t ) n musíme ještě zkorigovat o zaplacení daně. Například při 5 % dani z úroků platí J * n = J 0. ( 0,5 + 0,85. r ) n, kde r = + i. t Při 2 % dani z úroků platí J * n = J 0. ( 0,2 + 0,88. r ) n, kde r = + i. t Příklad 5 : Vypočtěte jakou částku vyplatí banka klientovi, který si v bance uložil ,- Kč na dva roky při roční úrokové míře 4,5 %, jestliže úrok se daní 5 % daní z příjmu? Příklad 6 : Jakou částku musel klient vložit do banky, která při roční úrokové míře 6 %, za 8 let po odečtení daní 5 % vyplatil částku ,48 Kč? 4

5 7.4. Kombinované úrokování Vzhledem k tomu, že v bankovnictví se nepůjčuje jenom na celá úroková období, ale dosti často na určitý počet let a dní, používáme metodu kombinovaného úrokování. Příklad : 0. dubna 998 jsme si uložil v bance částku Kč na roční % úrokovou míru. Kolik Kč budu mít na kontě 26. září 2002, jestliže : a) nebudu platit daň z příjmů b) budu platit 5 % daň z příjmů. Řešení a) : fáze výpočet výše konta t = 30. ( m 2 m ) + ( d 2 d ) t = 30. ( 2 4 ) + ( 3 0 ) t = t = 26 dní J 0 = ,- Kč i = 0, t = 26 ú = J 0. i. t ú = ,. 26 ú = 4 023,39 Kč J - stav konta J = ,39 J = ,39 Kč 2. fáze výpočet výše konta obecný vzorec upravíme J n = J 0. ( + i. t ) n na J 4 = J. ( + i. t ) 3 J 4 = ,39. ( + 0,. ) 3 J 4 = ,50 Kč 3. fáze výpočet výše konta t = 30. ( m 2 m ) + ( d 2 d ) t = 30. ( 9 ) + ( 26 ) t = t = 265 dní 265 J 4 = ,50 Kč i = 0, t = 265 ú = J 0. i. t ú 5 = ,50. 0,. J 5 - stav konta J 5 = J 4 + ú 5 J 5 = , ,63 ú 5 = 6 009,63 Kč J 5 = ,3 Kč Řešení b) : budeme používat údaje vypočítané v bodě a. fáze výpočet výše konta ú = 4 023,39 Kč * * * ú = 0,85. ú ú = 0, ,39 ú = 3 49,88 Kč J = ,88 J = ,88 Kč 2. fáze výpočet výše konta obecný vzorec J * = J n 0. ( 0,5 + 0,85. r ) n, kde r = + i. t upravíme na J * 4 = J. ( 0,5 + 0,85. r ) 3, kde r = + i. t J * 4 = ,88. ( 0,5 + 0,85., )3 J 3. fáze výpočet výše konta * 4 = ,25 Kč

6 ú * = 0,85. ú = 0,85. J i. t ú * 5 = 0, ,25. 0,. = 4 829,65 Kč J * 5 = J * 4 + ú * 5 J * 5 = , ,65 J * 5 ú * 5 = ,90 Kč 4. fáze odpověď Jestliže nebudu platit daň z příjmů, tak budu mít na kontě ,3 Kč, budu-li platit daň, tak budu mít na kontě ,90 Kč. Příklad 7 : Pan Novotný uložil 7. května 993 v bance částku ,- Kč na roční 2 % úrokovací míru, které si hodlá vybrat Vypočtěte částku, kterou bude mít na kontě požadovaný den : a) jestliže nebude platit daň z příjmů b) bude-li platit 5 % daň z příjmů. Souhrnná cvičení ) Pan Pátek si půjčil na pět měsíců částku ve výši Kč na roční 3 % úrok. Kolik Kč zaplatí na úrocích? 2) Pan Sobota má v bance účet na roční 4 % úrok.. ledna 2000 měl na účtu Kč.. dubna 2000 vložil Kč.. října 2000 vybral Kč. Kolik Kč měl na účtu. ledna 200 po připsání úroků? 3) Vypočtěte kolik Kč budete mít v bance po 5 letech z Kč při roční úrokové míře 6,75%. 4) Při roční úrokovací míře 4,5 % banka vyplatila Klimentovi částku 39 88,82 Kč. Kolik Kč před 8 lety vložil do banky? 5) Uložil jsem si do banky částku ,- Kč při roční 6 % úrokové míře. Banka mi odečítá z úroků 5 % daň. Budu mít za čtyři roky na zaplacení zájezdu v ceně ,- Kč? Kolik Kč mi zůstane na výměnu valut? 6) Půjčím si v bance ,- Kč při roční 9 % úrokové míře na 4 roky. Kolik zaplatím na úrocích? 7) O kolik Kč vzroste mi v bance konto, jestliže jsem před 0 lety vložil 6 000,- Kč při roční úrokové míře 9 %, jestliže bance musím zaplatit 8 % daň z přijmu. 8) 26. března 99 si podnikatel vypůjčil při roční 5 % úrokovací míře ,- Kč. Jak velkou částkou může splatit dluh ? 9) Kolik Kč bude muset zaplatit dlužník, aby 3. července 995 splatil dluh 0 000,- Kč, které si půjčil. ledna 99 na roční 2 % úrok? 0) 7. dubna 993 uložil občan do spořitelny 8 000,- Kč na vkladní knížku úročenou ročně 9 %. Kolik Kč bude mít na vkladní knížce 9. března 997 a jak velké budou úroky. Daň z příjmu neplatil. ) Pan Novák uložil 2. února 99 v bance částku ,- Kč na roční 3 % úrokovací míru, které si hodlá vybrat 6.září 996. Vypočtěte částku, kterou bude mít na kontě požadovaný den : 6

7 a) jestliže nebude platit daň z příjmů b) bude-li platit 5 % daň z příjmů. 2) Vypočtěte kolik korun naspoříte, budete-li po dobu osmi let při roční úrokové míře 9 % pravidelně ročně střádat Kč : a) počátkem roku b) koncem roku 3) Pravidelně měsíčně střádáte 200,- Kč po dobu tří let při roční úrokové míře 9 %. Kolik Kč ušetříte jestliže budete peníze ukládat : a) začátkem každého měsíce, b) koncem každého měsíce. Výsledky : ) 4 023, 75 Kč,2) Kč,3) , 34 Kč,4) Kč,5) Kč,6) 6.- Kč, 7) 724,80 Kč,8) ,33 Kč,9) Kč,0) úloha nemá řešení pro nedostatek údajů, ). října 9992) Kč,3) 83 57, Kč,4) 5 000,- Kč,5) ,96 Kč,6) 8 000,- Kč, 7) 30 27,03 Kč, Souhrnná cvičení ) Kč,2) Kč,3) ,03 Kč4) Kč,5) ano, na valuty budu mít 39,8 Kč, 6) 6 463, 26 Kč,7) 6 228,84 Kč, 8) 35 6,35 Kč,9) 6 742,24 Kč,0) 232,96 Kč, 3 232,96 Kč, a)59 764,80 Kč, b)54 63,24 Kč,2 a)36 063,0 Kč, b)33 085,42 Kč 3 a)8 250,98 Kč b) 8 9,97Kč 7

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Základní pojmy od P do Z www.zlinskedumy.cz plat - mzda, kterou dostávají státní zaměstnanci promile jedna tisícina ze základu pohledávka právo věřitele na plnění určitého dluhu dlužníkem

Více

Téma: Jednoduché úročení

Téma: Jednoduché úročení Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad

Více

Finanční matematika I.

Finanční matematika I. Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

1 Umořovatel, umořovací plán, diskont směnky

1 Umořovatel, umořovací plán, diskont směnky 1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si

Více

Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014

Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014 Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010 Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web

Více

Složené úročení. Škoda, že to neudělal

Složené úročení. Škoda, že to neudělal Složené úročení Charakteristika (rozdíl oproti jednoduchému) Kdy je obecně užíváno Využití v praxi Síla složeného úročení Albert Einstein: Je to další div světa Složené úročení Složené úročení Kdyby Karel

Více

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),

Více

Finanční matematika II.

Finanční matematika II. Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

Pracovní list. Workshop: Finanční trh, finanční produkty

Pracovní list. Workshop: Finanční trh, finanční produkty Pracovní list Workshop: Finanční trh, finanční produkty Úkol č. 1 Osobní půjčka Doplňte v následující tabulce kolik zaplatíte za úvěr celkem (vč. úroků) při jednotlivých RPSN. Současně porovnejte, zda

Více

FINANČNÍ MATEMATIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

FINANČNÍ MATEMATIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky FINANČNÍ MATEMATIKA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Šablona: III/2. Sada: VY_32_INOVACE_7IS

Šablona: III/2. Sada: VY_32_INOVACE_7IS Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_7IS Pořadové číslo: 11 Ověření ve výuce Třída: 8.A Datum: 14.10.2013 1 Procenta úroková míra Předmět: Ročník: Škola

Více

1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota

1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota 1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.

Více

Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534

Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534 VY_32_INOVACE_BAN_113 Úvěrový proces Ing. Dagmar Novotná Obchodní akademie, Lysá nad Labem, Komenského 1534 Dostupné z www.oalysa.cz. Financováno z ESF a státního rozpočtu ČR. Období vytvoření: 12/2012

Více

RPSN (Roční Procentní Sazba Nákladů) (2015-01-18)

RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) Zkratkou RPSN se označuje takzvaná roční procentní sazba nákladů. Udává, kolik procent z původní dlužné částky musí spotřebitel za jeden rok zaplatit v

Více

Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému.

Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Úročení (spoření, střádání) (2015-01-18) Základní pojmy Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Věřitel (ten, kdo půjčil) získává tedy úrok za to, že dočasně poskytl

Více

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku Mgr. Zuzana Válková Zadání: Paní Sirotková má měsíční příjem 27.890 Kč. Bydlí v městském bytě, kde platí měsíční nájem 8.500 Kč. Celkové měsíční výdaje (včetně nájmu) činí 21.600 Kč. Vlastní majetek v

Více

Sada 1 Matematika. 06. Finanční matematika - úvod

Sada 1 Matematika. 06. Finanční matematika - úvod S třední škola stavební Jihlava Sada 1 Matematika 06. Finanční matematika - úvod Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

FINANČNÍ MATEMATIKY NEBOJÍME

FINANČNÍ MATEMATIKY NEBOJÍME úrok úvěr pojištění spoření půjčka daň bankrot finance valuty devizy bankovní účet termínovaný vklad splátka akontace ATM kurzovní lístek RPSN revolving kapitál jistina inflace dlužník věřitel dluhopis

Více

PENÍZE, BANKY, FINANČNÍ TRHY

PENÍZE, BANKY, FINANČNÍ TRHY PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou

Více

BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4

BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4 BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4 Sada: Ekonomie Téma: Banky Autor: Mgr. Pavel Peňáz Předmět: Základy společenských věd Ročník: 3. ročník Využití: Prezentace určená pro výklad a opakování Anotace:

Více

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 =a n 4 a 1 =50. Pro jaké nejmenší přirozené číslo n bude součet prvních n členů záporný? max. 4b, kde Úloha

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO154

Více

CVIČENÍ ZE ZÁKLADŮ FINANCÍ

CVIČENÍ ZE ZÁKLADŮ FINANCÍ CVIČENÍ ZE ZÁKLADŮ FINANCÍ 9.. 0 Veronika Kajurová Katedra financí kancelář č. 0 vkajurova@mail.muni.cz PROGRAM DNEŠNÍHO TUTORIÁLU Část I. - Časová hodnota peněz Příklady - opakování Část II. - Podnikové

Více

VY_62_INOVACE_1ZIM70. Autor: Mgr. Jana Zimková. Datum: 14.10.2011. Ročník: 5. Vzdělávací oblast: Finanční gramotnost. Předmět: Matematika

VY_62_INOVACE_1ZIM70. Autor: Mgr. Jana Zimková. Datum: 14.10.2011. Ročník: 5. Vzdělávací oblast: Finanční gramotnost. Předmět: Matematika VY_62_INOVACE_1ZIM70 Autor: Mgr. Jana Zimková Datum: 14.10.2011 Ročník: 5. Vzdělávací oblast: Finanční gramotnost Předmět: Matematika Tematický okruh: Nestandardní aplikační úlohy a problémy Téma: Banka

Více

Stavební spoření. Bc. Alena Kozubová

Stavební spoření. Bc. Alena Kozubová Stavební spoření Bc. Alena Kozubová Právní norma Zákon č. 96/1993 Sb., o stavebním spoření Stavební spoření Stavební spoření je účelové spoření spočívající v přijímání vkladů od účastníků stavebního spoření,

Více

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)

Více

CZ.1.07/1.5.00/34.0499

CZ.1.07/1.5.00/34.0499 Číslo projektu Název školy Název materiálu Autor Tematický okruh Ročník CZ.1.07/1.5.00/34.0499 Soukromá střední odborná škola Frýdek-Místek,s.r.o. VY_32_INOVACE_251_ESP_06 Marcela Kovářová Datum tvorby

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné

Více

BEZPEČNOSTNĚ PRÁVNÍ AKADEMIE BRNO, s.r.o., střední škola. Bankovní domy komerční banky, spořitelny + test

BEZPEČNOSTNĚ PRÁVNÍ AKADEMIE BRNO, s.r.o., střední škola. Bankovní domy komerční banky, spořitelny + test Číslo projektu CZ.1.07/1.5.00/34.0036 Název projektu Inovace a individualizace výuky Číslo materiálu VY_62_INOVACE_ZEL13 Název školy BEZPEČNOSTNĚ PRÁVNÍ AKADEMIE BRNO, s.r.o., střední škola Autor Ing.

Více

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření

Více

Náklady u produtků k půjčování peněz

Náklady u produtků k půjčování peněz Náklady u produtků k půjčování peněz HOR_62_INOVACE_8.ZSV.18 Mgr. Jana Horná 8. ročník ( VI/2 EU OPVK) 6. 2. 2013 Základy společenský věd 8. ročník; Náklady u produktů k půjčování peněz 1 Výukový materiál

Více

STAVEBNÍ SPOŘENÍ. Finanční matematika 8

STAVEBNÍ SPOŘENÍ. Finanční matematika 8 STAVEBNÍ SPOŘENÍ Finanční matematika 8 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm08

Více

8.2.11 Příklady z finanční matematiky II

8.2.11 Příklady z finanční matematiky II 8.2. Příklady z finanční matematiky II Předpoklady: 82 Inflace Peníze nemají v dnešní době žádnou hodnotu samy o sobě, jejich používání reguluje stát, v případě zhroucení ekonomiky se může stát, že svou

Více

Bankovnictví a pojišťovnictví 5

Bankovnictví a pojišťovnictví 5 Bankovnictví a pojišťovnictví 5 JUDr. Ing. Otakar Schlossberger, Ph.D., vedoucí katedry financí VŠFS a externí odborný asistent katedry bankovnictví a pojišťovnictví VŠE Vkladové bankovní produkty Obsah:

Více

Krátkodobé cenné papíry a Skonto obsah přednášky

Krátkodobé cenné papíry a Skonto obsah přednášky Krátkodobé cenné papíry a Skonto obsah přednášky 1) Vybrané krátkodobé cenné papíry 2) Skonto není cenný papír, ale použito obdobných principů jako u krátkodobých cenných papírů Vybrané krátkodobé cenné

Více

Vkladové služby bank. Bc. Alena Kozubová

Vkladové služby bank. Bc. Alena Kozubová Vkladové služby bank Bc. Alena Kozubová Vkladové služby Banky získávájí peněžní prostředky od vkladatelů tj. fyzických nebo právnických osob. Banky s těmito peněžními prostředky dále podnikají. Klient

Více

Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek

Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek Časová hodnota peněz Petr Málek Časová hodnota peněz - úvod Finanční rozhodování je ovlivněno časem Současné peněžní prostředky peněžní prostředky v budoucnu Úrokové výnosy Jiné výnosy Úrokové míry v ekonomice

Více

Vzorcem pro n-tý člen posloupnosti, např.:, Rekurentně zadáním prvního členu a rekurentního vzorce, který vyjadřuje, např.: výčtem prvků graficky

Vzorcem pro n-tý člen posloupnosti, např.:, Rekurentně zadáním prvního členu a rekurentního vzorce, který vyjadřuje, např.: výčtem prvků graficky Posloupnosti Motivace Víš, jaký bude následující člen v řadách 2, 4, 6, 8,? a 2, 4, 8, 16,?? Urči součet řady Jak převedeš číslo na zlomek? 1 Definice posloupnosti Posloupnost je funkce. Definiční obor

Více

Finanční gramotnost pro SŠ -6. modul Úvěry a předlužení

Finanční gramotnost pro SŠ -6. modul Úvěry a předlužení Modul č. 6 Ing. Miroslav Škvára O úvěrech Co říká o úvěru Wikipedie? Úvěrje formou dočasného postoupení zboží nebo peněžních prostředků (půjčka) věřitelem, na principu návratnosti, dlužníkovi, který je

Více

Stavební spoření. HOR_62_INOVACE_8.ZSV.25.notebook. September 04, 2013

Stavební spoření. HOR_62_INOVACE_8.ZSV.25.notebook. September 04, 2013 Stavební spoření HOR_62_INOVACE_8.ZSV.25 Mgr. Jana Horná 8. ročník ( VI/2 EU OPVK) 3. 4. 2013 Základy společenský věd 8. ročník; Stavební spoření 1 Výukový materiál je připraven pro 8. ročník s využitím

Více

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ Gymnázium Jana Pivečky a Střední odborná škola Slavičín Ing. Jarmila Űberallová

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ Gymnázium Jana Pivečky a Střední odborná škola Slavičín Ing. Jarmila Űberallová Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748 Gymnázium Jana Pivečky a Střední odborná škola Slavičín Ing.

Více

Základy finanční matematiky

Základy finanční matematiky Základy finanční matematiky Na finance s procenty: Základní škola T. G. Masaryka, Studénka, ul. 2. května 500, okres Nový Jičín Číslo projektu: CZ.107/1.4.00/21.1489 Autor:Mgr. Miroslava Tomanová Předmět:

Více

Finanční matematika pro každého příklady + CD-ROM

Finanční matematika pro každého příklady + CD-ROM Edice Osobní a rodinné fi nance doc. RNDr. Jarmila Radová, Ph.D. a kolektiv (doc. Mgr. Jiří Málek, PhD., Ing. Nadir Baigarin, Ing. Jiří Nakládal, Ing. Pavel Žilák) Finanční matematika pro každého příklady

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu VY_32_INOVACE_EKO160 Název školy Obchodní akademie, Střední pedagogická škola

Více

ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D.

ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D. ČASOVÁ HODNOTA PENĚZ Manažerská ekonomika obor Marketingová komunikace 8. přednáška Ing. Jarmila Ircingová, Ph.D. Časová hodnota peněz Každou peněžní operaci prováděnou v současnosti a zaměřenou do budoucnosti

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita VI.2 Vytváření podmínek pro rozvoj znalostí, schopností a dovedností v oblasti finanční gramotnosti Výukový materiál pro téma VI.2.1 Řemeslná

Více

PŮJČKY - pokračování

PŮJČKY - pokračování PŮJČKY - pokračování Výukový materiál je připraven pro 8. ročník s využitím Power pointové prezentace a sešitu. Žáci se seznámí s různými možnostmi půjček, s jejich výhodami a nevýhodami, pracují s tabulkou,

Více

Ročník 6. Materiál slouží k osvojení a upevnění dovednosti výpočtu slovních úloh pomocí trojčlenky. Práce s textem.

Ročník 6. Materiál slouží k osvojení a upevnění dovednosti výpočtu slovních úloh pomocí trojčlenky. Práce s textem. Šablona č. I, sada č. 1 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Matematika a její aplikace Matematika a její aplikace Číslo a proměnná Procenta Ročník 6. Materiál slouží k osvojení a upevnění

Více

SPOŘÍCÍ ÚČET. Finanční matematika 7

SPOŘÍCÍ ÚČET. Finanční matematika 7 SPOŘÍCÍ ÚČET Finanční matematika 7 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm07

Více

3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota

3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota 3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.

Více

KDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT

KDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT KDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT Mgr. Ing. Šárka Dytková Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním

Více

Akontace je část ceny nákupu, kterou při čerpání úvěru platí kupující přímo obchodníkovi. Zpravidla se pohybuje kolem 10 %.

Akontace je část ceny nákupu, kterou při čerpání úvěru platí kupující přímo obchodníkovi. Zpravidla se pohybuje kolem 10 %. Akontace je část ceny nákupu, kterou při čerpání úvěru platí kupující přímo obchodníkovi. Zpravidla se pohybuje kolem 10 %. Bankomat (ATM) je peněžní výdajový automat sloužící pro výplatu hotovosti prostřednictvím

Více

PODMÍNKY A RIZIKA PŘI ZÍSKÁVÁNÍ PŮJČEK II.

PODMÍNKY A RIZIKA PŘI ZÍSKÁVÁNÍ PŮJČEK II. II. Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Střední odborná škola a Gymnázium Staré Město CZ.1.07/1.5.00/34.1007 Ing. Miroslava Kořínková III/2

Více

19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích

19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích Finanční matematika v osobních a rodinných financích Garant: Ing. Martin Širůček, Ph.D. Lektor: Ing. Martin Širůček, Ph.D. - doktorské studium oboru Finance na Provozně ekonomické fakultě Mendelovy univerzity

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO153

Více

ÚVĚRY A PŮJČKY. Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

ÚVĚRY A PŮJČKY. Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_EKRZU_EKONOMIKA3_12 Název materiálu: FINANČNÍ STRÁNKA PODNIKU Tematická oblast: Ekonomika, 3. ročník Anotace: Prezentace vysvětluje žákům pojem cizí zdroje Očekávaný výstup:

Více

HYPOTÉČNÍ ÚVĚRY. Finanční matematika 13

HYPOTÉČNÍ ÚVĚRY. Finanční matematika 13 HYPOTÉČNÍ ÚVĚRY Finanční matematika 13 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm13

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO155

Více

4. Vkladové produkty bank

4. Vkladové produkty bank 4. Vkladové produkty bank Výkladová část Vkladové bankovní produkty Vkladové bankovní produkty slouží bankám k získávání cizího kapitálu, tj. banky vystupují jako dlužníci. V rozvaze banky jsou zachyceny

Více

Od dubna se už nevyplatí nechat peníze u ostatních bank spát

Od dubna se už nevyplatí nechat peníze u ostatních bank spát Od dubna se už nevyplatí nechat peníze u ostatních bank spát 27. března 2013 I banku můžete mít rádi Už od roku 2011 chceme mít nejlepší služby pro lidi s běžnými bankovními potřebami 2 2011: Od našeho

Více

ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY. Finanční matematika 1

ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY. Finanční matematika 1 ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY Finanční matematika 1 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Více

FINANČNÍ MATEMATIKA Finanční produkty. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Finanční produkty. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Finanční produkty www.zlinskedumy.cz Finanční produkty jsou půjčky, hypotéky, spoření, nejrozšířenější jsou produkty, jejichž hlavní zaměřením je: správa financí: běžné účty zhodnocení

Více

SR (CZK/EUR) 26,512 27,122 3 měs. IR CZK p.a. 6,24 7,44 3 měs. IR EUR p.a. 3,86 4,62 a) přímá kotace Nákupní forwardový kurs vypočítáme takto: SR 100

SR (CZK/EUR) 26,512 27,122 3 měs. IR CZK p.a. 6,24 7,44 3 měs. IR EUR p.a. 3,86 4,62 a) přímá kotace Nákupní forwardový kurs vypočítáme takto: SR 100 Příklad č. 1 Na základě následujících kotací spotového kursu eura v korunách a tříměsíčních úrokových měr na korunová a eurová aktiva vypočítejte nákupní a prodejní tříměsíční forwardový kurs eura v korunách

Více

Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. Benešov, Husova 742 EKONOMIKA. Ing. Ivana Frantesová

Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. Benešov, Husova 742 EKONOMIKA. Ing. Ivana Frantesová Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. Benešov, Husova 742 EKONOMIKA Ing. Ivana Frantesová 1 Aktivní operace - úvěry III/2 VY_32_INOVACE_27 2 Název školy Registrační číslo projektu

Více

8 Leasing. 1 Co je to leasing? [online]. [cit. 09/2008] Dostupné z:

8 Leasing. <http://www.sfinance.cz/firmy-a-podnikani/informace/pruvodce/rozdeleni/> 1 Co je to leasing? [online]. [cit. 09/2008] Dostupné z: 8 Leasing Slovo "leasing" bylo převzato do české terminologie z anglického slova, které v překladu znamená "pronájem". Jedná se o obchodní operaci leasingového pronajímatele (leasingová společnost) a leasingového

Více

CZK EUR USD 6 měsíců 0.60 0.90 0.70 1 rok 0.80 1.10 0.90 2 roky 1.00 1.30 1.10 3 roky 1.20 1.50 1.30 4 roky 1.30 - - 5 let 1.

CZK EUR USD 6 měsíců 0.60 0.90 0.70 1 rok 0.80 1.10 0.90 2 roky 1.00 1.30 1.10 3 roky 1.20 1.50 1.30 4 roky 1.30 - - 5 let 1. Kontakt ÚROKOVÉ SAZBY PRO TERMÍNOVANÉ VKLADY Privátní a osobní bankovnictví IQ MAXI vklad Platnost od: 02.02.2015 CZK EUR USD 6 měsíců 0.60 0.90 0.70 1 rok 0.80 1.10 0.90 2 roky 1.00 1.30 1.10 3 roky 1.20

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo

Více

Příklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů.

Příklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů. I. PŘÍKLADY Z FINANČNÍ MATEMATIKY Rozšíření spektra příkladů ze skript Bezvoda, Blahuš. Verze 11.3 2009 Metodické poznámky k zadaným příkladům. Všude jsou výsledky, zhusta naznačen postup. Výpočty je nutno

Více

10a) Procenta, promile

10a) Procenta, promile 10a) Procenta, promile 1% (procento) je 1 setina základu Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část (č ).

Více

Typy úvěrů. Bc. Alena Kozubová

Typy úvěrů. Bc. Alena Kozubová Typy úvěrů Bc. Alena Kozubová Typy úvěrů Kontokorentní úvěr s bankou uzavřeme smlouvu o čerpání úvěru z našeho běžného účtu. Ten může vykazovat i záporný zůstatek až do sjednané výše. Čerpání a splácení

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

CITROËN CASHBACK VYBERTE SI SVOJI SLEVU

CITROËN CASHBACK VYBERTE SI SVOJI SLEVU CITROËN Příklady financování pro: 1) Citroën C4 Tendance 1,6 Vti 2) Citroën C3 Picasso Tendance 1,4 Vti 95 3) Citroën Berlingo XTR 1,6 HDi 115 CITROËN Společnost CITROËN Česká Republika s.r.o. (CITROËN)

Více

Více než polovina Čechů nezná rozdíl mezi kreditní a debetní kartou

Více než polovina Čechů nezná rozdíl mezi kreditní a debetní kartou Více než polovina Čechů nezná rozdíl mezi kreditní a debetní kartou Přestože považuje téměř absolutní většina veřejnosti za handicap neznalost v oblasti finančnictví a bankovnictví, necelé dvě třetiny

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Pracovní list pro téma III.2.9 Podnikání Praktický příklad na založení firmy VY_32_INOVACE_329_20

Více

SPOŘENÍ KRÁTKODOBÉ. Finanční matematika 5

SPOŘENÍ KRÁTKODOBÉ. Finanční matematika 5 SPOŘENÍ KRÁTKODOBÉ Finanční matematika 5 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm05

Více

Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu

Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno VY_61_INOVACE_FG.1.07 Integrovaná střední

Více

Kapitola 2 Krátkodobý finanční majetek

Kapitola 2 Krátkodobý finanční majetek Kapitola 2 Krátkodobý finanční majetek SHRNUTÍ UČIVA O KRÁTKODOBÉM FINANČNÍM MAJETKU se účtuje ve druhé účtové třídě. Patří sem zejména peníze v pokladně, ceniny, bankovní účty a krátkodobé cenné papíry.

Více

Kapitola 1 - Základy účetnictví Výsledky testů

Kapitola 1 - Základy účetnictví Výsledky testů Kapitola 1 Základy účetnictví Výsledky testů 1 B, C, D 2 C, D 3 B, D 4 D 5 A, C 6 C, D 7 D 8 B, D 9 B 10 B, C 11 C, D 12 C, D 70 Úloha 1. 1 Určení aktiv a pasiv Zařaďte níže uvedené položky do tabulky,

Více

6. Přednáška Vkladové (depozitní) bankovní produkty

6. Přednáška Vkladové (depozitní) bankovní produkty 6. Přednáška Vkladové (depozitní) bankovní produkty VKLADOVÉ BANKOVNÍ PRODUKTY bankovní obchody, při kterých banka získává cizí peněžní prostředky formou vkladů nebo emisí dluhových cenných papírů. Mezi

Více

Kapitola 2 Krátkodobý finanční majetek

Kapitola 2 Krátkodobý finanční majetek Kapitola 2 Krátkodobý finanční majetek SHRNUTÍ UČIVA O KRÁTKODOBÉM FINANČNÍM MAJETKU se účtuje ve druhé účtové třídě. Patří sem zejména peníze v pokladně, ceniny, bankovní účty a krátkodobé cenné papíry.

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo

Více

OBCHODNÍ PODMÍNKY ZÁLOŽNY CREDITAS, SPOŘITELNÍHO DRUŽSTVA PRO BĚŽNÉ ÚČTY A VKLADOVÉ PRODUKTY ÚČINNÉ OD 1. LISTOPADU 2012

OBCHODNÍ PODMÍNKY ZÁLOŽNY CREDITAS, SPOŘITELNÍHO DRUŽSTVA PRO BĚŽNÉ ÚČTY A VKLADOVÉ PRODUKTY ÚČINNÉ OD 1. LISTOPADU 2012 OBCHODNÍ PODMÍNKY ZÁLOŽNY CREDITAS, SPOŘITELNÍHO DRUŽSTVA PRO BĚŽNÉ ÚČTY A VKLADOVÉ PRODUKTY ÚČINNÉ OD 1. LISTOPADU 2012 OBSAH 1 ÚVODNÍ USTANOVENÍ 01 1.1 Úvod 01 1.2 Vymezení pojmů 01 2 Běžný účet CREDITAS

Více

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA 5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté

Více

ROZVAHA A ZMĚNY ROZVAHOVÝCH POLOŽEK. ROZVAHOVÉ A VÝSLEDKOVÉ ÚČTY. PODVOJNÝ ÚČETNÍ ZÁPIS. SYNTETICKÉ A ANALYTICKÉ ÚČTY.

ROZVAHA A ZMĚNY ROZVAHOVÝCH POLOŽEK. ROZVAHOVÉ A VÝSLEDKOVÉ ÚČTY. PODVOJNÝ ÚČETNÍ ZÁPIS. SYNTETICKÉ A ANALYTICKÉ ÚČTY. Rozvaha ZÁKLADY ÚČETNICTVÍ 5 5 ZÁKLADY ÚČETNICTVÍ ROZVAHA A ZMĚNY ROZVAHOVÝCH POLOŽEK. ROZVAHOVÉ A VÝSLEDKOVÉ ÚČTY. PODVOJNÝ ÚČETNÍ ZÁPIS. SYNTETICKÉ A ANALYTICKÉ ÚČTY. 5.1 Rozvaha 5.1.1 Aktiva a pasiva

Více

4. Kapitálové účty - 4. účtová třída

4. Kapitálové účty - 4. účtová třída 4. Kapitálové účty - 4. účtová třída Zahrnuje: vlastní a cizí kapitál, základní kapitál, pohledávky za upsaný vlastní kapitál, zvýšení základního kapitálu, vlastní zdroje, výsledek hospodaření, rozdělení

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

Časová hodnota peněz (2015-01-18)

Časová hodnota peněz (2015-01-18) Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky

Více

Excel COUNTIF COUNTBLANK POČET

Excel COUNTIF COUNTBLANK POČET Excel Výpočty a vazby v tabulkách COUNTIF Sečte počet buněk v oblasti, které odpovídají zadaným kritériím. Funkce je zapisována ve tvaru: COUNTIF(Oblast;Kritérium) Oblast je oblast buněk, ve které mají

Více

Procenta. 100, tzn. desetinné číslo 0,45. Jméno pochází z per cento, znamenajícího na sto.

Procenta. 100, tzn. desetinné číslo 0,45. Jméno pochází z per cento, znamenajícího na sto. Procenta Procenta jsou způsobem, jak vyjádřit část celku (setiny, tzn. zlomek) pomocí celého čísla. Zápis např. 45% je ve skutečnosti jenom zkratkou pro zlomek 45 100, tzn. desetinné číslo 0,45. Jméno

Více

Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu

Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno VY_61_INOVACE_FG.1.06 Integrovaná střední

Více

Jak si založit živnost?

Jak si založit živnost? Jak si založit živnost? Návštěva (centrální registrační místo) CRM a vyplnění JRF (jednotný registrační formulář Dále doložit: -výpis zrejstříku trestů ČR (nesmí být starší 3 měsíců, není-li přiložen kžádosti,

Více

Pasivní bankovní operace, vkladové bankovní produkty.

Pasivní bankovní operace, vkladové bankovní produkty. 5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV

Více

Finanční matematika. Téma: Důchody. Současná hodnota anuity

Finanční matematika. Téma: Důchody. Současná hodnota anuity Fnanční matematka Téma: Důchody Současná hodnota anuty Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů Členění

Více