3 Základní modely reaktorů

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "3 Základní modely reaktorů"

Transkript

1 3 Základní modely reaktorů Rovnce popsující chování reakční směs v reaktoru (v čase a prostoru) vycházejí z blančních rovnc pro hmotu, energ a hybnost. Blanc lze formulovat pro extenzvní velčnu B v obecném elementu za časový úsek t takto Množství vstupující elementu t B do za + ( Zdroj B v elementu ) Množství vystupující elementu t B z za + Akumulace B v elementu Blancovanou extenzvní velčnou rozumíme například hmotnost, látkové množství, teplo, hybnost. 3. Vsádkové reaktory (BATCH) () P F F }{{} + ν k, V r V,k dv n t, (2) kde F je molární tok složky, ν k, je stechometrcký koefcent složky v k-té reakc, r V je reakční rychlost k-té reakce vztaženou na objemovou jednotku a n je látkové množství složky. Pro konstantní objem reaktoru V V dn d(n /V ) dc NR ν k, r V,k. (3)

2 Pro konstantní celkový tlak v reaktoru V dn V d(c V ) dc dc + c d ln V ν k, r V,k. (4) d ln V ν k, r V,k c (5) 3.2 Reaktory s pístovým tokem (PFR) V V + dv F F F (V +dv ) F (V ) }{{} výstup-vstup d F dv dj dz d(vc ) dz ν k, r V,k dv, (6) ν k, r V,k (7) ν k, r V,k (8) ν k, r V,k (9) 2

3 3.3 Průtočné, deálně míchané reaktory (CSTR) F F Ve staconárním stavu platí pro průtočný, deálně míchaný reaktor tento vztah F F }{{} + ν k, r V,k V R. () vstup-výstup Matematcká vsuvka - Eulerova metoda řešení obyčejných dferencálních rovnc Máme obyčejnou dferencální rovnc s počáteční podmínkou y f(x, y) () y(a) y (2) Zvolíme dskrétní množnu bodů (uzlů sítě) a x < x < x 2 <... < x n b. Obvykle volíme tzv. ekvdstantní sít x + x h;,,..., n, kde h je krok metody. Na této sít budeme hledat aproxmace y n přesného řešení funkce y(x n ) v bodě x n pomocí hodnot y n, y n 2,..., y n k (resp. z předchozích kroků). Je-l použto jen předchozího kroku (k ), metoda se nazývá jednokroková. Vyjádříme-l dervac y v bodě x n pomocí dference x n, x n získáme Eulerovu metodu. y n y n + f(x n, y n )(x n x n ) y n + f(x n, y n )h (3) 3

4 Obrázek : Chyba př výpočtu pomocí Eulerovy metody. h je délka kroku Eulerovy metody a e je chyba metody Příklad 3. V zotermním trubkovém reaktoru probíhá reakce 2A B Reakce probíhá v kapalné faz a rychlost toku reakční směs je rovna.5 m.s můžeme j považovat za konstantní podél celého reaktoru. Vznk látky B popsuje rychlostní rovnce r B ν B kc 2 A. Rychlostní konstanta je rovna.3 m3.kmol.s a délka reaktoru je 2.4 m. Na vstupu do reaktoru platí c A () 2kmol.m 3, c B () kmol.m 3, c C () 2kmol.m 3. Odvod te rovnce popsující koncentrační profl složek A, B, C podél reaktoru a vypočtěte konverz klíčové složky A na výstupu z reaktoru. Porovnejte řešení obdržené analytcky a numercky (například Eulerovou metodou) Řešení Sestavíme blanční tabulku Složka z z L A c A c A c A ν A νa c A X A B c B c B c B ν B νa c A X A C c C c C c C ν C νa c A X A Pro výpočet použjeme dferencální rovnc pro trubkový reaktor s konstantní rychlostí proudění reakční směs (vz. rovnce 9) v následujícím tvaru Pro rychlost reakce r V B) dc dz v ν r V. (4) platí (konkrétně v našem případě známe-l rychlost tvorby složky r V r B /ν B kc 2 A. (5) 4

5 Dosadíme-l do dferencální rovnce 4 za obecnou složku složku A dx A dz ν Ar V. (6) vc A Chceme-l získat analytcké řešení dferencální rovnce 6, provedeme separac proměnných a výslednou rovnc ntegrujeme vc A ν A f r V dx A L dz, (7) kde f je neznámá konverze (kterou chceme zjstt) a L je délka reaktoru. Dosadíme-l za r V z rovnce 5 a za c A z blanční tabulky obdržíme v kc A ν A a ntegrací v daných mezích získáme f v kc A ν A ( X A ) 2 dx A L dz, (8) ( ) f L. (9) Úpravou získáme vztah pro f f v v Lkc A ν A. (2) Konverze složky A na výstupu z reaktoru je X A.85 Příklad 3.2 Ethylacetát se získává esterfkací kyselny octové ethanolem v BATCH zotermním reaktoru. Stechometre reakce je následující CH 3 COOH(A) + CH 2 H 5 OH(B) CH 3 COOC 2 H 5 (R) + H 2 O(S) Reakční směs v reaktoru se skládá z 5 kg m 3 etanolu a 25 kg m 3 kyselny octové. Zbytek směs tvoří voda a stopy HCl, která zde plní funkc katalyzátoru. Hustota reakční směs je 4 kg m 3 a předpokládá se, že během rekce zůstává konstantní Jelkož esterfkace je vratná reakce, je její rychlost popsána těmto vztahy r k c A c B, (2) r 2 k 2 c R c S, (22) r r r 2. (23) 5

6 Hodnoty rychlostních konstant př 373 K jsou k 8 9 m 3 mol s, k m 3 mol s. Reakce je zastavena př konverz X A.3. Pokud je potřeba počítat 3 mnut na vypuštění, vyčštění a napuštění reaktoru, určete objem reaktoru potřebného k produkc t za den. V 7 m 3 Příklad 3.3 Ve vsádkovém, deálně míchaném reaktoru s konstantním objemem probíhá za konstantní teploty a tlaku reakce aa + bb ss. Rychlost reakce je popsána rovncí r V kc α A cβ A, kde α a β. Vyjádřete obecně (v dferencální formě) změnu konverze klíčové složky A v čase. dx A akc (α ) A Příklad 3.4 ( ( XA ) α (c B b a c AX A ) β) Anlín (A) je vyráběn hydrogenací ntrobenzenu (N) na měděném katalyzátoru. Reakce probíhá v plynné fáz v trubkovém reaktoru za atmosférckého tlaku a teploty 5 o C. Reakční rychlost vysthuje následující rovnce r V k(t )CN.58 mol m 3 h, ( ) 2958 k(t ).56 7 exp, T kde T je teplota v K. Hydrogenace je vedena v přebytku vodíku, molární zlomek ntrobenzenu v nástřku je y N.67. Objemový průtok nástřku je.6 m3 h (př normálních podmínkách, p kpa a T 273 K). Jaká bude konverze ntrobenzenu na výstupu pro reaktor dlouhý metr a o průměru 2.5 cm? X N.98 Příklad 3.5 V provozu na syntézu fosgenu se uvažuje o využtí nového typu katalyzátoru. Předpokládá se použtí stávajícího reaktoru. Parametry reaktoru, který je k dspozc jsou následující: Trubkový reaktor o objemu 4 L, maxmální provozní tlak 3 kpa a provozní teplota 5 o C. 6

7 Dále je známo množství nástřku reakční směs a její složení: F.244 mol s, yco y Cl 2.5. Syntéza fosgenu probíhá podle následující rovnce CO(A) + Cl 2 (B) COCl 2 (C). (24) Knetcká rovnce byla určena na základě platnost předpokladu ustáleného stavu (SSH), r V kc A c 3/2 B. (25) V lteratuře byla nalezena data popsující knetcké expermenty provedené na dvou různých typech katalyzátoru, mající stejnou sypnou hustotu. V první laboratoř použl katalyzátor α a naměřl závslost poklesu celkového tlaku v BATCH reaktoru (o konstantním objemu) během reakce 24. Teplota expermentu byla 423 K, reaktor byl na počátku natlakován na 6 kpa a obsahoval ekvmolární směs CO a Cl 2. Naměřená data jsou uvedena v tabulce. V druhé laboratoř použl katalyzátor β a naměřl závslost konverze CO na době zdržení v trubkovém reaktoru o objemu 2 ml. Teplota v reaktoru byla udržována na Tabulka : Tabulka naměřených dat pro syntézu fosgenu na dvou různých typech katalyzátoru (α a β). Kat. α, BATCH Kat. β, PFR t / s p / Pa t r / s X A K a tlak na 3 kpa. Nástřk se skládal z ekvmolární směs CO a Cl 2. Naměřená data jsou uvedena v tabulce. Vypočtěte konverz CO na výstupu z navrhovaného průmyslového reaktoru pro oba typy katalyzátoru (α a β). k α,batch. 3 (m 3 mol ) 3/2 s, X CO,α.33 k β,pfr (m 3 mol ) 3/2 s, X CO,β.965 Nápověda: Řešení ntegrálu X ((2 X)/( X))5/2 dx pro PFR 2 ( x ) x x 2 () x 5 ln 2 ( x + ) 4 5 ln + ) x 4 ( 7

8 Příklad 3.6 Ústav anorgancké technologe: Aplkovaná reakční knetka - cvčení 3 Látka B dmerzuje podle schématu 2B R. Reakce probíhá za teploty 6 K v plynné fáz a je provozována v dskontnuálním vsádkovém reaktoru s konstantním objemem. Reaktor je na počátku naplněn pouze látkou B za tlaku.5 bar. Reakční rychlost je popsána vztahem r V kp 2 B, (26) kde k je mol m 3 Pa 2 s. Jaké bude složení reakční směs a celkový tlak po uplynutí jedné hodny? x B.6, p.6 bar Příklad 3.7 V průtočném reaktoru s pístovým tokem probíhá v kapalné fáz vratná reakce A B, jejíž rychlost je popsána následující knetckou rovncí r V k C A k 2 C B, (27) kde k je.94 h a k 2 je.2 h. Koncentrace složek na vstupu je: C A 9.22 kmol m 3, C B.67 kmol m 3. Vypočtěte objem reaktoru pokud je nástřk.5 m 3 h a je požadována produkce.4 kmol h látky B. Teplota, tlak a hustota reakční směs je konstantní v celém reaktoru. V R.47 m 3 Příklad 3.8 Rozklad azoxdu na dusík a kyslík probíhá podle rovnce 2N 2 O 2N 2 + O 2, v plynné fáz ve vsádkovém reaktoru s konstantním objemem. Teplota v reaktoru je udržována konstantní na hodnotě 2 K. Počáteční tlak v reaktoru je kpa a je naplněn pouze azoxdem. Knetka rozkladné reakce je druhého řádu a rychlostní konstanta je př výše uvedené teplotě rovna.98 3 m 3 mol s. Za jakou dobu stoupne tlak v reaktoru na 45 kpa? Uvažujte deální chování plynů. t 34 s 8

9 Příklad 3.9 Ústav anorgancké technologe: Aplkovaná reakční knetka - cvčení 3 V zotermním-zobarckém trubkovém reaktoru probíhá v plynné fáz následující systém reakcí 2A B r V, k CA 2 B C r V,2 k 2 C B. Rychlostní konstanty uvedených reakcí jsou [ k m 3 mol 8.73 exp 2 ] s RT [ k exp 8 ] s RT Teplota v reaktoru je 623 K a tlak 5 kpa. Nástřk se skládá pouze ze složky A a je roven 2.3 mol s. Navrhněte opatření s cílem zajstt co nejvyšší koncentrac látky B na výstupu z reaktoru. Své úvahy podpořte výpočty! Př uvedených podmínkách V R.5 m 3 Příklad 3. Reakce probíhá v plynné fáz v deálně míchaném vsádkovém reaktoru př konstantní teplotě 5 K A + B C. Na počátku je v reaktoru přítomna eqvmolární směs látek A a B. Počáteční tlak v reaktoru je je 6.4 atm a rychlost reakce je vyjádřena vztahem r V kc 2 Ac B, kde rychlostní konstanta k dm 6 mol s. Vypočtěte čas potřebný k dosažení 9% konverze látky A a taktéž celkový tlak v reaktoru př stejné konverz.... 9

Úloha 1-39 Teplotní závislost rychlostní konstanty, reakce druhého řádu... 11

Úloha 1-39 Teplotní závislost rychlostní konstanty, reakce druhého řádu... 11 1. ZÁKLADNÍ POJMY Úloha 1-1 Různé vyjádření reakční rychlosti rychlosti přírůstku a úbytku jednotlivých složek... 2 Úloha 1-2 Různé vyjádření reakční rychlosti změna celkového látkového množství... 2 Úloha

Více

5. CHEMICKÉ REAKTORY

5. CHEMICKÉ REAKTORY 5. CHEMICÉ REAORY 5.1 IZOERMNÍ REAORY... 5.1.1 Diskontinuální reaktory... 5.1. Průtočné reaktory... 5.1..1 Průtočné reaktory s pístovým tokem... 5.1.. Průtočné reaktory s dokonale promíchávaným obsahem...4

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r.

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. L A B O R A T O Ř O B O R U CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. Ústav organcké technologe (111) Ing. J. Trejbal, Ph.D. budova A, místnost č. S25b Název práce : Vedoucí práce: Umístění práce: Rektfkace

Více

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10 Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP Termodynamika Příklad 1 Stláčením ideálního plynu na 2/3 původního objemu vzrostl při stálé teplotě jeho tlak na 15 kpa.

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce:

LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce: LABORATOŘ OBORU I F Testování katalyzátorů pro přípravu prekurzorů vonných látek Vedoucí práce: Umístění práce: Ing. Eva Vrbková F07, F08 1 ÚVOD Hydrogenace je uplatňována v nejrůznějších odvětvích chemických

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

N A = 6,023 10 23 mol -1

N A = 6,023 10 23 mol -1 Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ Zadání: 1. Stanovte oxygenační kapacitu a procento využití kyslíku v čisté vodě pro provzdušňovací porézní element instalovaný v plexi válci následujících rozměrů:

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm

Více

1. Termochemie - příklady 1. ročník

1. Termochemie - příklady 1. ročník 1. Termochemie - příklady 1. ročník 1.1. Urči reakční teplo reakce: C (g) + 1/2 O 2 (g) -> CO (g), ΔH 1 =?, známe-li C (g) + O 2 (g) -> CO 2 (g) ΔH 2 = -393,7 kj/mol CO (g) + 1/2 O 2 -> CO 2 (g) ΔH 3 =

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

DOMÁCÍ HASICÍ PŘÍSTROJ (ČÁST 1)

DOMÁCÍ HASICÍ PŘÍSTROJ (ČÁST 1) DOMÁCÍ HASICÍ PŘÍSTROJ (ČÁST 1) Hasicí přístroje se dělí podle náplně. Jedním z typů je přístroj používající jako hasicí složku oxid uhličitý. Přístroje mohou být různého provedení, ale jedno mají společné:

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

Složení soustav (roztoky, koncentrace látkového množství)

Složení soustav (roztoky, koncentrace látkového množství) VZOROVÉ PŘÍKLADY Z CHEMIE A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava Doporučená literatura z chemie: Prakticky jakákoliv celostátní učebnice

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE () A Určování binárních difúzních koeficientů ve Stefanově trubici Vedoucí práce: Ing. Pavel Čapek, CSc. Umístění práce: laboratoř 74 Určování binárních difúzních

Více

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI 215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.

Více

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové ymnázium Přírodní vědy moderně

Více

Ú L O H Y. kde r je rychlost reakce vyjádřená úbytkem látkového množství kyslíku v molech v objemu 1 m

Ú L O H Y. kde r je rychlost reakce vyjádřená úbytkem látkového množství kyslíku v molech v objemu 1 m Ú L O H Y 1. Různé vyjádření reakční rychlosti; Př. 9.1 Určete, jaké vztahy platí mezi rychlostmi vzniku a ubývání jednotlivých složek reakce 4 NH 3 (g) + 5 O (g) = 4 NO(g) + 6 H O(g). Různé vyjádření

Více

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku.

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. Koncentrace roztoků Hmotnostní zlomek w Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. w= m A m s m s...hmotnost celého roztoku, m A... hmotnost rozpuštěné látky Hmotnost roztoku

Více

Využití faktorového plánování v oblasti chemických specialit

Využití faktorového plánování v oblasti chemických specialit LABORATOŘ OBORU I T Využití faktorového plánování v oblasti chemických specialit Vedoucí práce: Ing. Eliška Vyskočilová, Ph.D. Umístění práce: FO7 1 ÚVOD Faktorové plánování je optimalizační metoda, hojně

Více

5. Jaká bude koncentrace roztoku hydroxidu sodného připraveného rozpuštěním 0,1 molu látky v baňce o objemu 500 ml. Vyber správný výsledek:

5. Jaká bude koncentrace roztoku hydroxidu sodného připraveného rozpuštěním 0,1 molu látky v baňce o objemu 500 ml. Vyber správný výsledek: ZÁKLADNÍ CHEMICKÉ VÝPOČTY II. autoři a obrázky: Mgr. Hana a Radovan Sloupovi 1. Ve třech válcích byly plyny, prvky. Válce měly obsah 3 litry. Za normálních podmínek obsahoval první válec bezbarvý plyn

Více

CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK

CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK Význam stechiometrických koeficientů 2 H 2 (g) + O 2 (g) 2 H 2 O(l) Počet reagujících částic 2 molekuly vodíku reagují s 1 molekulou kyslíku za vzniku

Více

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B)

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B) Hmotnostní jednotka: Atomová relativní hmotnost: Molekulová relativní hmotnost: Molární hmotnost: Hmotnost u = 1,66057.10-27 kg X) Ar(X) = m u Y) Mr(Y) = m u Mr(AB)= Ar(A)+Ar(B) m M(Y) = ; [g/mol] n M(Y)

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

10 Bioreaktor. I Základní vztahy a definice. Lenka Schreiberová, Milan Jahoda, Petr Kočí (revize 2016-02-19)

10 Bioreaktor. I Základní vztahy a definice. Lenka Schreiberová, Milan Jahoda, Petr Kočí (revize 2016-02-19) 0 Boreaktor Lenka Schreberová, Mlan Jahoda, Petr Kočí (revze 6-02-9) I Základní vztahy a defnce Chemcké reaktory jsou zařízení, v nchž probíhá chemcká přeměna surovn na produkty. Vsádkové reaktory jsou

Více

1. Látkové soustavy, složení soustav

1. Látkové soustavy, složení soustav , složení soustav 1 , složení soustav 1. Základní pojmy 1.1 Hmota 1.2 Látky 1.3 Pole 1.4 Soustava 1.5 Fáze a fázové přeměny 1.6 Stavové veličiny 1.7 Složka 2. Hmotnost a látkové množství 3. Složení látkových

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2.

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2. Roztoky směsi dvou a více látek jsou homogenní (= nepoznáte jednotlivé částečky roztoku - částice jsou menší než 10-9 m) nejčastěji se rozpouští pevná látka v kapalné látce jedna složka = rozpouštědlo

Více

- 1 - Obvodová síla působící na element lopatky větrné turbíny

- 1 - Obvodová síla působící na element lopatky větrné turbíny - - Tato Příloha 898 je sočástí článk č.. Větrné trbíny a ventlátory, http://www.transformacntechnologe.cz/vetrne-trbny-a-ventlatory.html. Odvození základních rovnc aerodynamckého výpočt větrné trbíny

Více

Chemie - cvičení 2 - příklady

Chemie - cvičení 2 - příklady Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká

Více

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel Základy větrání stájových objektů Stájové objekty: objekty otevřené skot, ovce, kozy apod. - přístřešky chránící ustájená zvířata pouze před přímým náporem větru, před dešťovým a sněhovým srážkam, v létě

Více

Chemické výpočty. = 1,66057. 10-27 kg

Chemické výpočty. = 1,66057. 10-27 kg 1. Relativní atomová hmotnost Chemické výpočty Hmotnost atomů je velice malá, řádově 10-27 kg, a proto by bylo značně nepraktické vyjadřovat ji v kg, či v jednontkách odvozených. Užitečnější je zvolit

Více

Úlohy z fyzikální chemie

Úlohy z fyzikální chemie Úlohy z fyzikální chemie Bakalářský kurz Kolektiv ústavu fyzikální chemie Doc. Ing. Lidmila Bartovská, CSc., Ing. Michal Bureš, CSc., Doc. Ing. Ivan Cibulka, CSc., Doc. Ing. Vladimír Dohnal, CSc., Doc.

Více

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Reaktory pro systém plyn-kapalina

Reaktory pro systém plyn-kapalina Reaktory pro systém plyn-kapalina Vypracoval : Jan Horáček FCHT, ústav 111 Prováděné reakce Rychlé : všechen absorbovaný plyn zreaguje již na fázovém rozhraní (př. : absorpce kyselých plynů : CO 2, H 2

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VÝPOČTY Z CHEMICKÝCH ROVNIC VY_32_INOVACE_03_3_18_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VÝPOČTY Z CHEMICKÝCH

Více

AGENDA. převody jednotek koncentrace ředení osmolarita, osmotický tlak

AGENDA. převody jednotek koncentrace ředení osmolarita, osmotický tlak AGENDA převody jednotek koncentrace ředení osmolarita, osmotický tlak PŘEVODY JEDNOTEK jednotky I. základní Fyzikální veličina Jednotka Značka Délka l metr m Hmotnost m kilogram kg Čas t sekunda s Termodynamická

Více

Řešené úlohy ze statistické fyziky a termodynamiky

Řešené úlohy ze statistické fyziky a termodynamiky Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první

Více

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ ALEŠ KAJZAR BRNO 2015 Obsah 1 Hmotnostní zlomek 1 1.1 Řešené příklady......................... 1 1.2 Příklady k procvičení...................... 6 2 Objemový zlomek 8 2.1

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Výpočty ph roztoků kyselin a zásad ph silných jednosytných kyselin a zásad. Pro výpočty se uvažuje, že silné kyseliny a zásady jsou úplně disociovány.

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

Značí se A r Určí se z periodické tabulky. Jednotkou je 1/12 hmotnosti atomu uhlíku. A r (H) = 1 A r (O) = 16

Značí se A r Určí se z periodické tabulky. Jednotkou je 1/12 hmotnosti atomu uhlíku. A r (H) = 1 A r (O) = 16 CHEMICKÉ VÝPOČTY Značí se A r Určí se z periodické tabulky. Jednotkou je 1/12 hmotnosti atomu uhlíku. A r (H) = 1 A r (O) = 16 12 6 C Značí se M r Vypočítá se jako součet relativních atomových hmotností

Více

Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1. Úkol 1. Ředění roztoků. Teoretický úvod - viz návod

Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1. Úkol 1. Ředění roztoků. Teoretický úvod - viz návod Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1 Teoretický úvod Uveďte vzorec pro: výpočet směrodatné odchylky výpočet relativní chyby měření [%] Použitý materiál, pomůcky a přístroje Úkol 1. Ředění

Více

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211 10..15 Úlohy na hledání etrémů Předpoklady: 1011 Pedagogcká poznámka: Kromě příkladů a není pro studenty problém vypočítat dervace funkcí. Problémem je hlavně nalezení těchto funkčních závslostí, tam postupujeme

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Roztoky výpočty koncentrací autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci TRANSPORTNÍ MECHANISMY Transport látek z vnějšího prostředí do buňky a naopak se může uskutečňovat dvěma cestami - aktivním a pasivním transportem. Pasivním transportem rozumíme přenos látek ve směru energetického

Více

Laboratorní cvičení z kinetiky chemických reakcí

Laboratorní cvičení z kinetiky chemických reakcí Laboratorní cvičení z kinetiky chemických reakcí LABORATORNÍ CVIČENÍ 1. Téma: Ovlivňování průběhu reakce změnou koncentrace látek. podmínek průběhu reakce. Jednou z nich je změna koncentrace výchozích

Více

Matematika IV, Numerické metody

Matematika IV, Numerické metody Interaktvní sbírka příkladů pro předmět Matematka IV, Numercké metody Josef Dalík, Veronka Chrastnová, Oto Přbyl, Hana Šafářová, Pavel Špaček Vysoké učení techncké v Brně, Fakulta stavební Ústav matematky

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Hospodářské výpočty I Společná pro celou sadu

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),

Více

IV. Chemické rovnice A. Výpočty z chemických rovnic 1

IV. Chemické rovnice A. Výpočty z chemických rovnic 1 A. Výpočty z chemických rovnic 1 4. CHEMICKÉ ROVNICE A. Výpočty z chemických rovnic a. Výpočty hmotností reaktantů a produktů b. Výpočty objemů reaktantů a produktů c. Reakce látek o různých koncentracích

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Fyzikální parametry oleje: dynamická viskozita je 8 mpa s a hustota 850 kg m 3.

Fyzikální parametry oleje: dynamická viskozita je 8 mpa s a hustota 850 kg m 3. Ocelová deska o ploše 0,2 m 2 se pohybuje rovnoměrným přímočarým pohybem na tenkém olejovém filmu rychlostí 0,1 m s 1. Tloušt ka filmu je 2 mm. Vypočtěte sílu F, kterou musíte působit na desku, abyste

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Příprava roztoků a měření ph autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Chemie paliva a maziva cvičení, pracovní sešit, (II. část).

Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Ing. Eliška Glovinová Ph.D. Tato publikace je spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Byla vydána

Více

Vlhký vzduch a jeho stav

Vlhký vzduch a jeho stav Vlhký vzduch a jeho stav Příklad 3 Teplota vlhkého vzduchu je t = 22 C a jeho měrná vlhkost je x = 13, 5 g kg 1 a entalpii sv Určete jeho relativní vlhkost Řešení Vyjdeme ze vztahu pro měrnou vlhkost nenasyceného

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

VYHODNOCOVÁNÍ CHROMATOGRAFICKÝCH DAT

VYHODNOCOVÁNÍ CHROMATOGRAFICKÝCH DAT VYHDNCVÁNÍ CHRMATGRAFICKÝCH DAT umístění práce: laboratoř č. S31 vedoucí práce: Ing. J. Krupka 1. Cíl práce: Seznámení s možnostmi, které poskytuje GC chromatografie pro kvantitativní a kvalitativní analýzu.

Více

CENÍK 800-2 ZVLÁŠTNÍ ZAKLÁDÁNÍ OBJEKTŮ

CENÍK 800-2 ZVLÁŠTNÍ ZAKLÁDÁNÍ OBJEKTŮ CENOVÉ PODMÍNKY 2016/ I. CENÍK 800-2 ZVLÁŠTNÍ ZAKLÁDÁNÍ OBJEKTŮ I. OBECNÉ PODMÍNKY CENÍKU 1. ČLENĚNÍ A PLATNOST CENÍKU 11. Členění Ceník obsahuje položky pro ocenění stavebních prací (dále jen položky

Více

VLIV ROZPOUŠTĚDLA NA KINETIKU HYDROGENACE ALKYLANTHRACHINONŮ

VLIV ROZPOUŠTĚDLA NA KINETIKU HYDROGENACE ALKYLANTHRACHINONŮ VLIV ROZPOUŠTĚDLA NA KINETIKU HYDROGENACE ALKYLANTHRACHINONŮ 1. Úvod Většina technicky prováděných chemických reakcí je nějakým způsobem katalyzována. Katalyzátor zvýší rychlost žádané reakce a tím i selektivitu.

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3

Více

(-NH-CO-) Typy polyamidů

(-NH-CO-) Typy polyamidů POLYAMIDY (NYLONY) Typy polyamidů (-NH-CO-) AB typ Ty jsou vyráběny polymerací laktamů nebo ω- aminokyselin, kde A označuje aminovou skupinu a B karboxylovou skupinu a obě jsou částí stejné monomerní molekuly.

Více

Fyzikální principy uplatňované v anesteziologii a IM

Fyzikální principy uplatňované v anesteziologii a IM Fyzikální principy uplatňované v anesteziologii a IM doc. Ing. Karel Roubík, Ph.D. ČVUT v Praze, Fakulta biomedicínského inženýrství e mail: roubik@fbmi.cvut.cz, tel.: 603 479 901 Tekutiny: plyny a kapaliny

Více

Technická specifikace přístrojů k zadávací dokumentaci Plynové chromatografy a analyzátory k pokusným jednotkám pro projekt UniCRE

Technická specifikace přístrojů k zadávací dokumentaci Plynové chromatografy a analyzátory k pokusným jednotkám pro projekt UniCRE Příloha č. 2 Technická specifikace přístrojů k zadávací dokumentaci Plynové chromatografy a analyzátory k pokusným jednotkám pro projekt UniCRE Část B AN1, AN2 Analyzátor pro stanovení oxidu uhelnatého,

Více

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu: Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a

Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a Domácí práce č.1 Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a motor beží pri 5000ot min 1 s výkonem 1.5kW. Motor má vrtání 38 mm a zdvih

Více

Rozklad přírodních surovin minerálními kyselinami

Rozklad přírodních surovin minerálními kyselinami Laboatoř anoganické technologie Rozklad příodních suovin mineálními kyselinami Rozpouštění příodních mateiálů v důsledku pobíhající chemické eakce patří mezi základní technologické opeace řady půmyslových

Více

Ventily pro otopná tělesa

Ventily pro otopná tělesa EN - Přímý ventil (D) Rohový ventil (E) entily pro otopná tělesa D E pro -trubkové otopné soustavy, stavební délka podle normy DIN Pro regulaci prostorové teploty v jednotlivých místnostech entily pro

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

Přímé měření produktů methan, ethan, ethen při reduktivní dehalogenaci kontaminované vody

Přímé měření produktů methan, ethan, ethen při reduktivní dehalogenaci kontaminované vody Přímé měření produktů methan, ethan, ethen při reduktivní dehalogenaci kontaminované vody Eva Kakosová, Vojtěch Antoš, Lucie Jiříčková, Pavel Hrabák, Miroslav Černík, Jaroslav Nosek Úvod Motivace Teoretický

Více

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA HYDROTATIKA A AEROTATIKA Implementace ŠVP

Více

CHEMIE. Pracovní list č. 4 - žákovská verze Téma: Tepelné zabarvení chemických reakcí. Mgr. Kateřina Dlouhá. Student a konkurenceschopnost

CHEMIE. Pracovní list č. 4 - žákovská verze Téma: Tepelné zabarvení chemických reakcí. Mgr. Kateřina Dlouhá. Student a konkurenceschopnost www.projektsako.cz CHEMIE Pracovní list č. 4 - žákovská verze Téma: Tepelné zabarvení chemických reakcí Lektor: Projekt: Reg. číslo: Mgr. Kateřina Dlouhá Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075

Více

a) Jaká je hodnota polytropického exponentu? ( 1,5257 )

a) Jaká je hodnota polytropického exponentu? ( 1,5257 ) Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.

Více

Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech

Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech 1 Princip Principem zkoušky je stanovení vodného výluhu při různých přídavcích kyseliny dusičné nebo hydroxidu sodného a následné

Více