Příklady k přednášce 2 - Spojité modely

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklady k přednášce 2 - Spojité modely"

Transkript

1 Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 5 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti -5-5

2 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice v čaové oblati xt () () (), (), () () 8 6 xt + t x t t Při řešení v čaové oblati najdeme vlatní číla ( I A) p ( ) det , 4 a předpokládáme tavovo matici přechod ve tvar t 4t t 4t Ke + Ke Ke 3 + Ke 4 Φ() t t 4t t 4t K5e + K6e K7e + K8e Kontanty najdeme ze známých vlatnotí matice Φ() I K+ K, K3+ K4, K5 + K6, K7 + K8 Φ () A K 4K, K 4K, K 4K 8, K 4K takže t 4t t 4t e e e e Φ() t t 4t t 4t 4e + 4e e + e Michael Šebek ARI-Pr--5

3 Řešení tavové rovnice v čaové oblati Atomatické řízení - Kybernetika a robotika a odezva na počáteční tav je Φ( t) x() t 4t e e t 4t 4e + 4e dále Φ( t τ ) B a z toho t ( tτ) 4( tτ) e e ( tτ) 4( tτ) e + e t t 4 4 t τ t τ t 4t e e dτ e e dτ e + e Φ( t τ) B( τ) dτ t t t τ 4t 4τ t 4t e e dτ + e e dτ e e Takže celková odezva je 7 t 7 4t t + e e x() t Φ() t x() + Φ( t τ) B( τ) dτ 7 t 7 4t e + e Michael Šebek ARI-Pr--5 3

4 Řešení Laplaceovo tranformací Atomatické řízení - Kybernetika a robotika xt () xt () + t (), x(), t () () t I A 8 6 I A ( ) ( ) Obraz odezvy je celkem ( ) ( ) x() ( I A) B() + ( I A) x ( ) ( 6 8) ( + )( + 4) 8 4( + ) 8( + 4) ( + )( + 4) ( + ) ( + 4) a čaový průběh odezvy je tejný jako v minlém řešení Michael Šebek ARI-Pr--5 4

5 Řešení Laplaceovo tranformací Atomatické řízení - Kybernetika a robotika Dále: z rozklad na parciální zlomky ( + ) ( + 4) ( I A) je zřejmé, že to je obraz tavové matice přechod >> Fiinv([ ; ]-A) Fi ^ >> xfi*([;]+[;/]) x ^ ^ + ^3 >> xpartial(x()) x -7/8 7/4 / >> xpartial(x()) x 7/ -7/ >> Fipartial(Fi(,)) Fi Michael Šebek ARI-Pr--5 5

6 Příklad: Směrování atelit Atomatické řízení - Kybernetika a robotika IO model Stavový model x + x y x [ ] Charakteritický polynom d J ϕ Fd C ϕ ωω, F c J ϕ d x, Fc, y ϕ ω J p ( ) det det a řešení tavových rovnic L-tranformací x() () () + x y () () + x() [ ] Michael Šebek ARI-Pr--5 6

7 Atomatické řízení - Kybernetika a robotika Stavová matice přechod Φ () k k Řešení v čaové oblati pro k k I () l l Φ l l Příklad: Směrování atelit det( I A) t () t t τ Φ Φ( t τ ) x, t () () t t ( t τ) dτ t t τ τ τ t Φ ( t) x(), Φ( t ) B( ) d dτ t A () k + lt k + lt Φ t k + lt k + lt t + xt () t t yt () + Michael Šebek ARI-Pr--5 7

8 Příklad: Divný ytém Atomatické řízení - Kybernetika a robotika Blokově a rovnicemi x y x x + x x x x x x y x tavový model výpočet řešení (Laplace) x +, [ ] x y x + + x() () + () x () + () ( + )( ) ( + )( ) + x Michael Šebek ARI-Pr--5 8

9 Příklad: Divný ytém Atomatické řízení - Kybernetika a robotika a výtp je y () () + [ + ] x() ( + )( ) ( + )( ) () + x() + x() ( + ) ( + ) ( ) přeno odezva na počáteční tav charakteritický polynom v. jmenovatel přeno: p ( ) ( + ) ( ) d ( ) ( + ) Odezva na kok ilně závií na počátečním tav nlový a nenlový počáteční tav x ( ) x ( ) x ( ) x ( ). Michael Šebek ARI-Pr--5 9

10 Příklad: Jiný divný ytém Atomatické řízení - Kybernetika a robotika Kakáda (mód je odblokován vtpní nlo) přeno je. řád a tabilní v x x y G () + + x ale úplný tavový popi je. řád: pro x x + x x x y + x [ ] [ ] x yx, v charakteritický polynom je p( ) det( I A) ( + )( ) Michael Šebek ARI-Pr--5

11 Atomatické řízení - Kybernetika a robotika Příklad: Kanonické formy řiditelnoti Kanonická forma řiditelnoti (někdy také forma fázových proměnných) y ( ) ( ) x x y 7 x [ ] jiná varianta kanonická formy řiditelnoti - Controller Canonical Form Y() U( ) x x x x 3 y [ 7 ] x 3 x 3 x x y Michael Šebek ARI-Pr x x+ y x

12 Atomatické řízení - Kybernetika a robotika Příklad: Kanonické formy pozorovatelnoti Kanonická forma pozorovatelnoti - Oberver Canonical Form Y() 3 U() x 6 x+ 7 4 y x [ ] 7 x x x x 3 y 7 x 3 x 3 x x y Michael Šebek ARI-Pr x 6 x+ 7 9 y x [ ]

13 Atomatické řízení - Kybernetika a robotika Přeno Příklad: Kakádní realizace y ( ) 4 4 F () 3 ( ) ( + )( + 3)( + 4) Můžeme realizovat jako kakád (érii) bytémů. řád 4 ( + ) ( + 3) ( + 4) () 4 ( + ) x () x () x () 3 ( + 3) ( + 4) y () 4 x 3 x 3 x x x x y x 3 x+ 4 y x [ ] Michael Šebek ARI-Pr--5 3

14 Atomatické řízení - Kybernetika a robotika Přeno Můžeme realizovat jako paralelní pojení bytémů. řád 4 x x x x 3 x 3 x 3 Příklad: Paralelní realizace y ( ) 4 4 F () 3 ( ) ( + )( + 3)( + 4) y ( + ) 4 ( + 3) ( + 4) 4 + ( + ) ( + 3) ( + 4) rozklad na parciální zlomky x 3 x y [ ] x jo-li (faktory) póly náobnoti, je tavová matice diagonální (viz Jordanův kanonický tvar matice) Michael Šebek ARI-Pr--5 4 Xx () x () X () xx () 3

15 Atomatické řízení - Kybernetika a robotika Přeno Příklad: Paralelní realizace - vícenáobné póly y ( ) ( + 3) F () + ( ) ( + ) ( + ) ( + ) ( + ) ( + ) Můžeme realizovat jako paralelní pojení bytémů max.. řád x x x x y x 3 x 3 x x+ jo-li (faktory) póly náobnoti větší než, nemí být tavová matice diagonální, ale může být blokově diagonální y [ ] x Jordanův tvar matice může být ložený z bloků větší velikoti než ( + ) ( + ) ( + ) Michael Šebek ARI-Pr--5 5

16 Výpočet tranformační matice Atomatické řízení - Kybernetika a robotika Někdy dány oba modely (ve tarých a nových ořadnicích) a hledáme přímo z tranformačních vztahů to vypočítat nejde? Anew T AoldTB, new T Bold, Cnew ColdT Tranformjme tedy matici C B A B A B n new new new new new new a z toho je ( T A T) ( T A T) n T Bold T B old old T B old old T T n Bold AoldBold Aold Bold T C C pokd inverze exitje Obdobně ze vztah (pokd inverze exitje) T O Neboť platí kde obě matice jo tvar new old O O old new new O T old Michael Šebek ARI--5 6 C old Ci i i O CA i n- CA i i i new, old T

17 Atomatické řízení - Kybernetika a robotika Odezva na vtp a počáteční podmínky Odezva na vtpní ignál a počáteční tav je celkem [ Cadj( I A) B + det( I A) D] Cadj( I Ax ) b () n ( ) cx () y () () + + det( IA) det( IA) a () d() a () kde a () je charakteritický polynom ytém d () je jmenovatel L-obraz vtpního ignál výtp můžeme rozložit na parciální zlomky / módy takto y () Složky přílšné kořenům a () Složky přílšné kořenům d () + + ložky přílšné kořenům a () přirozená odezva ncená odezva odezva na poč. tav Michael Šebek ARI--5 7

18 Požití parciálních zlomků při výpočt odezvy Atomatické řízení - Kybernetika a robotika Ryzí racionální fnkci n () d (), kde d () má kořeny reálné a, m i j-náobné reálné komplexní ck σk ± jωk a n l -náobné komplexní cl σl ± jωl a tedy polynom d () má rozklad na kořenové činitele m j ( ai ) ( ) ( ( + σ ) + ωk )) ( σl + ωl )) d () b j k ( + ) nejprve rozložíme na parciální zlomky n () α βj β β mj j i j m j d ( ) ( a ) ( b ) ( ) i j bj ( b ) j γk + δk ε l + ϕ l εl + ϕl εnl + ϕ l nl l n l ( + σk ) + ωk ( + σl) + ωl (( + σl) + ωl )) (( + σl) + ωl )) Při zpětné tranformaci každý zlomek zpětně tranformjeme zvlášť dle vzorců at, ( ai ) e 3 ωk σt ωk σt e in ω kt, e ( inω ktωktcoωkt) ( + σk) + ωk (( + σk) + ωk) m j bt + σ σt ω ( ) t t e, k + σ σ e co ω, m te inω j ( b ) ( m kt kt )! ( + σ ) + ω (( + σ ) + ω ) j j Jednotlivým ložkám e říká módy k k k k n l b j Michael Šebek ARI-Pr--5 8

19 Atomatické řízení - Kybernetika a robotika Příklad: Odezva na vtp i počáteční tav x 5 x x 3 x + x x( ) y [ 3 ] [ ], x + x( ) obecná odezva + 3 y ( ) ( ) x( ) + x( ) odezva na jednotkový kok a počáteční tav () Michael Šebek ncená + y () y () přirozená 3 yt () + e e 5 5 5t 3t det( I A) ( + 5)( + 3) x ( ), x ( ) volný pád ARI-Pr--5 ncená na vtp přirozená volný pád celková t:.:5; nc.4*one(,length(t)); pri.6*exp(-5*t);vol-exp(-3*t); plot(t,nc,t,pri,t,vol,t,nc+pri,... t,nc+pri+vol) 9

20 Příklad -pokračování Atomatické řízení - Kybernetika a robotika U() G () x ( ) Y() det( I A) ( + 5)( + 3) Im 5 3 Re + 3 x ( ) pól vtpního ignál generje nceno odezv pól přeno generje přirozeno odezv pól charakteritického polynom 5 35 Y() + generje volno odezv reálný pól -a generje exponenciální odezv e -ta 3 5t 3t nly a póly kombinjí vliv módů yt () e + e 5 5 ncená přirozená volný pád Michael Šebek ARI-Pr--5

21 Příklad: Odhad odezvy z polohy pólů Atomatické řízení - Kybernetika a robotika Když ná např. zajímá odezva na kok ytém () ( + 3) y () ( + )( + 4)( + 5) můžeme ji jednodše odhadnot tak, že naznačíme rozklad na parciální zlomky K K K3 K4 y () ( + ) ( + 4) ( + 5) zřejmě vtpní pól generje vynceno kokovo odezv a póly přeno generjí jednotlivé exponenciální ložky přirozené odezvy zpětno L-tranformací dotaneme yt () K + Ke + Ke + Ke t 4t 5t 3 4 přetože výpočet kontant není ložitý, kontanty ná čato nezajímají mnohdy tačí vědět, které ložky odezva obahje Michael Šebek ARI-Pr--5

22 Atomatické řízení - Kybernetika a robotika Ještě k modelům: změna měřítka amplitdy Změna měřítka amplitdy (škálování) zjednodšje analýz i návrh Odhadneme maximální očekávané/povolené hodnoty změn ignálů v pracovním režim Vyjdeme z odchylkového model (přeno) y G + Gd d vzniklého třeba lineární aproximací a velikot každé veličin tlačíme pod vydělením d, d maximální odhadnto nebo povoleno odchylko max maxd y míme škálovat polečně e, r neboť mají tejné jednotky a jo vázány e r y y r e Můžeme požít r nebo čatěji e y, r, e max max : maxe maxe maxe Potp formalizjeme požitím faktorů De maxed, maxd, d maxdd, r maxr a doazením dotaneme y De G D+ De Gd Ddd, e yr Někdy k tom ještě zavedeme škálovano referenci. r r r D r r D r D D r max r e r e Pak je dt (), rt () a pomocí t () iljeme o et () Michael Šebek ARI-Pr--5

23 Příklad: Vytápění pokoje Atomatické řízení - Kybernetika a robotika energetická rovnováha: změna energie v pokoji přítok energie (zanedbáváme akmlaci ve těnách) d dt tepelná kapacita pokoje [J/K] změna tepla vnitř ( C T ) Q + α ( T T ) V teplota pokoje [K] přívod tepla přívod tepla [W] ztráty do okolí 5 zavedeme τ C V α a děláme LT pro nlovo pp. T T() α Q TO τ+ + τ+. T() Q+ TO + + O koeficient přetp tepla [W/K] venkovní teplota [K] ( ) α W K C kj K [ J K] Michael Šebek ARI-Pr--5 3 V, p CV [ ] T K [ ] QW T [ ] O K α [ W K] pracovní bod Qp kw, Tp TO, p K odchylkový model T T Tˆ, d C T Q α T V + α + dt O

24 Příklad: Vytápění pokoje Atomatické řízení - Kybernetika a robotika Zavedeme relativní bezrozměrné proměnné T () Q () TO () y () ; () ; d () T Q T max max O,max kde ze zadání Tmax K; Qmax kw ; TO,max K operacemi T() Qmax TO,max Q+ T T + T Q + T T τ α τ max max max max O,max dotaneme Qmax TO,max y () () + d () τ+ α Tmax τ+ Tmax y () () + d () + + O Michael Šebek ARI-Pr--5 4

25 Atomatické řízení - Kybernetika a robotika Ča většino měříme v ekndách, ale počítání velmi rychlými nebo pomalými ytémy může být špatně podmíněné a nmerický výpočet může být chybný Je proto žitečné mět změnit jednotk ča. Například mezi čaem t [] a čaem τ[m] platí vztah τ kt kde k Dopad na derivování je dx dx dx d x d x x k, x k, dt d( τ k) dτ dt dτ a tak e tavová rovnice tranformje na Jí v měřítk ča τ Ještě k modelům: změna čaového měřítka k x () t Ax() t + B() t x ( τ ) Ax( ) B( ) k τ + k τ ( ) ( ) ( ) τ τ τ τ τ τ g ( ) I A B I A k B k ki A B Tedy τ což odpovídá, neboť proměnná v LT má rozměr /ča Dále platí pro čaové kontanty T τ Michael Šebek ARI-Pr--5 5 kt

26 Příklad: změna čaového měřítka Atomatické řízení - Kybernetika a robotika Rychlý ocilátor přirozeno frekvencí ω n 5.rad 6 ϕ( t) + 5. ϕ( t) t ( ) (ai khz) Změníme-li jednotk ča ze ekndy na milieknd ( τ t ) Pak a rovnice v miliekndách je 6 ( ) ( ) d ϕτ ϕ t d ϕτ ( ) dτ + 5 ϕτ ( ) ( τ) dτ Z první rovnice dotaneme přeno, ze drhé 6 y () () y ( τ ) () + 5. τ + 5 Z porovnání je zřejmé, že τ Změna ve tavovém model (pro x ϕ, x ϕ ) je x () t x() t t () 6 x() t 5 x() t + x ( τ). x( τ) ( τ ) 3 x( τ) + 5 x( τ) g () g ( ) τ Michael Šebek ARI-Pr--5 6 τ

27 Atomatické řízení - Kybernetika a robotika CSTbx: (lti), tf, zpk tep, imple, initial, PolTbx: df, (ldf, rdf, mdf), abcd, pol nm, den SymbMathTbx: ymbolické výpočty laplace, ilaplace Spojité modely v Matlab objekty a fnkce Michael Šebek ARI-Pr--5 7

Příklady k přednášce 25 Dopravní zpoždění

Příklady k přednášce 25 Dopravní zpoždění Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 23 2-4-3 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { f t } { } t f(): t f() t = t

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Teorie systémů a řízení

Teorie systémů a řízení VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie

Více

Číslicové řízení procesů

Číslicové řízení procesů Číslicové řízení procesů čební text VOŠ a SPŠ Ktná Hora Ing. Lděk Kohot Základní pojmy číslicového řízení Rozdělení řízení podle průběh signálů logické řízení binární signály (RUE, FALSE) analogové řízení

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz Systémy Vlastnosti lineárních systémů. Konvoluce diskrétní a spojitý čas. Vlastnosti konvoluce Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Systémy obecně: spojení komponentů, zařízení nebo

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů

Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů Vytvoření kriptů pro webové rozhraní předmětu Analýza a imulace technologických proceů M-file for the Internet Interface Ued in the Subject Analyi and Simulation of Technological Procee. Petr Tomášek Bakalářká

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Vlhký vzduch a jeho stav

Vlhký vzduch a jeho stav Vlhký vzduch a jeho stav Příklad 3 Teplota vlhkého vzduchu je t = 22 C a jeho měrná vlhkost je x = 13, 5 g kg 1 a entalpii sv Určete jeho relativní vlhkost Řešení Vyjdeme ze vztahu pro měrnou vlhkost nenasyceného

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU 6. ZÁSOBOVÁÍ 6.1. Bilance materiálu 6.2. Propočty potřeby materiálu 6.3. Řízení záob (plánování záob) Záobování patří mezi velmi ůležité ponikové aktivity. Při řízení záob e jená v potatě o řešení tří

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Š ÍŠ Ť ž Ť Ý č ď č š Ť č č č š č Ť š š Ť Í šč š č č č č Ď č Ť č š š ť Š Ť Ť Š č č č ž Š č č š Ť Ť ž Ť ť Ť č š š Ť ť Ť ť č č Ť ž š Ť š Ť Ť š Ť š Ť Ť ť Č š Ť č š Ť č Ť ť č č š Ť ť Ý Ť š ď š Í Ť Í ť Ť ť š

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Á Ž í é á ž é ří íší ě é ý á ě ý ž ů ý íší ě é ř ě ší ší ří ě ší é ě é ý ž á í ří ň ó ň ě ž ě ý á á ž á á é čá í í í í ší í čí íý é ř í á ř ž ž č ě ě ů é í í í á ě á é í é é ř á ý á í ý ů í ý í ů á é é

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

KALKULÁTORY EXP LOCAL SIN

KALKULÁTORY EXP LOCAL SIN + = KALKULÁTORY 2014 201 C π EXP LOCAL SIN MU GT ŠKOLNÍ A VĚDECKÉ KALKULÁTORY 104 103 102 Hmotnost: 100 g 401 279 244 EXPONENT EXPONENT EXPONENT 142 mm 170 mm 1 mm 7 mm 0 mm 4 mm Výpočty zlomků Variace,

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti...

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti... Poznámky k ekonomickému ukazateli IRR (Remarks on the economic criterion the Internal Rate of Return ) Carmen Simerská IRR... vnitřní míra výnosnosti, vnitřní výnosové procento, výnos do splatnosti...

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2)

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 27. 3. 2013 Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) 5.5 REGULOVANÉ SOUSTAVY Regulovaná

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

VÝPOČET TEPELNÝCH ZTRÁT

VÝPOČET TEPELNÝCH ZTRÁT VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

MSC 30-45 MSD 55-75 Pohon přes klínové řemeny. RMC 30-45 RMD 55-75 RME 75-90 Pohon pomocí spojky

MSC 30-45 MSD 55-75 Pohon přes klínové řemeny. RMC 30-45 RMD 55-75 RME 75-90 Pohon pomocí spojky MSC MSD Pohon pře klínové řemeny RMC RMD RME Pohon pomocí pojky Olejem mazané šroubové kompreory pevnou nebo proměnnou í Solidní, jednoduché, chytré Zvýšená polehlivot dodávky tlačeného u MSC/MSD Pohon

Více

Opotřebení staveb. Příloha č. 15 k vyhlášce č.

Opotřebení staveb. Příloha č. 15 k vyhlášce č. 98 Opotřebení staveb Příloha č. 15 k vyhlášce č. 3/2008 Sb. 1. Cena stavby se přiměřeně sníží o opotřebení vzhledem k jejímu stáří, stavu a předpokládané další životnosti stavby nebo její části. Výpočet

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 14. listopadu 2007 1 Diferenciální 2 Motivace Linearizace Metoda Matematický model Global Positioning System - Diferenciální 24 navigačních satelitů

Více

Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí

Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí Numerické algoritmy KAPITOLA 11 V této kapitole: Vyhledávání nulových bodů funkcí Iterativní výpočet hodnot funkce Interpolace funkcí Lagrangeovou metodou Derivování funkcí Integrování funkcí Simpsonovou

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1 URČI HODNOTU VÝRAZU Kolik to je? A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1 určit (vy)počítat dosadit hodnota výrazu (urči) (vypočítej) (dosaď) B) Urči hodnotu výrazu 4( x + 3) pro x = -1 DOSAĎ

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Příklady k přednášce 11 - Regulátory

Příklady k přednášce 11 - Regulátory Příklady k přednášce 11 - Regulátory Michael Šebek Automatické řízení 2015 23-3-15 Soustavy s oscilujícími módy V běžných průmyslových procesech je to méně časté, ale některé důležité aplikace mají hodně

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

Udržitelnost vnější ekonomické rovnováhy Pohledem teorie životního cyklu přímých zahraničních investic

Udržitelnost vnější ekonomické rovnováhy Pohledem teorie životního cyklu přímých zahraničních investic Udržitelnost vnější ekonomické rovnováhy Pohledem teorie životního cyklu přímých zahraničních investic 1 Filip Novotný Vysoká škola finanční a správní Praha, 23.4.2009 Osnova prezentace 2 Způsob záznamu

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Výstupy ze studia Learning Outcomes v jednotlivých kapitolách předmětu ZMAT2

Výstupy ze studia Learning Outcomes v jednotlivých kapitolách předmětu ZMAT2 PROJEKT REFIMAT Výstupy ze studia Learning Outcomes v jednotlivých kapitolách předmětu ZMAT2 Tatiana Gavalcová, Pavel Pražák, Iva vojkůvková, Jiří Haviger, 25.5.2011, revize říjen 2012 Téma 1: Množiny

Více

vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1)

vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1) ZKOUŠKA ČÍSLO 1 x=linspace(0,100,20); y=sqrt(x); A=[x;y]'; save('data.txt','a','-ascii'); polyn = polyfit(x,y,3); polyv = polyval(polyn,x); plot(x,y,'r*') plot(x,polyv,'b') p1=[1 0 0 0 0 0 0-1]; k=roots(p1);

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73) Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Organic Search Traffic

Organic Search Traffic http://forum.matweb.cz http://forum.matweb.cz Matematické forum [DEFAULT] Organic Search Traffic Jan 1, 2012 Dec 31, 2012 % of visits: 86.15% Explorer Site Usage Visits 10,000 5,000 April 2012 July 2012

Více

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět)

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematickém semináři je zaměřeno na: užití matematiky v reálných situacích osvojení

Více