9 - Zpětná vazba. Michael Šebek Automatické řízení

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15"

Transkript

1 9 - Zpětná vz Michel Šeek Atomtické řízení

2 Atomtické řízení - Kernetik rootik Proč řídit? Řídicí sstém msí zjistit stilit chování Klsické poždvk n chování přípstná stálená reglční odchlk při konstntním porchovém signál: smptot. reglce, potlčení porch přípstná stálená odchlk sledování polnomiálního referenčního signál (skok, rmp): smptotické sledování přípstné dnmické chování (do náěh, překmit pod.) n skokový referenční /neo porchový signál přípstná citlivost sstém n změn prmetrů model Moderní postmoderní poždvk potlčení šm chování optimální (v nějkém dném smsl) rostní stilit (stilit při velkých změnách prmetrů) rostní chování (při velkých změnách prmetrů) Michel Šeek ARI

3 Dopředná neo zpětná? Atomtické řízení - Kernetik rootik Vz přímá, dopředná Vz zpětná Výhod jednodchá levnější nepotřeje senzor nemůže destilizovt pokd je sm stilní Nevýhod nekompenzje vliv porch ni nerčitosti model nemůže stilizovt nestilní sostv Výhod kompenzje vliv porch nerčitosti model dokáže stilizovt zlepšje přechodové stálené chování Nevýhod složitější držší: potřeje senzor, složitější návrh může ohrozit stilit Michel Šeek ARI

4 Atomtické řízení - Kernetik rootik Zpětná vz je důležitější než sex? 2006 Michel Šeek ARI

5 Hrold Stephen Blck: ZV zesilovč 1927 Atomtické řízení - Kernetik rootik H. S. Blck v Bell Ls se zesilovčem, zloženým n jeho princip záporné zpětné vz Stránk New York Times z 1. srpn 1927, n ktero si Blck poznmenl rovnice schém popisjící zpětnovzení zesilovč. Mšlenk, která m leskl hlvo, kdž jel do práce přívozem přes řek Hdson. Michel Šeek ARI

6 Nivní řízení pomocí inverze Atomtické řízení - Kernetik rootik Ideální reglátor inverze sostv = f + d = 1 f r d = r+ 0d r 1 f f d Proč to většino nefngje? Inverze pomocí ZV v reglátor velkého zesílení = h r f 1 1 = f r h 1 h>> 1 = f r Lepší, le? Jk ještě vlepšit? r koncepční reglátor reglátor z h f model sostv sostv f r z h fm x 0S fs r z h x 0S fs x 0M Michel Šeek ARI

7 Atomtické řízení - Kernetik rootik Jednodchý návrh pro sostv 1. řád Poždvek No. 1: Stilit Výsledný sstém msí ýt stilní, s rozmno rezervo (nerčitost, ) Poždvek No. 2: Chování (hlvní důvod řízení) Specifikjeme různě ve frekvenční neo čsové olsti V čsové olsti: poždvk n přechodový jev n stálený stv Návrh pro sostv 1. řád (pomlá, nestilní ) Jk zjistit stilit poždovné TT ( r, Ts)? ZV řízením posneme pól do jiné poloh, která splní poždvk Jk zjistit poždovný přenos? ZV+PV řízením posneme pól nstvíme DC zesílení Gs () Fs () H() s = s + = s + = s + Michel Šeek ARI

8 Posntí pól pro sstém 1. řád Atomtické řízení - Kernetik rootik Sostv s přenosem tento pól můžeme posnot do poždovné hodnot jednodchým ZV řízením ( ) Gs () = s+ < má pól v k s+ Nvrhneme ho ď metodo RL neo výpočtem: CL chrkteristický polnom je = + k stčí ted položit vpočítt k pro k = c() s = ( s + ) + k = s + ( + k ) cs () = s+ je totiž výsledný chrkteristický polnom roven poždovném výsledný CL přenos je přitom k T() s = = s + ( + k ) s + pokd chceme dostt jiný čittel, msíme metod modifikovt Michel Šeek ARI

9 Změn přenos pro sstém 1. řád Atomtické řízení - Kernetik rootik Chtějme víc: Změnit přenos sostv s+ s+ r l k s+ K tom potřejeme přidt FF CL přenos je teď pokd jko minle vezmeme dostneme kl T() s = s + ( + k ) T() s l( ) = s+ l( ) = l čittel, msíme vzít k = l = ( ) Michel Šeek ARI

10 Diskse Atomtické řízení - Kernetik rootik Zdání jsme splnili, le je to oprvd tk jednodché? Můžeme sostv zrchlovt r tj. pól posovt liovolně? l k s+ Podívejme se n vstp do sostv (kční zásh): T() s s+ s () = rs () = rs () Gs () s+ Nní v čse: Vstpní signál má n počátk vsoko špičk: 0 + s+ 1 = lim s = s s+ s Oecně pltí, že čím dále posneme pól, tím de špičk vstp větší, ž přestne pltit lineární model ss s+ 1 = lim s = 1 s 0 s+ s Počení: Pól nesmíme posovt moc dleko od původních poloh Michel Šeek ARI

11 Sostv 2. řád Atomtické řízení - Kernetik rootik Při návrh řízení pro sostv 2. řád dle čsových specifikcí postpjeme principiálně stejně jko sostv 1. řád: Z dných specifikcí vpočteme poždovno poloh pólů zvřené smčk pomocí vzorečků pro 2. řád - jiné nemáme Njdeme reglátor, který tto poloh zjistí tím, že (spoň přiližně) posne stávjící pól sostv do poždovných poloh Pokd se tím vtvoří sstém vššího řád neo sstém s nlmi, tk přesně vzto, vzorečk nepltí ( neměli jsme právo je požívt) Jso-li přidné pól/nl nedominntní, je přesto návrh OK Nejso-li, pk se výsledný sstém ovkle chová jink msíme požít jiný návrh, přidt FF člen, Výsledný návrh rději vžd ověříme simlcemi Michel Šeek ARI

12 Příkld - 2. řád Atomtické řízení - Kernetik rootik Nvrhněte k tk, T 4s OS% 5% s k 1 s( s+ 2) Y T s 4 4 = = 4 ςω σ n σ 1 ln(%os 100) ζ = 2 2 π + ln (%OS 100) %OS=5 ζ 0.7 ϕ RL k k =1 k [ 1, 2] k = 0 Michel Šeek ARI

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

č Ť Ť Ď Ť č č šš š č š Í Í š č š š ň č Í Í š ň š š š š č š č š š š š č š š č č š š ď č č š ť š š ň č ďč č č Í š š Í š šš š Í š ď Ť Ť Í Á č š č Ť Í Ů Ú č č š š š š ď ď ň ť ď ď Ě š ď ď ď š č ď Í č š Ť Ž

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Ž ž ť Ž Ž ž š š Ž Ž Ť Ž š Ž Ž Ž Ť š Ť š Ť Ě Ú š ž Č Ž ž Ž Ě ž š Ž Ž Ě ž Ě Ě Ě Ť ť ť Ť Ě Ž Ě ž ž Ě ž Ť Ž š Ť ť Ž š ť Ž Ž Ž Č Ě Ť Š Š žš š Ě Š š Ť š š Ú š š ť Ž Ž ž š Ť Č š ť Ž š Ť š šť ž š ť ú Ó Ě š Ž

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

Ý Ť Ť ť Ž Í Ž Ť Ť Ť Ť š Ž Ť š š Ť Ť Ž Ť Ý Ť š Ť š š š Ť š Ťš Ť Í š š š š Ž Ť Ť š š š Ť š š Ť š š Ť š Ť ď Ť Í Š Ť š Ť Ó Ť š Ť š Ť Š š š šť š Ť š š Ť Í ď š š š Ť š Í Ú š Š š š š š ř š š Ťš Ť š ť š š Š Ť

Více

PŘEDSTAVENÍ APLIKACE SMARTSELLING

PŘEDSTAVENÍ APLIKACE SMARTSELLING PŘEDSTAVENÍ APLIKACE SMARTSELLING CO JE TO SMARTSELLING SmartSelling je první kompletní nástroj n[ českém [ slovenském trhu, který pod jednou střechou spojuje všechny nezbytné nástroje moderního online

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

Š č Ú č š ž č č č š č ž Ž č č ž š š č č č č š č č ž š č ž č č š š ú ž č č ó č ď š š š š š ž ň č Ž ž š ž č č š š Ř š ž č š š č š šš žň ó š Ž ň ž č š ň č š č š č č č č Ž č č ú š č ď š ž š ď č Ú š š ž č š

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

Číslicové řízení procesů

Číslicové řízení procesů Číslicové řízení procesů čební text VOŠ a SPŠ Ktná Hora Ing. Lděk Kohot Základní pojmy číslicového řízení Rozdělení řízení podle průběh signálů logické řízení binární signály (RUE, FALSE) analogové řízení

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Č š ž ý ČŠ ý š šš é é ďě š ý ě ě š ů ě ě š ů é ě ě ě ě ý ů ě ě š ů Č ď š Í ě Í ě Č é ě ž ů ý ý š š ý Ť Ť ý ý š šš é é ě š ý ě ú é é š ý š é š ě ě ú ž ů ě ý š ě ýš ě ů š é ú ě ť ú ů š š ý š š š ý Ť š ě

Více

Š ÍŠ Ť ž Ť Ý č ď č š Ť č č č š č Ť š š Ť Í šč š č č č č Ď č Ť č š š ť Š Ť Ť Š č č č ž Š č č š Ť Ť ž Ť ť Ť č š š Ť ť Ť ť č č Ť ž š Ť š Ť Ť š Ť š Ť Ť ť Č š Ť č š Ť č Ť ť č č š Ť ť Ý Ť š ď š Í Ť Í ť Ť ť š

Více

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui Stvební firm Díky nám si postvíte svůj svět. 1.D Klár Koldovská Šárk Bronová Lucie Pncová My Anh Bui Obsh 1) Úvod 2) Přesvědčení bnky 3) Obchodní jméno, chrkteristik zákzník, propgce 4) Seznm mjetku 5)

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Á Ž É Š Í É Ě É Ě Ť Í š Ť Ť š Ť Ť š š š ň š Ť Ť Ó Í Ť š Í Ť ň š Ť Í Ť Ť Í Ž Ý š š ň š š ň ú Ť ň š š Ů Ť š Ť ň ň Ť Ť š Ů ď Ť Ě Ť Í š Ť Ť Ť Ť Ť Ť š ň Ť Ť Ť ť Ť Ů Ť Ť Ť ť ť š š Í Ť Í ď Í Í šš Ž š Ť ť Í Í

Více

ř řč č Í ř č ú Í ř č š č č ř č ď č š Ž č š ň č ř š ř ú ř ř ř Í š Ý š š ří ó š ď ř š ř š Ž Ž Á š Í ó š ř š ř č ň čš ř Ž č č š Ď ř Ž říč ď ó ď č ň Í š Š Á š ř ř ř ó č ř š ř Š Ť ř č č ř ň č ř ňš č É Ž Ř ÚŽ

Více

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz Příručk k portálu Ktlog sociálních služeb v Ústeckém krji socilnisluzby.kr-ustecky.cz Uživtelská příručk k portálu socilnisluzby.kr-ustecky.cz 0 BrusTech s.r.o. Všechn práv vyhrzen. Žádná část této publikce

Více

Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace Jiří Petržel zpětná vzb, stbilit oscilce zpětná vzb, stbilit oscilce zpětnou vzbou (ZV) přivádíme záměrněčást výstupního signálu zpět n vstup ZV zásdně ovlivňuje prkticky všechny vlstnosti dného zpojení

Více

š Ý š š Ú ž ž š ž š š ž š Í š š ž š Ú ž ž ž šš ž ž ž šš ž ž š ž ž š š ž ž ž šš ž ň Č ž ž ž ž šš ž ž ž š š š ó š š ž š ž š ž Ú ž š ž š š Ú ň š š ó š ž š ž š Ž ň š š š š š š š ž š š ž š š š š š š š š š š

Více

Ý š é š ó š ž š žé ó Š é ď Ý é é ž é ž š ž Ť é š é é Ř š é ď é ž é ž é é ž Ť é ď é šš é ž é ž é ž ů ž ž é Ť Ť Ř š é ž ž ď Ú š é ž š š ž š é ž š é é š ž é ž é ž ů é ž é ž é Č é é ž š š é é Ř š ž Ž š é é

Více

ď ď ď š Ý š š É Ý šš š š š šš š š š š Ě š Ó ď šš š šš ď Ě šš š šš Ě š Ě Ě Ú š š š Ě š š ď Ě š š Ž š Ě š Č š Ý ď š š ď š Ý Ť š š š š š Ý š ď ď š š Á Á É š š š Ž šš ď ř ň ř ř š Ý ď š š š š š š Ť Ě š Ť š

Více

1. Vznik zkratů. Základní pojmy.

1. Vznik zkratů. Základní pojmy. . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v

Více

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

ř ž č š ř ů č ř š ř ů ř ž ř ž ž ř Č Č Č č č č Ž Á ť Č ř ž ž Š Ž Č ř č úč Š Ř Ě ř ó ř ů Š ů ů č š š ů ů š ř ů ř ř ř ř č ž ř ř ž š ř ř č Š Ž ř ř č č Š ř ř č ř č č č š ů ř ř š č ř č ř ř č ú ř š ř Ž ř č Č

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

ČŠ ž ž ň ž ž Ú Š ž ž ž Ú ň Š Ú ň ž Ů ť Š Šť Ů ž ž ž Š ž ž Ú Č Ú Ú Š Ú Ú ť Ú ž ž Čž Ú Ů Ú Ú Ů Ů ť Š ť ž Ů ž Č Š ž Č Č Š Ú ž Ú ž Ú ž ž Š Ů ť ž Ů ž ť ů ť ň Č Š Ť ť Š Ú Š Ú Š ť ž Č ů ů ů ť ů ů ů Š ť ť Á ň

Více

É č š ó š ý ž č ý ý ó ó ó ó ě ó ě č ó č ě č ž ý č ý ý ž č ó š č ý Ý ý š š š č Ň š ý Ě ň ó ý ž ó ž Ť Ť ó ý ý ý Ť ý Ú ý ý č č ě ý š ý ž ž č č ó ž šš č ě ě ě ó ž Ý ý ý ó ě č š ě ý č ž š ý č ý š ě ý š ě ý

Více

ROZVAHA. ke dni... BAB mont s.r.o. Klíčovská 805/11 Praha 9 190 00 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0

ROZVAHA. ke dni... BAB mont s.r.o. Klíčovská 805/11 Praha 9 190 00 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 Minimální závzný výčet informcí podle vyhlášky č. 500/2002 S. Písemnost yl podán elektronicky dne: 20.6.2012 Podcí : 2172526 Heslo zjištění stvu: c3d895fe Stv podání: vyřízeno ROZVAHA ke dni... 3 1. 1

Více

Ó é ě é é Ť č é ě č ě č ž ě é č ěš é é é ž č é ě Ť č Ť ž é é ě ň č č č ú é Ť é ě č č é é Ž é é ž ě ě é ě ž š é ž ě ě ěč ě č Ť é Ť é é é ž č ě č š é ž ú ž ě ě ž ěč ž ž Í ě Ť ž Ť ě ě ž Í Ť ěč č é č ž č Ť

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

Minimální závzný výčet informcí podle vyhlášky č. 500/2002 S. ROZVAHA ke dni... 3 1. 1 2. 2 0 1 0 jednotky: 1000 Kč Ochodní firm neo jiný název účetní jednotky Správ městských sportovišť Kolín,.s. Sídlo

Více

Příklady k přednášce 11 - Regulátory

Příklady k přednášce 11 - Regulátory Příklady k přednášce 11 - Regulátory Michael Šebek Automatické řízení 2015 23-3-15 Soustavy s oscilujícími módy V běžných průmyslových procesech je to méně časté, ale některé důležité aplikace mají hodně

Více

Č š é ř ě š ř ř ř š šš é é ě š ě ě ě š é š š é š ř š ř ě Š é ř ě ř š ě é š ř ěř ř ě š é ě š ě Č éš š ř é š é ě ú é š ě š ř é š šť š ř š ř ě š š é ě š é ě ú é é Ř š š ďě ř š ě š ě ě š ě š š é ř ř ě š ř

Více

Ť ť É ťť ť ť ď ť ť ú ť Ť ď Ř ť ť ť ť ď É ž Ž š š š š Ž š Ž ž Ž š ď š Ž Ž š š š š Ž ť Ž š ň ť Č Č Č Č Č Č Č Č Č Č Č Č Č Č Č Č Č Č Č Č Č Ď Ď Ď Ď š Š š ž šť ž š š ó š š ú ž Ú Ž ž Ž Ž š Ú ó Ž ň ň Ú Ž ž Ď ó

Více

ň Ď Ť ř Č ý ůž š ž ý ř ř ž ý ř ž ň ž ž ů ú ž Ž ž ů ééé Ň š ž Š ý ť š Ů ó ó Š Á Á Ž Ě Á Š Ž Ě ÉÉÉ ý ý š ř ů ů é Ž ů úž ň Č ť ž š ř š ž Š ů ů ťý Č Č ú ý ÓÓÓ úž ň š ř ý ž ý š ý š ř ž ú Ť ž ž Š ý Ž Ž ř é Ž

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

Studijní informační systém. Elektronický zápis předmětů a rozvrhu. I. Postup zápisu předmětů a rozvrhu

Studijní informační systém. Elektronický zápis předmětů a rozvrhu. I. Postup zápisu předmětů a rozvrhu Studijní informční systém Elektronický zápis předmětů rozvrhu V odoí elektronického zápisu předmětů proíhá tzv. předěžný zápis. Student má předměty zpsné ztím pouze předěžně může je po celé odoí elektronického

Více

Ž Ú ď Č Ú ď Ž Š Ž ť Š Ž Ž ť Č Č Ž Ž ť Č ť Š Ý ŘÁ Ů ť Č Š Ž ť ď Č Ú ť ť ť ť Č Č Ů ť Ů Á ť Š Á ď Š ť Č Ó ť Ú Ž ť Ž Ú Č Ú ť É ť ť ť Ž Ž Ž ť Ž ÝČ Č ť Š ť ť ť Ž ť ť ď ť Ž ť ť Á Ž Ž Ž Ů Ž Ž Ú Ě Ý Č Ž Š Š Ř Ě

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

Staveništní malty a suché maltové směsi při obnově památek

Staveništní malty a suché maltové směsi při obnově památek Společnost pro technologie ochrny pmátek Národní technické muzeum Stveništní mlty suché mltové směsi při onově pmátek odorný seminář 18. dun 2013 Národní technické muzeum Kostelní 42, Prh 7 1 Stveništní

Více

Referenční příručka pro instalační techniky

Referenční příručka pro instalační techniky Referenční příručk pro instlční techniky Tepelné čerpdlo země/vod Dikin Altherm Referenční příručk pro instlční techniky Tepelné čerpdlo země/vod Dikin Altherm češtin Osh Osh 1 Všeoecná ezpečnostní optření

Více

HOBBY PREZENTACE inels. www.elkoep.cz

HOBBY PREZENTACE inels. www.elkoep.cz HOBBY PREZENTACE inels www.elkoep.cz Chytré ŘÍZENÍ DOMU Chytrý dům s jeden DŮM jeden SYSTÉM jeden OVLADAČ n VŠE Technologie v domě si rozumí Technologie prcují z Vás Přináší mximální užitek Čsové finnční

Více

SINEAX C 402 Hlásič mezních hodnot

SINEAX C 402 Hlásič mezních hodnot pro stejnosměrné proudy neo stejnosměrná npětí Použití SINEAX C 402 (or. 1) se používá především k sledování mezních hodnot při měřeních s proudovými neo npěťovými signály. Signlizce se přitom provádí

Více

Direct emailing na míru Emailing podle kategorií Traffic pro váš web Databáze firem SMS kampaně Propagace přes slevový portál Facebook marketing

Direct emailing na míru Emailing podle kategorií Traffic pro váš web Databáze firem SMS kampaně Propagace přes slevový portál Facebook marketing I N T E R N E T O V Ý M A R K E T I N G e f e k t i v n í a c í l e n ý m a r k e t i n g p r o f e s i o n á l n í e m a i l i n g š p i č k o v é t e c h n i c k é z á z e m í p r o p r a c o v a n é

Více

Psychologická metodologie. NMgr. obor Psychologie

Psychologická metodologie. NMgr. obor Psychologie Pržská vysoká škol psychosociálních studií, s.r.o. Temtické okruhy ke státní mgisterské zkoušce Psychologická metodologie NMgr. oor Psychologie 1 Vědecká teorie vědecká metod Vědecké vysvětlení, vědecký

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

Č š ý č čš é č š š é ř Š ř č Š ř é Í é č č Š ř č č ř č č ý ů ý é š č ř š ř šš é é ď š ý šť ý ů ď é ř š ý š ů š š ů ř ý š ď š é ř š ž š š Ž š ý Š é ý é ř š š Ž ý ý ý Í č é š č Č ČŠ é ý ř č é ž č š č š Á

Více

Kopie z www.dschuchlik.cz

Kopie z www.dschuchlik.cz ó š ó Ň Ť ú š ú š š š ř Ú ó ú ň ú š řš ř řš ř ú ú ú ú ř ú ň ů ů š ň ú š řš ú ř ó š Ý Á ů ú úř š ň š ú š š š š ťť ř ň ů ř ř ř š ů ů ů řš ř ú ú ř ň ř ů ř ř ú ř ř ú ú ř ř ú ří š š ř ů ú Ú ř ú ÚČ ú ú ú š ů

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

Monitorování zbytkové vlhkosti do -90 C td

Monitorování zbytkové vlhkosti do -90 C td Budoucnost zvzuje Monitorování zbytkové vlhkosti do -90 C td Nový senzor, odolný proti kondenzci s technologií sol-gel Nejvyšší poždvky n tlkový vzduch Monitorování zbytkové vlhkosti předchází poškození

Více

ÚČETNÍ ZÁVĚRKA V ZJEDNODUŠENÉM ROZSAHU

ÚČETNÍ ZÁVĚRKA V ZJEDNODUŠENÉM ROZSAHU ÚČETNÍ ZÁVĚRKA V ZJEDNODUŠENÉM ROZSAHU ke dni 31. prosine 2013 ( údje jsou vyčísleny v elýh tisííh Kč ) sestvená v souldu se zákonem č. 563/1991 S. o účetnitví, ve znění pozdějšíh předpisů, s vyhláškou

Více

Jednoduchý frekvenční měnič ABB ACS55-0,18 až 2,2 kw

Jednoduchý frekvenční měnič ABB ACS55-0,18 až 2,2 kw Jednoduchý frekvenční měnič BB CS55-0,18 až 2,2 k Technický katalog OBCHONÍ PROFIL PRŮMYSL PROUKTY PLIKCE EXPERTIZY PRTNEŘI SERVIS Jednoduchý frekvenční měnič BB Co je jednoduchý frekvenční měnič BB? Jednoduché

Více

Á Á Ě ĺ ć É Í řč Áľ Á Á ř č ě ě ě š ř ů ä č š ě ě ĺ ě ě š ř ů č č ý ě ř ý ě ě š ř ů ě š ř ž Ú š ě š ě ř Ú š ě Š ě Č ĺ č úč ě ĺ ž ě ĺ ě řč ä š ě ě ř Úř Č Í Í Č ě ří ě č úě ď Š ě ý Ú ľĺ ě ř ř ř ř š ě ř ä

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

Z600 Series Color Jetprinter

Z600 Series Color Jetprinter Z600 Series Color Jetprinter Uživtelská příručk pro Windows Řešení prolémů s instlcí Kontrolní seznm pro řešení ěžných prolémů při instlci. Zákldní informce o tiskárně Informce o částech tiskárny softwru

Více

Č š é č š ž Č Í é ř ě ě š ž ř ě č ř š č č ž ř Í č č č ě ř ž ěř č č Č ČŠ ř ě é š Ž ř ě š ď Š ř ě č č šť ě ů ě é é ě š ž ě ř š ř šš é é ďě š é ě ě š ř ů šť ě š ě ě é š ř ě š é č š č ě š ě é ě č ě é ě é é

Více

ů ů š Ú š ů š š ů Ú ž Č Š Š š É ň š ž ňš ú š ž ó ů š ó ó žů šů ů š š ů š š ó ó ú ó ó ó š ó ó ůš š ž ú š ú ú ů ž š ó ů ů š ó ž Š š ů š š ů ž š ů ú ž ž š ž š š š š ó ž ó ž ů ú š š ó š Ž š š Ž Ž Ž š š ž š

Více

Píloha k roní úetní závrce za rok 2012

Píloha k roní úetní závrce za rok 2012 Píloh k roní úetní závre z rok 2012 l. 1 Oené údje Sujekt: U2Brno s.r.o. sídlo: Brno, Píkop 843/4 právní form: spolenost s ruením omezeným IO: 607 16 380 pedmt innosti: - speilizovný mloohod - poskytování

Více

PÍSEMNÁ ZPRÁVA ZADAVATELE. "Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice

PÍSEMNÁ ZPRÁVA ZADAVATELE. Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice PÍSEMNÁ ZPRÁVA ZADAVATELE pro zjednodušené podlimitní řízení n služby v rámci projektu Hospodárné odpovědné město Klimkovice, reg. č. CZ.1.04/4.1.01/89.00121, který bude finncován ze zdrojů EU "Pordenství

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Šéfové si dali dostaveníčko: Michael Tretter a Roman Paulus představují unikátní menu

Šéfové si dali dostaveníčko: Michael Tretter a Roman Paulus představují unikátní menu Šéfové si dli dostveníčko: Michel Tretter Romn Pulus předstvují unikátní menu Prh (BN) Ob spojuje úspěch smysl pro detil. Jeden je šéfem mjitelem vyhlášeného koktejlového bru Tretter s, druhý uznávný šéfkuchř

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

Ý Ř É Á ý ď Ř Á É Á Á ě Ř É Á ě ě ó ý ř ě Ů ě ř ý ě ě š ř ů Á É Ř ý ř ý ů ž ž ý ěř ř ě ž ý š ě ř ě ř ý ý ě ě ď ř ó ů ď Ú ú ř ě ě ě ř ě ě ř ý ž ě ě ř ě ý ě ě Ř Ě Ř É ř ě ř ě ď Ž ř ď ý ď ř ý ě ř š ě ě š

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: KOPPA, v.o.s., se sídlem Mozrtov 679/21, 460 01 Liberec, ustnovená prvomocným Usnesením č.j. KSUL 44 INS 5060/2014-A-13, ze dne 04. dubn 2014, insolvenčním správcem

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Ť č č ó ó č č č ý č ď ý ď š ě ý ň ě ý ú Ó ý ě č ě č Š ě Ž ý ý ě č č Ú č ý Č ě ě Š ř ěťž ě č É ť Č č ř Ž ě š č č ě ě ú č ó ó č č ů ě ř ě š Ž š ě Ž č š ď č ěž ž č ň š ň ň ř č ň č ý š ě ý Č Ó č É Á Ý Š č

Více

ý Á ľ Í äľä Š ý ž ř č ř ý ě ě š ř ů č č ý č ý č ě řč č š ě ě ř úř ě š ě č ř č ř ĺ Ú š ě č ĺ ř ř č ł ý Á Ę äľ Š č š ě Š ě č ř ř ž ě ý š ě ř Š č ř ý ý ž ě úč ž ě š ě ř šúč ž ě ý ě š ě ř ĺ ä ľľä ľ ľ ľľľ ĺľ

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

nová cesta k vítězství!

nová cesta k vítězství! nová cesta k vítězství! FOTBALOVÁ (R)EVOLUCE nová cesta k vítězství! Kompletní elektronizace fotbalových agend od 1.7.2015: Management soutěží (on-line zápis) On-line registrace hráčů (klubů a členů) Elektronické

Více

ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM

ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM Ing. Michl Sedláček, Ph.D. ko-k s.r.o., Thákurov 7, Prh 6 Sptil erth pressure on circulr shft The pper present method for estimtion sptil erth pressure

Více

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé.

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé. 1 Určování poloh bodů pomocí souřadnic Souřadnicové výpočt eodetických úloh řešíme v pravoúhlém souřadnicovém sstému S-JTSK, ve kterém osa +X je orientována od severu na jih a osa +Y od východu na západ.

Více

01-09.7 10.14.CZ Zpětné ventily a zpětné uzavíratelné ventily ZV 226 a ZV 236

01-09.7 10.14.CZ Zpětné ventily a zpětné uzavíratelné ventily ZV 226 a ZV 236 01-09.7 10.14.CZ Zpětné ventily zpětné uzvírtelné ventily ZV 226 ZV 26-1- ZV 226 ZV 26 Zpětné ventily zpětné uzvírtelné ventily 15 ž 200, PN 16, 25 Popis Zpětné ventily ZV 2x6 jsou smočinné uzávěry s vynikjícími

Více

ě á Ř ú ó Á ý á á ú ú ú š ý á ě á á ú á á á á ž ě ě š ů á á á á ý ž á ž á á ě á á ž á ě Á ě á ó ó á ú ěš á ý úě ú ý ň ý ý á ň ň á ň ý ý á É ý á ý á ě á ú Č Š ÝŤ ú ú ú š ý á á á ú á á á á ě ě š ů á á á

Více

ĺ łĺ ĺ Í Ú Ż Š Ěľ ĚŘ Ě Á ĺ Á ľ ł ľ ě č ý úč ě č ý Č č ĺ ě ĺ řč Úč ř ř ů Č č ř ě ř ě č úč ý Ú ľĺ łľĺ ľ ě ŕ ř š ě ě ĺ ĺ ř ř Ž ř ě ř ĺ Žš ě š č ř š ě ěř ě ř ý ř ž ř ř úč ř š ú ů č ě ý ů ě ř ř ř ý úč ý ř ů

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Ř š ý Ť Ť Ť ř š ř š ů ž ó ů ó ó óř ý ý Š Š ř Ú ř ó ů ž ář Ú ů ž ú ý ý ž ů š ó ý ó á Ž ó š ú ý ž ó ú š ó š ú ý ř ú ň ó ú ý ů ú ů ý Ý š úř ř ó ý ř ó ř á š á Žá ř ř řá á ý Žá ž á ř ř š ž ň á ý á ý ž ž ř á

Více

Jednotka pro zvýšení tlaku Ø40

Jednotka pro zvýšení tlaku Ø40 Jednotk pro zvýšení tlku Ø4 Zákldní informce Síl vyvinutá pneumtickým válcem není v některých přípdech dottečná pro plnění poždovné funkce. Pro plnění tohoto problému je pk nutné, pokud je to možné, buď

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

ůř Í ý Í Ť ý Á Ž Í Á ť Í ť ý ť Ť ě č ě Š ř ú ý š Č ř č ď ř Á Í Í ě ě ř ó ě č ř č ě ř š ě Á Í č ě Í Í Č É ě Š Í Č ě Í ě ů ů ů Č ý ú Ž ří Á Ý Í Á ÍČ ŽÍ Ý Ů ě č ě ě ě ř ě ě ó ž ž ě ýš ě ě ó ě ř ú ě ďý ě Ú

Více