POHYB SPLAVENIN. 8 Přednáška

Rozměr: px
Začít zobrazení ze stránky:

Download "POHYB SPLAVENIN. 8 Přednáška"

Transkript

1 POHYB SPLAVENIN 8 Přenáška

2 Obsah: 1. Úvo 2. Vlastnosti splavenin 2.1. Hustota splavenin a relativní hustota 2.2. Zrnitost 2.3. Efektivní zrno 3. Tangenciální napětí a třecí rychlost 4. Počátek eroze 5. Vztahy pro průtok splavenin 5.1. Průtok nových splavenin 5.2. Celkový průtok splavenin

3 1. Úvo Výslekem působení soustřeěného otoku povrchové voy na povrch území se v úolnici zpravila vytváří koryto voního toku. Velmi ůležitým faktorem přitom je geologická sklaba povrchu i položních vrstev aného povoí. Účinkem prouící voy v závislosti na: množství prouící voy rychlosti prouění, geologické sklabě území kvalitě jeho povrchu ochází k působení přirozených korytotvorných procesů.

4 1.Úvo Záklaními přirozenými korytotvornými procesy jsou: eroze materiálů povrchu terénu i položí, na i svahů koryta. Může být hloubková, ky ochází při vytváření koryta příčného profilu V nebo úzkého U a k transportu materiálu o nižších partií toku, boční - laterární s vytvářením koryta příčného profilu širokého U a meanrů retrogenní - zpětná s postupem proti toku transport vyeroovaných materiálů - obecně nazývaných splaveniny - o nižších partií toků v závislosti na unášecí síle toku při různých průtocích seimentace - ukláání transportovaných splavenin v korytě, v přípaě vybřežení a rozlití toku pak i v jeho záplavovém ( inunačním ) území.

5 POHYB SPLAVENIN řeka Morávka, Vyšní Lhoty, 2011

6 POHYB SPLAVENIN řeka Morávka, Vyšní Lhoty, 2011

7 POHYB SPLAVENIN řeka Morávka, Vyšní Lhoty, 2011

8 1.Úvo Prouění voy v korytě může vyvolat erozi břehů či na koryt voních toků. Poku zeminy nebo horniny nemohou oolávat účinkům prouění, začínají se jenotlivé částice pohybovat ve směru prouění. Rozlišujeme: splaveniny - zrna eroovaných materiálů která se pohybují po ně toku. plaveniny - částice vznášené ve voním prouu. Hranici oělující splaveniny o plavenin na záklaě rozměru zrna nelze přesně stanovit, protože ji určuje charakter pohybu zrn voou, tey výslený silový účinek. Přibližně se pro řeky v ČR uává hranice v rozpětí 0,5 mm až 4 mm. Pozn.: Hranice mezi splaveninami a plaveninami obvykle rozlišujeme pole velikosti tzv. střeního, efektivního zrna - s. Za splaveniny pak považujeme materiál s s > 0,1 mm, za plaveniny materiál s s < 5 mm. Se změnou průtoku, příčného profilu koryta i tvaru částic a zrn se mohou splaveniny stát plaveninami a naopak plaveniny splaveninami.

9 2. Vlastnosti splavenin 2.1.Hustota (měrná hmotnost) splavenin a relativní hustota Měrná hmotnost určuje poměr hmotnosti pevných částí splavenin k jejich objemu. Vou pevně vázanou, která zůstane v zemině po vysušení při teplotě 105 o C, považujeme za součást splavenin. Hustota splavenin je cca r s = 2650 kg/m 3. Relativní hustota s je efinovaná vztahem: s s ke je hustota voy. Relativní hustota s nabývá honoty cca s = 2,65.

10 2. Vlastnosti splavenin 2.2. Zrnitost Zrnitost, nebo-li granulometrické složení uává poíl určitých velikostních skupin zrn na celkovém složení splavenin. Granulometrické složení splavenin graficky znázorňujeme křivkou zrnitosti, která vyjařuje závislost průměru zrn splavenin na procentuálním poílu vysušené zeminy. (Plynulá křivka vyjařuje zastoupení zrn různé velikosti, zatímco strmá ukazuje na převláající četnost určité velikosti zrn.) Rozhoujícím kvalitativním znakem nesouržných zemin je číslo nestejnozrnnosti Cu: a číslo křivosti C c : C u ( C c ) ke x je velikost zrn při x % propau. Pole velikosti honoty C u označujeme splaveniny jako: - stejnozrnné: C u < 5; - střeně nestejnozrnné: C u = 5-15; - nestejnozrnné: C u > 5.

11 2. Vlastnosti splavenin 2.3. Efektivní zrno Z křivky zrnitosti lze určit tzv. efektivní zrno e pole vztahu: e i p p i i ke : i je aritmetický průměr mezních velikostí jené frakce p i procentuální obsah uvažované frakce z celkové hmotnosti aného vzorku. Někteří autoři používají pro výpočet efektivního zrna vztah: e a a b max ke : max je maximální průměr zrna, a velikost plochy po levé straně čáry zrnitosti b velikost plochy po pravé straně čáry zrnitosti.

12 3. Tangenciální napětí a třecí rychlost Eroze a transport částic nastane v okamžiku, ky tečné napětí vyvolané prouem voy překročí oolnost materiálu. Uvažujeme-li se rovnoměrné prouění, rovnováhu sil zapíšeme ve tvaru: z x g ( h z) x sin Síly působící na element jenotkové šířky ke : o je tangenciální napětí v hloubce (h - z) po hlainou. Pro malé úhly platí sin tan i 0 ke i 0 je poélný sklon na koryta z g ( h z) i 0 Tangenciální napětí na ně z g h 0 i 0

13 3. Tangenciální napětí a třecí rychlost V přípaě obecného příčného profilu, tangenciální napětí působí na omočený obvo b O x g A x sin ke : O je omočený obvo, A průtočná plocha. Definováním hyraulického poloměru R A O Tangenciální napětí na no b g R i 0 Tangenciální napětí na ně často vyjařujeme pomocí třecí rychlosti, která je efinována b * osazením za b obržíme v* g R i0 v

14 4. Počátek eroze Počátek eroze neopevněného povrchu tělesa hráze nastane při překročení: kritického tečného napětí k ; nevymílací rychlosti; Pro stanovení kritického tečného napětí lze použít rovnic násleujících autorů. Schoklitsch k 0,201 g 2 C 3 1/ 2 10 s T e ke e je efektivní průměr zrna, je hustota voy, s je hustota materiálu splavenin C T je tvarový součinitel pohybující se v intervalu o C T = 1 pro kulová zrna o C T = 4,4 pro plochá zrna Krey 0, 7143 k e Kramer k 1 6 M ( ) s e ke M je moul homogenity M 50% 0% 100% 50% i i p i p i ke i je průměr zrna příslušný procentuálnímu propau p i.

15 4. Počátek eroze Shiels vyjářil kritické tečné napětí k pomocí tzv. Shielsova parametru, který je funkcí v* tzv. Reynolsova čísla splavenin Re e k g ( ) s (Re ) ( e v* ) v * je třecí rychlost Průběh kritického Shielsova parametru v závislosti na Reynolsově čísle splavenin Re

16 5. Vztahy pro průtok splavenin Průtok splavenin je vyjářen v *m 2 /s+, tey v jenotkách objemu transportovaných seimentů za jenotku času a vztažených na jenotku šířky. Průtok splavenin je án jako: průtok nových splavenin b ; celkový průtok splavenin t, který sestává z průtoku nových splavenin ( b ) a průtoku plavenin ( s ), tey t = b + s.

17 5.1. Průtok nových splavenin 5. Vztahy pro průtok splavenin vztahy pro výpočet specifického (měrného) průtoku nových splavenin b v [m 2 /s]: Meyer-Peter a Müller uváí vztah pro průtok nových splavenin ve tvaru: b s 3 0,5 8( g e ) [ 0,047] ke - je nový parametr ( = 0 pro rovné no, = 1 pro vrásy a uny). Platnost vztahu je pro 0,03 0,2, seiment 0,4 29 mm, sklony 0,0004 i o 0,02 a hloubku voy 0,01 1,2 m. 1,5 Smart a Jaeggi vychází z výzkumů prováěných na žlabu se sklonem i 0 = 0,03 až 0,2 při rychlostech voy 0,8 až 2,0 m/s b 4 f 0,5 g ( s ) 3 e 0, ,2 i 0,6 0 0,5 ( cr ) ke - f je rsnostní součinitel efinovaný cr je opravený kritický Shielsův parametr efinovaný f 0,54 ln(12 h / k) 2 cr 0cr i 0 cos 1 tan ke i 0 je sklon na, úhel sklonu na, je úhel vnitřního tření splavenin, 0cr je kritický Shielsův parametr pole obrázku, k = 3 90 pro < 1 a k = 3 90 pro 1.

18 5.1. Průtok nových splavenin 5. Vztahy pro průtok splavenin Bathurst, Graf a Cao oporučují pro průměr zrna 50 o 12 mm o 44 mm a sklony o = 5 o násleující vztahy: b 2,5 s i ( 1,5 0 cr ), ke je specifický průtok voy v *m 2 /s] cr je kritický průtok voy vypočtený z rovnice cr 0,5 1,12 1,5 0,21 g i0 16 Rickenmann porovnal své experimenty s výsleky Smarta a Jaeggiho. Násleující rovnice platí pro průměry zrna 0,4 mm až 29 mm, sklony na i 0 = 0,03 až 0,2 při rychlostech prouu voy 0,8 až 2,0 m/s. 1,5 b 2,5 i0 ( cr ), ke cr je kritický průtok voy vypočtený z rovnice s cr ( s ) 0,065 1,67 g 0,5 1,5 50 i 1,12 0

19 5.2. Celkový průtok splavenin 5. Vztahy pro průtok splavenin vztahy pro výpočet celkového specifického průtoku splavenin t v [m2/s] Engelun a Hansen srovnali svůj vztah s výsleky experimentů prováěných pro průměry zrn 0,19 mm až 0,93 mm, sklony na i 0 < 0,005, při rychlostech prouu voy o 2,8 m/s a 0,07 < < 6 t 1 ( s ) 0,5 3 0,05 f g 50 2,5 Bagnol počítá celkový průtok splavenin jako součet nových splavenin a plavenin: t b s b 0,13 tan i f ( 3 v ) 0 s g ( < ) s 0,01 w / v i s f ( 3 v ) 0 s g ( i o < w s / )

20 5.2. Celkový průtok splavenin 5. Vztahy pro průtok splavenin Bagnol a Visser počítají celkový průtok splavenin jako součet nových splavenin a plavenin. Rovnice byla ovozena pro písek s průměry zrn 50 = 0,10 mm a 50 = 0,22 mm, sklony na i 0 = 0,36 až 0,62, při rychlostech prouu voy o 1,2 m/s o 3,5 m/s a 11 < < 106: t b s b 0,13 f (tan i ) cos ( 0 s 3 v ) g ( < ) s w s 0,01 / v 0,01 i f ( 3 v ) 0 s g ( 0,001 i o < w s / ) ke f je rsnostní součinitel, v je průměrná rychlost prouění voy, w s je seimentační rychlost splavenin. f 0,54 ln(12 h / k) 2

21 Děkuji za pozornost

Splaveniny. = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti

Splaveniny. = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti SPLAVENINY Splaveniny = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti Vznik splavenin plošná eroze (voda, vítr) a geologické vlastnosti svahů (sklon, příp.

Více

Sylabus 5. Základní vlastnosti zemin

Sylabus 5. Základní vlastnosti zemin Sylabus 5 Základní vlastnosti zemin zeminy jsou složeny ze 3 fází: zrna, voda a vzduch geotechnické vlastnosti ovlivňuje: - velikost zrn - cementace zrn (koheze) - kapilarita základní fyzikální vlastnosti

Více

Proudění podzemní vody

Proudění podzemní vody Podpovrchová voda krystalická a strukturní voda vázaná fyzikálně-chemicky adsorpční vázaná molekulárními silami na povrchu částic hygroskopická (pevně vázaná) obalová (volně vázaná) volná voda kapilární

Více

Vedení vvn a vyšší parametry vedení

Vedení vvn a vyšší parametry vedení Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto

Více

Mezní stavy základové půdy

Mezní stavy základové půdy Mezní stavy záklaové půy Eurokó a norma ČSN 73 1001 přeepisuje pro posuzování záklaové půy pro návrh záklaů metou mezních stavů. Mezním stavem nazýváme stav, při kterém ochází k takovým kvalitativním změnám

Více

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load 7..0 Protlačení Je jev, ke kterému ochází při působení koncentrovaného zatížení na malé ploše A loa PROTLAČENÍ A loa A loa A loa Zatěžovací plochu A loa obyčejně přestavuje kontaktní plocha mezi sloupem

Více

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.

Více

CVIČENÍ 4: PODÉLNÝ PROFIL, NÁVRH NIVELETY, VÝPOČET PŘÍČNÉHO PROFILU.

CVIČENÍ 4: PODÉLNÝ PROFIL, NÁVRH NIVELETY, VÝPOČET PŘÍČNÉHO PROFILU. CVIČENÍ 4: PODÉLNÝ PROFIL, NÁVRH NIVELETY, VÝPOČET PŘÍČNÉHO PROFILU. Podélný profil toku vystihuje sklonové poměry toku v podélném směru. Zajímají nás především sklon hladiny vody v korytě a její umístění

Více

26 NÁVRH NA ODTĚŽENÍ A ULOŽENÍ NAPLAVENIN NA VTOKU DO VODNÍHO DÍLA DALEŠICE

26 NÁVRH NA ODTĚŽENÍ A ULOŽENÍ NAPLAVENIN NA VTOKU DO VODNÍHO DÍLA DALEŠICE 26 NÁVRH NA ODTĚŽENÍ A ULOŽENÍ NAPLAVENIN NA VTOKU DO VODNÍHO DÍLA DALEŠICE Tereza Lévová Vysoké učení technické v Brně Fakulta stavební Ústav vodních staveb 1. Problematika splavenin - obecně Problematika

Více

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze 3. SPLAVENINY VE VODNÍCH TOCÍCH VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proce vodní eroze DRUHY A VLASTNOSTI SPLAVENIN Rozdělení plavenin: Plaveniny: do 7mm (překryv v 0,1 7,0 mm dle unášecí íly τ 0

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ KATEDRA MATERIÁLŮ A STROJÍRENSKÉ METALURGIE 1. semestrální práce: Formovací materiály Školní rok : 2013/2014 Vypracoval : Os. číslo : Radek Veselý S12B0369P

Více

4.5.5 Magnetické působení rovnoběžných vodičů s proudem

4.5.5 Magnetické působení rovnoběžných vodičů s proudem 4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí

Více

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927) Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 7

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 7 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ převoy Přenáška 7 Kuželová soukolí http://www.gearesteam.com/ The universe is full of magical things patiently waiting for

Více

Průřezové charakteristiky základních profilů.

Průřezové charakteristiky základních profilů. Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katera geotechniky a pozemního stavitelství Zakláání staveb Návrh záklaů pole mezních stavů oc. Dr. Ing. Hynek Lahuta Inovace stuijního oboru Geotechnika CZ.1.7/2.2./28.9. Tento projekt je spolufinancován

Více

STACIONÁRNÍ MAGNETICKÉ POLE

STACIONÁRNÍ MAGNETICKÉ POLE Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

Revitalizace vodního toku. 2. cvičení

Revitalizace vodního toku. 2. cvičení Revitalizace vodního toku 2. cvičení Projektování revitalizace toku Přípravné práce podklady, průzkumy Vlastní projekt Přípravné práce - historie záplav, škody - projektová dokumentace provedených a plánovaných

Více

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 1. Návrhové hodnoty účinků zatížení Účinky zatížení v mezním stavu porušení ((STR) a (GEO) jsou dány návrhovou kombinací

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

4. VYTVÁŘENÍ KORYTA RELIÉFU. Vnější síly: pohyb ledovců + tekoucí voda vytváření SEKUNDÁRNÍHO RELIÉFU: VZNIK POVODÍ. Práce vody v tocích: 3.

4. VYTVÁŘENÍ KORYTA RELIÉFU. Vnější síly: pohyb ledovců + tekoucí voda vytváření SEKUNDÁRNÍHO RELIÉFU: VZNIK POVODÍ. Práce vody v tocích: 3. 4. VYTVÁŘENÍ KORYTA Vnitřní horotvorné síly: vulkanické + seismické vytváření PRIMÁRNÍHO ZEMSKÉHO RELIÉFU Vnější síly: pohyb ledovců + tekoucí voda vytváření SEKUNDÁRNÍHO RELIÉFU: VZNIK POVODÍ Práce vody

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ

Více

Kuličkové šrouby a matice - ekonomické

Kuličkové šrouby a matice - ekonomické Kuličkové šrouby a matice - ekonomické Tiskové chyby, rozměrové a konstrukční změny vyhrazeny. Obsah Obsah 3 Deformační zatížení 4 Kritická rychlost 5 Kuličková matice FSU 6 Kuličková matice FSE 7 Kuličková

Více

Úvodní list. Prezentace pro interaktivní tabuli, pro projekci pomůcka pro výklad

Úvodní list. Prezentace pro interaktivní tabuli, pro projekci pomůcka pro výklad Úvodní list Název školy Integrovaná střední škola stavební, České Budějovice, Nerudova 59 Číslo šablony/ číslo sady 32/09 Poř. číslo v sadě 18 Jméno autora Období vytvoření materiálu Název souboru Zařazení

Více

VLHKOST HORNIN. Dělení vlhkostí : Váhová (hmotnostní) vlhkost w - poměr hmotnosti vody ve vzorku k hmotnosti pevné fáze (hmotnosti vysušeného vzorku)

VLHKOST HORNIN. Dělení vlhkostí : Váhová (hmotnostní) vlhkost w - poměr hmotnosti vody ve vzorku k hmotnosti pevné fáze (hmotnosti vysušeného vzorku) VLHKOST HORNIN Definice : Vlhkot horniny je efinována jako poěr hotnoti voy k hotnoti pevné fáze horniny. Pro inženýrkou praxi e používá efinice vlhkoti na záklaě voy, která e uvolňuje při vyoušení při

Více

CZ.1.07/2.2.00/

CZ.1.07/2.2.00/ Klasifikace zemin Mechanika hornin a zemin - cvičení 02 1 Rozělení zemin Velikost zrn frakcí Skupina zemin Frakce Velikost zrn [mm] Jemnozrnné částice Hrubozrnné částice Velmi hrubozrnné částice Jíl Clay

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...

Více

SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY

SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY Charakteristická únosnost spoje ocel-řevo je závislá na tloušťce ocelových esek t s. Ocelové esky lze klasiikovat jako tenké a tlusté: t s t s 0, 5 tenká eska,

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

ef c ef su 1 Třída F5, konzistence tuhá Třída G1, ulehlá

ef c ef su 1 Třída F5, konzistence tuhá Třída G1, ulehlá Výpočet tížné zdi Vstupní data Projekt Datum : 0.7.0 Geometrie konstrukce Pořadnice Hloubka X [m] Z [m] 0.00 0.00 0.00 0.60 0.0 0.6 0.0.80 0.0.0 6-0.79.0 7-0.79.80 8-0.70 0.00 Počátek [0,0] je v nejhořejším

Více

DOPRAVNÍ STAVBY KAPITOLA 10 ÚPRAVY VODNÍCH TOKŮ, OBJEKTY NA VODNÍCH CESTÁCH

DOPRAVNÍ STAVBY KAPITOLA 10 ÚPRAVY VODNÍCH TOKŮ, OBJEKTY NA VODNÍCH CESTÁCH DOPRAVNÍ STAVBY KAPITOLA 10 ÚPRAVY VODNÍCH TOKŮ, OBJEKTY NA VODNÍCH CESTÁCH Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké

Více

Popis zeminy. 1. Konzistence (pro soudržné zeminy) měkká, tuhá apod. Ulehlost (pro nesoudržné zeminy)

Popis zeminy. 1. Konzistence (pro soudržné zeminy) měkká, tuhá apod. Ulehlost (pro nesoudržné zeminy) Klasifikace zemin Popis zeminy 1. Konzistence (pro soudržné zeminy) měkká, tuhá apod. Ulehlost (pro nesoudržné zeminy) kyprá, hutná 2. Struktura (laminární) 3. Barva 4. Velikost částic frakc 5. Geologická

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus)

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus) Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 7. ročník M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus) Očekávané výstupy předmětu

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

141 HYA (Hydraulika)

141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hdraulik a hdrologie (K141) Přednáškové slid předmětu 141 (Hdraulika) verze: 9/28 K141 FSv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů složených

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více

Vodohospodářské stavby BS001 Vodní toky a jejich úprava Hrazení bystřin

Vodohospodářské stavby BS001 Vodní toky a jejich úprava Hrazení bystřin Vodohospodářské stavby BS001 Vodní toky a jejich úprava Hrazení bystřin CZ.1.07/2.2.00/15.0426 Posílení kvality bakalářského studijního programu Stavební Inženýrství Harmonogram přednášek 1. Úvod a základní

Více

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. V1. Hallův jev Úkoly měření: 1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. Použité přístroje a pomůcky:

Více

γ [kn/m 3 ] [ ] [kpa] 1 Výplň gabionů kamenivem Únosnost čelního spoje R s [kn/m] 1 Výplň gabionů kamenivem

γ [kn/m 3 ] [ ] [kpa] 1 Výplň gabionů kamenivem Únosnost čelního spoje R s [kn/m] 1 Výplň gabionů kamenivem Výpočet gabionu Vstupní data Projekt Datum :..00 Materiály bloků výplň γ φ c [ ] [ ] [] 7.00 Materiály bloků pletivo Pevnost sítě R t [] Vzdálenost svislých sítí b [m] Únosnost čelního spoje R s [] 4.00

Více

Mechanika hornin a zemin Cvičení. Marek Mohyla LPOC 315 Tel.: 1362 ( ) homel.vsb.cz/~moh050 geotechnici.

Mechanika hornin a zemin Cvičení. Marek Mohyla LPOC 315 Tel.: 1362 ( ) homel.vsb.cz/~moh050 geotechnici. Mechanika hornin a zemin Cvičení Marek Mohyla LPOC 315 Tel.: 1362 (59 732 1362) marek.mohyla@vsb.cz homel.vsb.cz/~moh050 geotechnici.cz Podmínky udělení zápočtu: docházka do cvičení 75% (3 neúčasti), docházka

Více

(režimy proudění, průběh hladin) Proudění s volnou hladinou II

(režimy proudění, průběh hladin) Proudění s volnou hladinou II Proudění s volnou hladinou (režimy proudění, průběh hladin) PROUDĚNÍ KRITICKÉ, ŘÍČNÍ A BYSTŘINNÉ Vztah mezi h (resp. y) a v: Ve žlabu za různých sklonů α a konst. Q: α 1 < α < α 3 => G s1 < G s < G s3

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Program cvičení z mechaniky zemin a zakládání staveb

Program cvičení z mechaniky zemin a zakládání staveb Stavební fakulta ČVUT Praha Katedra geotechniky Rok 2004/2005 Obor, ročník: Posluchač/ka: Stud.skupina: Program cvičení z mechaniky zemin a zakládání staveb Příklad 1 30g vysušené zeminy bylo podrobeno

Více

STABILITA SVAHŮ staveb. inženýr optimální návrh sklonu

STABILITA SVAHŮ staveb. inženýr optimální návrh sklonu IG staveb. inženýr STABILITA SVAHŮ - přirozené svahy - rotační, translační, creepové - svahy vzniklé inženýrskou činností (násypy, zemní hráze, sklon stavební jámy) Cílem stability svahů je řešit optimální

Více

135MZA - Mechanika zemin a zakládání staveb. Příklad 1 a 2 Stanovení zrnitosti, parametry zeminy a zatřídění

135MZA - Mechanika zemin a zakládání staveb. Příklad 1 a 2 Stanovení zrnitosti, parametry zeminy a zatřídění ČUT v Praze - Fakulta stavební Centrum experimentální geotechniky (K220) 135MZA - Mechanika zemin a zakládání staveb Příklad 1 a 2 Stanovení zrnitosti, parametry zeminy a zatřídění Jde o obecné studijní

Více

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup)

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup) Praha 15. srpna 2013 Postup při měření rchlosti přenosu at v mobilních sítích le stanaru LTE (Metoický postup Zveřejněno v souvislosti s vhlášením výběrového řízení za účelem uělení práv k vužívání ráiových

Více

Pohyb tělesa po nakloněné rovině

Pohyb tělesa po nakloněné rovině Pohyb tělesa po nakloněné rovině Zadání 1 Pro vybrané těleso a materiál nakloněné roviny zjistěte závislost polohy tělesa na čase při jeho pohybu Výsledky vyneste do grafu a rozhodněte z něj, o jakou křivku

Více

ZHUTŇOVÁNÍ ZEMIN vlhkosti. Způsob zhutňování je ovlivněn těmito faktory:

ZHUTŇOVÁNÍ ZEMIN vlhkosti. Způsob zhutňování je ovlivněn těmito faktory: ZHUTŇOVÁNÍ ZEMIN Zhutnitelnost zeminy závisí na granulometrickém složení, na tvaru zrn, na podílu a vlastnostech výplně z jemných částic, ale zejména na vlhkosti. Způsob zhutňování je ovlivněn těmito faktory:

Více

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole. Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

PŘEHRÁŽKY. Příčné objekty s nádržným prostorem k zachycování splavenin. RETENČNÍ PŘEHRÁŽKY: Účel: Zastavit enormní přínos splavenin níže.

PŘEHRÁŽKY. Příčné objekty s nádržným prostorem k zachycování splavenin. RETENČNÍ PŘEHRÁŽKY: Účel: Zastavit enormní přínos splavenin níže. PŘEHRÁŽKY Příčné objekty s nádržným prostorem k zachycování splavenin. RETENČNÍ PŘEHRÁŽKY: Účel: Zastavit enormní přínos splavenin níže. KONSOLIDAČNÍ PŘEHRÁŽKY: Účel: Zamezit dalšímu prohlubování koryta.

Více

Zakládání staveb Cvičení. Marek Mohyla LPOC 315 Tel.: 1362 ( ) homel.vsb.cz/~moh050 geotechnici.cz

Zakládání staveb Cvičení. Marek Mohyla LPOC 315 Tel.: 1362 ( ) homel.vsb.cz/~moh050 geotechnici.cz Zakládání staveb Cvičení Marek Mohyla LPOC 315 Tel.: 1362 (59 732 1362) marek.mohyla@vsb.cz homel.vsb.cz/~moh050 geotechnici.cz Podmínky udělení zápočtu: docházka do cvičení 75% (3 neúčasti), včasné odevzdání

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

Měření na povrchových tocích

Měření na povrchových tocích Měření na povrchových tocích měření, zpracování a evidence hydrologických prvků a jevů soustavné měření vodních stavů měření průtoků proudění vody pozorování ledových jevů měření teploty vody měření množství

Více

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět VIZP K141 FSv ČVUT. Vodní toky. Doc. Ing. Aleš Havlík, CSc.

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět VIZP K141 FSv ČVUT. Vodní toky. Doc. Ing. Aleš Havlík, CSc. Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie Předmět VIZP K141 FSv ČVUT Vodní toky Doc. Ing. Aleš Havlík, CSc. http://hydraulika.fsv.cvut.cz/vin/prednasky.htm Přirozené vodní toky K141

Více

s.r.o. NOVÁKOVÝCH 6, PRAHA 8, 180 00 266310101, 266316273 www..pruzkum.cz e-mail: schreiber@pruzkum.cz PRAHA 7 HOLEŠOVICE

s.r.o. NOVÁKOVÝCH 6, PRAHA 8, 180 00 266310101, 266316273 www..pruzkum.cz e-mail: schreiber@pruzkum.cz PRAHA 7 HOLEŠOVICE s.r.o. NOVÁKOVÝCH 6, PRAHA 8, 180 00 266310101, 266316273 www..pruzkum.cz e-mail: schreiber@pruzkum.cz PRAHA 7 HOLEŠOVICE PŘÍSTAVBA KLINIKY SV. KLIMENTA INŽENÝRSKOGEOLOGICKÁ REŠERŠE Mgr. Martin Schreiber

Více

Postup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1)

Postup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1) říklad S1 Stanovte potřebný výkon spalovacího motoru siničního vozidla pro jízdu do stoupání 0 % rychlostí 50 km.h -1 za bezvětří. arametry silničního vozidla jsou: Tab S1.1: arametry zadání: G 9,8. 10

Více

Použití minerálních směsí v konstrukčních vrstvách tělesa železničního spodku

Použití minerálních směsí v konstrukčních vrstvách tělesa železničního spodku ŽELEZNIČNÍ DOPRAVNÍ CESTA 2016 OLOMOUC, 18. 20. DUBNA 2016 Použití minerálních směsí v konstrukčních vrstvách tělesa železničního spodku Ing. Petr Jasanský Správa železniční dopravní cesty, státní organizace,

Více

ZÁKLADOVÉ KONSTRUKCE

ZÁKLADOVÉ KONSTRUKCE ZÁKLADOVÉ KONSTRUKCE POZEMNÍ STAVITELSTVÍ II. DOC. ING. MILOSLAV PAVLÍK, CSC. Základové konstrukce Hlavní funkce: přenos zatížení do základové půdy ochrana před negativními účinky základové půdy ornice

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

Návrh složení cementového betonu. Laboratoř stavebních hmot

Návrh složení cementového betonu. Laboratoř stavebních hmot Návrh složení cementového betonu. Laboratoř stavebních hmot Schéma návrhu složení betonu 2 www.fast.vsb.cz 3 www.fast.vsb.cz 4 www.fast.vsb.cz 5 www.fast.vsb.cz 6 www.fast.vsb.cz Informativní příklady

Více

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

Kancelář stavebního inženýrství s.r.o. Statický výpočet

Kancelář stavebního inženýrství s.r.o. Statický výpočet 179/2013 Strana: 1 Kancelář stavebního inženýrství s.r.o. Certifikována podle ČSN EN ISO 9001: 2009 Botanická 256, 360 02 Dalovice - Karlovy Vary IČO: 25 22 45 81, tel., fax: 35 32 300 17, mobil: +420

Více

4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU

4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU (KAPILÁRNÍ VISKOZIMETR UBBELOHDE) 1. TEORIE: Ve všech kapalných látkách

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace

Více

Příklady - rovnice kontinuity a Bernouliho rovnice

Příklady - rovnice kontinuity a Bernouliho rovnice DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU 6. ZÁSOBOVÁÍ 6.1. Bilance materiálu 6.2. Propočty potřeby materiálu 6.3. Řízení záob (plánování záob) Záobování patří mezi velmi ůležité ponikové aktivity. Při řízení záob e jená v potatě o řešení tří

Více

Vzájemné silové působení

Vzájemné silové působení magnet, magnetka magnet zmagnetované těleso. Původně vyrobeno z horniny magnetit, která má sama magnetické vlastnosti dnes ocelové zmagnetované magnety, ferity, neodymové magnety. dva magnetické póly (S-J,

Více

1. Molekulová stavba kapalin

1. Molekulová stavba kapalin 1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá

Více

ROZLIŠENÍ KONTAMINOVANÉ VRSTVY NIVNÍHO SEDIMENTU OD PŘÍRODNÍHO POZADÍ

ROZLIŠENÍ KONTAMINOVANÉ VRSTVY NIVNÍHO SEDIMENTU OD PŘÍRODNÍHO POZADÍ E M ROZLIŠENÍ KONTAMINOVANÉ VRSTVY NIVNÍHO SEDIMENTU OD PŘÍRODNÍHO POZADÍ Tento materiál byl vytvořen v rámci projektu OPVK Modernizace výuky technických a přírodovědných oborů na UJEP se zaměřením na

Více

MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH

MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH Ing., Martin KANTOR, ČVUT Praha Fakulta stavební, martin.kantor@fsv.cvut.cz Annotation This article deals with CFD modelling of free surface flow in a rectangular

Více

Zdroje. Vaníček: Mechanika zemin, ČVUT Verruijt: Soil Mechanics Časopis Geotechnika, Tunel

Zdroje.  Vaníček: Mechanika zemin, ČVUT Verruijt: Soil Mechanics Časopis Geotechnika, Tunel Zdroje www.fsv.cvut.cz Vaníček: Mechanika zemin, ČVUT Verruijt: Soil Mechanics Časopis Geotechnika, Tunel Fáze v zemině Pevná fáze (zrna) Kapalná a plynná (voda a vzduch v pórech) Vzájemné poměry fází

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

SLEDOVÁNÍ RADIOCHEMICKÝCH UKAZATELŮ V JEDNOTLIVÝCH SLOŽKÁCH HYDROSFÉRY V RÁMCI MONITOROVACÍ SÍTĚ. Pavel Stierand

SLEDOVÁNÍ RADIOCHEMICKÝCH UKAZATELŮ V JEDNOTLIVÝCH SLOŽKÁCH HYDROSFÉRY V RÁMCI MONITOROVACÍ SÍTĚ. Pavel Stierand SLEDOVÁNÍ RADIOCHEMICKÝCH UKAZATELŮ V JEDNOTLIVÝCH SLOŽKÁCH HYDROSFÉRY V RÁMCI MONITOROVACÍ SÍTĚ Pavel Stierand Rámcový program monitoringu zpracováno podle požadavků Rámcové směrnice 2000/60/ES programy

Více

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám

Více

2. Hydrotechnické výpočty

2. Hydrotechnické výpočty 2. Hydrotechnické výpočty 2.1.Popis modelu Výpočet průběhu hladin jsme provedli výpočtem nerovnoměrného neustáleného proudění pomocí programu MIKE11, vyvinutým Dánským hydraulickým institutem pro výpočet

Více

Návrh asfaltové směsi dle ČSN :2008

Návrh asfaltové směsi dle ČSN :2008 Návrh asfaltové směsi dle ČSN 73 6160:2008 Ing. Petr Hýzl, Ph.D. Vysoké učení technické v Brně, Fakulta stavební Ústav pozemních komunikací 1. dubna 2008 Postup návrhu Návrh čáry zrnitosti kameniva Stanovení

Více

Vlastnosti kapalin. Povrchová vrstva kapaliny

Vlastnosti kapalin. Povrchová vrstva kapaliny Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia Zemní tlaky Rozdělení, aktivizace Výpočet pro soudržné i nesoudržné zeminy Tlaky zemin a vody na pažení Katedra geotechniky a podzemního

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz

Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubova@upol.cz Popis základních zákonitostí v mechanice

Více

Monitoring svahových pohybů v NP České Švýcarsko

Monitoring svahových pohybů v NP České Švýcarsko 18 Výzkum a dokumentace 1 /2016 Ochrana přírody Monitoring svahových pohybů v NP České Švýcarsko Jakub Šafránek Svahové pohyby jsou přirozenou součástí Českosaského Švýcarska. Patří k nim zejména skalní

Více

KEE / MS Modelování elektrických sítí. Přednáška 2 Modelování elektrických vedení

KEE / MS Modelování elektrických sítí. Přednáška 2 Modelování elektrických vedení KEE / MS Moelování elektrických sítí Přenáška Moelování elektrických veení Moelování elektrických veení Různý přístup pro veení: Venkovní Kabelová Různý přístup pro veení: Krátká (vzhleem k vlnové élce)

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více