STRUKTURA A VLASTNOSTI PLYNŮ
|
|
- Kateřina Šmídová
- před 9 lety
- Počet zobrazení:
Transkript
1 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly mají SEJNĚ ELKOU RYCHLOS, která je ro daný vzorek lynu tyickou veličinou (= střední kvadratická rychlost, která není ani růměrnou ani nejravděodobnější rychlostí molekul daného vzorku, jak si vysvětlíme ozději) IDEÁLNÍ PLYN: a) elikosti molekul jsou zanedbatelné vzhledem k jejich středním vzdálenostem ( málo molekul, lyn lze stlačit na nulový objem). b) Molekuly na sebe ůsobí silami ouze ři vzájemných srážkách. c) Srážky (mezi molekulami navzájem nebo nárazy molekul na stěnu nádoby) jsou ideálně ružné ( kinetická energie se zachovává).. Rozdělení molekul odle rychlosti nejravděodobnější rychlost v má ji většina molekul růměrná rychlost není to v Střední kvadratická rychlost v k teoreticky stanovená rychlost - stejná ro každou molekulu - tak, aby měl vzorek lynu stejnou celkovou kinetickou energii, jako když mají molekuly různou rychlost (díky srážkám at.) relativní molekul očet v v v m s ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY - - SRUKURA A LASNOSI PLYNŮ
2 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í,,, N, v, v,,,, N, v k E N k = m v i E k = N mv k i = v k = N i = v N i 3. Střední kinetická energie molekuly E 0 k = = m0v 3 k 3 - k =,38.0 J. K Boltzmannova konstanta hmotnost JEDNÉ molekuly Střední kinetická energie molekuly záleží ouze na telotě lynu Kinetická energie vzorku obsahujícího N molekul: E = NE 0 = R = kna = 8,3 J.K mol... Univerzální lynová konstanta Avogadrovo číslo = 6, mol - Otázky: očet molů m n = = M N m N A. Dva vzorky různých lynů (kyslík, dusík) mají stejnou telotu. a) Jaký vztah latí mezi středními kinetickými energiemi jejich molekul? b) Jaký je vztah mezi středními kvadratickými rychlostmi jejich molekul? c) Když je umístíme do nádob se stejným objemem a za stejného tlaku, co můžeme říct o očtu částic v nádobách?. Sočítejte střední kvadratickou rychlost molekul kyslíku ři telotě -00 C; 0 C; 00 C g argonu má telotu 0 C. Sočítejte celkovou kinetickou energii jeho molekul. ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY - - SRUKURA A LASNOSI PLYNŮ
3 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í 4. lak lynu je zůsoben nárazy molekul na stěnu nádoby = 3 N L3/64-76 m0v k = ρv k 3 5. Stavová rovnice ideálního lynu N = m 3 0v k 3k v k = odvoďte níže uvedenou rovnici m 0 = nr kde m n = = M N m N A ato rovnice latí jen ro lyn ři nízkém tlaku a vysoké telotě. ylešení - an der Waals Nobelova cena 90. Avogadrův rinci (8) Pokud umístíme dva lyny do nádob stejného objemu a mají stejný tlak i telotu, otom musejí obsahovat stejný očet částic (vysvětli omocí stavové rovnice) 6. Děje s ideálním lynem Máme lyn v nádobě, jeho očet molů (molekul, hmotnost) je konstantní. Jedna z veličin,, se nemění, další dvě se budou měnit velmi omalu izotermický (I), izochorický (ICH, I) a izobarický (IB) děj. obecná rovnice latí, i když se ŠECHNY veličiny mění: = nr = = konst ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY SRUKURA A LASNOSI PLYNŮ
4 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í 7. Izotermický děj = = = konst = konst Boylův Mariottův zákon (Boyle s Law, IE, 67-69, F, ) Co ředstavuje konstanta z B. M. zákona? Jak byste ukázali izotermický děj?? - diagram označte osy a dokončete grafy 8. Izochorický děj = = konst = = konst Charlesův zákon (Pressure Law, F, ) Co ředstavuje konstanta v uvedeném zákoně? Najděte analogie a rozdíly mezi dějem oisujícím tento zákon a využitím tlakového hrnce. - diagram označte osy?? ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY SRUKURA A LASNOSI PLYNŮ
5 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í 9. Izobarický děj = = konst = = konst Gay Lussacův zákon (Gay Lusac s Law, ) Co ředstavuje konstanta v uvedeném zákoně? Nakreslete a vysvětlete demonstrační okus, který jste viděli. - diagram označte osu? L3/77-83, 86-7, X88-9, 90, X První termodynamický zákon a stavové změny z energetického hlediska První termodynamický zákon: Q = U + W elo dodané lynu může zvýšit jeho vnitřní energii nebo se řeměnit na vykonanu ráci. Znaménka: Q > 0 když se lyn ohřívá Q < 0 když se ochlazuje U > 0 když telota roste U < 0 když telota klesá W > 0 když se lyn rozíná ( roste) W < 0 když se lyn stlačuje ( klesá) alikujeme na děje s ideálním lynem a) I = konst U = 0 Q = W ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY SRUKURA A LASNOSI PLYNŮ
6 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í ALE: Druhý zákon termodynamiky: Není možné sestrojit eriodicky racující teelný stroj, který by jen řijímal telo od určitého tělesa a konal stejně velkou ráci. Najdi a vysvětli rozdíl mezi ředchozími dvěma stanovisky. b) ICH = konst W = 0 Q = U Q = mc t c měrná teelná kaacita ro izochorický děj c) IB = konst Q = U + W Q = mc t c měrná teelná kaacita ro izobarický děj Otázky: 4. Definujte měrné teelné kaacity ro ICH a IB děj. Můžeme je někde najít? Jaký je mezi nimi rozdíl? 5. Je některá z nich vždy větší bez ohledu na druh lynu? ysvětli roč (následující tabulka nestačí). c PLYN kj kg K c c dusík,037,404 kyslík 0,9,40 vodík 4,89,4 ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY SRUKURA A LASNOSI PLYNŮ
7 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í. Adiabatický děj všechny veličiny,, se mění rychlé stlačení/rozínání telo se nevyměňuje (rychlý děj) rozdíly mezi adiabatickým dějem a I, ICH a IB ději κ = konst Poissonův zákon (F, ) c κ... kaa Poissonova konstanta... κ = c dolňte symbol větší/rovno/menší κ má velmi odobnou hodnotu ro molekuly mající stejný očet atomů (,4 ro dvouatomové;,66 ro jednoatomové;,3 ro tříatomové) AD I říklad adiabatické komrese: dieselův motor (vysvětli) říklady adiabatické exanze : CO hasicí řístroj htt://en.wikiedia.org/wiki/fire_extinguisher odstraňování bradavic dusíkem htt:// ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY SRUKURA A LASNOSI PLYNŮ
8 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í První termodynamický zákon ro AD děj: Q = 0 0 = U + W Platí rovnice = konst také ro AD děj? ysvětli. L3/ 94-95, Práce ideálního lynu IB děj W = F s = As = locha od - diagramem = vykonaná ráce (ro libovolný tvar/děj!!!) ostatní děje O jaké děje se jedná? ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY SRUKURA A LASNOSI PLYNŮ
9 W = Otázky: d I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í 6. Jak velkou ráci vykoná,3 g vzduchu, když za stálého tlaku změní telotu z 0 C na 00 C? Předokládejte molární hmotnost vzduchu 9 g mol -. L3/ Kruhový děj s ideálním lynem Když vzorek lynu koná ráci, stlačíme ho, zahřejeme, ochladíme, a o sérii dějů jsou všechny stavové veličiny (,, ) stejné, jako byly na začátku. A locha od W vykonaná PLYNEM (exanze) B locha od W vykonaná NA PLYNU (komrese) výsledná ráce vykonaná lynem během jednoho cyklu = locha uvnitř křivky/smyčky ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY SRUKURA A LASNOSI PLYNŮ
10 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í Otázky: 7. MPa 0.3 A B i) Jaké děje jsou odle grafu AB, BC, CD, DA? ii) Naište stavovou rovnici a rovnici ro rvní zákon termodynamiky. iii) Jak velká ráce se vykoná ři AB, BC, CD, DA? iv) Dodáváme nebo odebíráme telo? 0. D C v) Zvyšuje se nebo snižuje telota? vi) Jak bychom děj realizovali? 6 litr vii) Jak velkou ráci vykoná lyn během jednoho cyklu? AB BC CD DA i) děje ii) rovnice iii) W iv) Q v) vi) jak udělat účinnost (η ) energie (výkon )vykonaná η = < energie (výkon ) dodaná ro jeden cyklus:,, stejné U = 0 dodané W = Q = Q Q odevzdané = vykonaná ráce Q = dodaná energie/telo W Q -Q Q η = = = - < Q Q Q Otázky: 8. Plyn řijal během jednoho cyklu telo 7 MJ a odevzdal 3 MJ. Jak velkou ráci během jednoho cyklu vykonal a jaká je účinnost cyklu? ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY SRUKURA A LASNOSI PLYNŮ
11 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í 9. Pojmenuj děje AB, BC, CA. Jak velká ráce se během nich vykoná? MPa 5 A B C 4 l Carnotův cyklus ro ideální lyn x AD + x I děj telota se jednoduše měří, telo se musí očítat telota ohřívače telota chladiče AD komrese I exanze AD exanze η = = I komrese L3/ eelné stroje Část vnitřní energie sáleného aliva se řemění na telo arní stroje telo uvolněné hořením aliva ohřeje vodu na áru o vysokém tlaku rotace turbíny/osuvný ohyb ístu ára se ochladí kondenzace voda ohřeje se znovu = kruhový děj (James Watt, skotský inženýr, 784 vylešení oužil stejnou vodu) salovací motory zážehové (jiskra) a vznětové (bez jiskry) alivo se vzduchem se vznítí exanze ohyb ístu Použijte informace z internetu a oište funkci čtyřdobých a dvoudobých zážehových a vznětových motorů, najděte rozdíly. ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY - - SRUKURA A LASNOSI PLYNŮ
12 I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í tryskové motory odobné alivo, racují na rinciu zákona zachování hybnosti nasávání vzduchu, stlačení vzduchu (víc O ), 3 rostor salování aliva, 4 tryska dodávající benzín, 5 turbína ro komresor, 6 tryska Otázky: 0. Najděte rozdíly a shody mezi výše uvedenými tyy motorů.. e kterém taktu koná dvoudobý (čtyřdobý) motor ráci? Odovědi:. a) je stejná b) těžší molekuly jsou omalejší c) je stejná. a) 367 m s - b) 46 m s - c) 539 m s kj 7. 9,8 J 9. 4 MJ; 57% 0. 5 kj; (-)9 kj; 0 ENO PROJEK JE SPOLUFINANCOÁN EROPSKÝM SOCIÁLNÍM FONDEM A SÁNÍM ROZPOČEM ČESKÉ REPUBLIKY - - SRUKURA A LASNOSI PLYNŮ
IDEÁLNÍ PLYN. Stavová rovnice
IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2
Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním
Termodynamika ideálního plynu
Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul
Fyzikální chemie. 1.2 Termodynamika
Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický
Termodynamika pro +EE1 a PEE
ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]
LOGO. Struktura a vlastnosti plynů Ideální plyn
Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu
STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování
Kruhový děj s plynem
.. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch
Termodynamika 2. UJOP Hostivař 2014
Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně
V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :
Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku
Výsledky úloh. Obsah KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku
ýsledky úloh C R, C R, κ 0, 0,088 0, 0,8 KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku 6 η 0,8 ( ){ { Obsah Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
Výpočty za použití zákonů pro ideální plyn
ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání
Molekulová fyzika a termika. Přehled základních pojmů
Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR
HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.
Teplota a její měření
Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná
Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn
Termodynamické zákony
Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce
TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy
ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená
TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy
ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená
Příklady k zápočtu molekulová fyzika a termodynamika
Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc
Ing. Stanislav Jakoubek
Ing. Stanislav Jakoubek Číslo DUMu III/2-2-3-14 III/2-2-3-15 III/2-2-3-16 III/2-2-3-17 III/2-2-3-18 III/2-2-3-19 III/2-2-3-20 Název DUMu Ideální plyn Rychlost molekul plynu Základní rovnice pro tlak ideálního
Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].
Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA
YSOKÉ UČENÍ ECHNICKÉ BRNĚ FAKULA SAEBNÍ PAEL SCHAUER APLIKOANÁ FYZIKA MODUL ERMODYNAMIKA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc. Pavel Schauer,
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 06_3_ Struktura a vlastnosti plynu Ing. Jakub Ulmann Obsažené učivo je teoretickým základem principu všech
Zákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.
7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta
Stavová rovnice. Ve stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní parametry Y i
ermodynamický ostulát: Stavová rovnice e stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní arametry Y i určeny jako funkce všech vnějších arametrů X j a teloty Y i f
Teplovzdušné motory motory budoucnosti
Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Telovzdušné motory motory budoucnosti Text byl vyracován s odorou rojektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání
6. Stavy hmoty - Plyny
skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
III. Základy termodynamiky
III. Základy termodynamiky 3. ermodynamika FS ČU v Praze 3. Základy termodynamiky 3. Úvod 3. Základní ojmy 3.3 Základní ostuláty 3.4 Další termodynamické funkce volná energie a volná entalie 3.5 Kritérium
FYZIKA I cvičení, FMT 2. POHYB LÁTKY
FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného
11. Tepelné děje v plynech
11. eelné děje v lynech 11.1 elotní roztažnost a rozínavost lynů elotní roztažnost obje lynů závisí na telotě ři stálé tlaku. S rostoucí telotou se roztažnost lynů ři stálé tlaku zvětšuje. Součinitel objeové
13 otázek za 1 bod = 13 bodů Jméno a příjmení:
13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit
TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny
TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se
IDEÁLNÍ PLYN II. Prof. RNDr. Emanuel Svoboda, CSc.
IDEÁLNÍ PLYN II Prof. RNDr. Eanuel Svoboa, Sc. ZÁKLADNÍ RONIE PRO LAK IP F ýchoisko efinice tlaku vztahe S Náoba tvaru krychle, stejná rychlost olekul všei sěry (olekulární chaos, všechny sěry stejně ravěoobné)
Cvičení z termodynamiky a statistické fyziky
Cvičení z termodynamiky a statistické fyziky 1 Matematické základy 1 Parciální derivace Necht F(x,y = xe x2 +y 2 Sočtěte F x, F y, 2 Úlný diferenciál I Bud 2 F x 2, 2 F x y, dω = A(x,ydx + B(x,ydy 2 F
IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY
IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY vynález parního stroje a snaha o zvýšení jeho účinnosti vedly k podrobnému studiu tepelných dějů, při nichž plyn nebo pára konají práci velký význam pro
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Molekulová fyzika a termodynamika
Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a
Zpracování teorie 2010/11 2011/12
Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný
VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
12. Tepelné stroj 12.1 Přeměna tepelné energie na práci Izotermické rozpínání plynu Adiabatické rozpínání plynu kruhovým dějem
1. Tepelné stroj 1.1 Přeměna tepelné energie na práci Mají-li plyny vysoký tlak a teplotu převládá v celkové vnitřní energii energie kinetická. Je-li plyn uzavřený ve válci s pohyblivým pístem, pak při
PZP (2011/2012) 3/1 Stanislav Beroun
PZP (0/0) 3/ tanislav Beroun Výměna tela mezi nální válce a stěnami, telotní zatížení vybraných dílů PM elo, které se odvádí z nálně válce, se ředává stěnám ve válci řevážně řestuem, u vznětových motorů
TERMOMECHANIKA 4. První zákon termodynamiky
FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá
Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály
Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
Termodynamické základy ocelářských pochodů
29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Základy teorie vozidel a vozidlových motorů
Základy teorie vozidel a vozidlových motorů Předmět Základy teorie vozidel a vozidlových motorů (ZM) obsahuje dvě hlavní kaitoly: vozidlové motory a vozidla. Kaitoly o vozidlových motorech ukazují ředevším
Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.
Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,
Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky
Chemická kinetika Chemická kinetika Reakce 0. řádu reakční rychlost nezávisí na čase a probíhá konstantní rychlostí v = k (rychlost se rovná rychlostní konstantě) velmi pomalé reakce (prakticky se nemění
FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn
Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)
Kvantová a statistická fyzika 2 (ermodynamika a statistická fyzika) ermodynamika ermodynamika se zabývá zkoumáním obecných vlastností makroskoických systémů v rovnováze, zákonitostmi makroskoických rocesů,
IDEÁLNÍ PLYN 11. IDEÁLNÍ A REÁLNÝ PLYN, STAVOVÁ ROVNICE
IDEÁLNÍ PLYN 11. IDEÁLNÍ A REÁLNÝ PLYN, STAVOVÁ ROVNICE Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. IDEÁLNÍ PLYN - Ideální plyn je plyn, který má na rozdíl od skutečného plynu tyto ideální vlastnosti:
Termodynamika pro +EE1
ermodynamka ro +EE Možné zůsoby výroby elektrcké energe v současnost: termodynamcká řeměna energe jaderného alva a salování foslních alv v mechanckou energ a následně elektrckou - jaderné a klascké teelné
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních
Druhá věta termodynamiky
Druhá věta termoynamiky cience owes more to the steam engine than the steam engine owes to cience. Lawrence J. Henerson (97) Nicolas R. ai arnot 796 83 William homson, lor Kelvin 84 907 Ruolf J.E. lausius
2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout?
2.6.7 Fázový diagram Předoklady: 2606 Př. 1: Poiš děje zakreslené v diagramu křivky syté áry. Za jakých odmínek mohou roběhnout? 4 2 1 3 1) Sytá ára je za stálého tlaku zahřívána. Zvětšuje svůj objem a
Kinetická teorie ideálního plynu
Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na
Cvičení z termomechaniky Cvičení 3.
Příklad 1 1kg plynu při izobarickém ohřevu o 710 [ C] z teploty 40[ C] vykonal práci 184,5 [kj.kg -1 ]. Vypočítejte molovou hmotnost plynu, množství přivedeného tepla a změnu vnitřní energie ΔT = 710 [K]
Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace
Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním
VY_32_INOVACE_G 21 11
Náze a adresa školy: Střední škola růmysloá a uměleká, Oaa, řísěkoá organizae, Praskoa 99/8, Oaa, 7460 Náze oeračního rogramu: OP Vzděláání ro konkureneshonost, oblast odory.5 Registrační číslo rojektu:
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
VLHKÝ VZDUCH STAVOVÉ VELIČINY
VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve
Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1
Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci
Termodynamika. Martin Keppert. Katedra materiálového inženýrství a chemie
Termodynamika Martin Keppert Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz http://tpm.fsv.cvut.cz/ Co to je termodynamika Nauka o energii, jejích formách a přenosu Energie schopnost systému
ZMĚNY SKUPENSTVÍ LÁTEK
ZMĚNY SUPENSTÍ LÁTE evné láky ání uhnuí kaalné láky desublimace sublimace vyařování kaalnění (kondenzace) lynné láky 1. Tání a uhnuí amorfní láky nemají bod ání ají osuně X krysalické láky ají ři určiém
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
Termomechanika 5. přednáška
Termomechanika 5. přednáška Miroslav Holeček, Jan Vychytil Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím
Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat
Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je
Termomechanika 5. přednáška Michal Hoznedl
Termomechanika 5. přednáška Michal Hoznedl Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím citovaných zdrojů
Termodynamika 1. UJOP Hostivař 2014
Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo
Vnitřní energie, práce, teplo.
Vnitřní energie, práce, teplo. Vnitřní energie tělesa Částice uvnitř látek mají kinetickou a potenciální energii. Je to energie uvnitř tělesa, proto ji nazýváme vnitřní energie. Značíme ji písmenkem U
Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace
Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním