3 Základní modely reaktorů

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "3 Základní modely reaktorů"

Transkript

1 3 Základní modely reaktorů Rovnce popsující chování reakční směs v reaktoru (v čase a prostoru) vycházejí z blančních rovnc pro hmotu, energ a hybnost. Blanc lze formulovat pro extenzvní velčnu B v obecném elementu za časový úsek t takto Množství vstupující elementu t B do za + ( Zdroj B v elementu ) Množství vystupující elementu t B z za + Akumulace B v elementu Blancovanou extenzvní velčnou rozumíme například hmotnost, látkové množství, teplo, hybnost. 3. Vsádkové reaktory (BATCH) () P F F }{{} + ν k, V r V,k dv n t, (2) kde F je molární tok složky, ν k, je stechometrcký koefcent složky v k-té reakc, r V je reakční rychlost k-té reakce vztaženou na objemovou jednotku a n je látkové množství složky. Pro konstantní objem reaktoru V V dn d(n /V ) dc NR ν k, r V,k. (3)

2 Pro konstantní celkový tlak v reaktoru V dn V d(c V ) dc dc + c d ln V ν k, r V,k. (4) d ln V ν k, r V,k c (5) 3.2 Reaktory s pístovým tokem (PFR) V V + dv F F F (V +dv ) F (V ) }{{} výstup-vstup d F dv dj dz d(vc ) dz ν k, r V,k dv, (6) ν k, r V,k (7) ν k, r V,k (8) ν k, r V,k (9) 2

3 3.3 Průtočné, deálně míchané reaktory (CSTR) F F Ve staconárním stavu platí pro průtočný, deálně míchaný reaktor tento vztah F F }{{} + ν k, r V,k V R. () vstup-výstup Matematcká vsuvka - Eulerova metoda řešení obyčejných dferencálních rovnc Máme obyčejnou dferencální rovnc s počáteční podmínkou y f(x, y) () y(a) y (2) Zvolíme dskrétní množnu bodů (uzlů sítě) a x < x < x 2 <... < x n b. Obvykle volíme tzv. ekvdstantní sít x + x h;,,..., n, kde h je krok metody. Na této sít budeme hledat aproxmace y n přesného řešení funkce y(x n ) v bodě x n pomocí hodnot y n, y n 2,..., y n k (resp. z předchozích kroků). Je-l použto jen předchozího kroku (k ), metoda se nazývá jednokroková. Vyjádříme-l dervac y v bodě x n pomocí dference x n, x n získáme Eulerovu metodu. y n y n + f(x n, y n )(x n x n ) y n + f(x n, y n )h (3) 3

4 Obrázek : Chyba př výpočtu pomocí Eulerovy metody. h je délka kroku Eulerovy metody a e je chyba metody Příklad 3. V zotermním trubkovém reaktoru probíhá reakce 2A B Reakce probíhá v kapalné faz a rychlost toku reakční směs je rovna.5 m.s můžeme j považovat za konstantní podél celého reaktoru. Vznk látky B popsuje rychlostní rovnce r B ν B kc 2 A. Rychlostní konstanta je rovna.3 m3.kmol.s a délka reaktoru je 2.4 m. Na vstupu do reaktoru platí c A () 2kmol.m 3, c B () kmol.m 3, c C () 2kmol.m 3. Odvod te rovnce popsující koncentrační profl složek A, B, C podél reaktoru a vypočtěte konverz klíčové složky A na výstupu z reaktoru. Porovnejte řešení obdržené analytcky a numercky (například Eulerovou metodou) Řešení Sestavíme blanční tabulku Složka z z L A c A c A c A ν A νa c A X A B c B c B c B ν B νa c A X A C c C c C c C ν C νa c A X A Pro výpočet použjeme dferencální rovnc pro trubkový reaktor s konstantní rychlostí proudění reakční směs (vz. rovnce 9) v následujícím tvaru Pro rychlost reakce r V B) dc dz v ν r V. (4) platí (konkrétně v našem případě známe-l rychlost tvorby složky r V r B /ν B kc 2 A. (5) 4

5 Dosadíme-l do dferencální rovnce 4 za obecnou složku složku A dx A dz ν Ar V. (6) vc A Chceme-l získat analytcké řešení dferencální rovnce 6, provedeme separac proměnných a výslednou rovnc ntegrujeme vc A ν A f r V dx A L dz, (7) kde f je neznámá konverze (kterou chceme zjstt) a L je délka reaktoru. Dosadíme-l za r V z rovnce 5 a za c A z blanční tabulky obdržíme v kc A ν A a ntegrací v daných mezích získáme f v kc A ν A ( X A ) 2 dx A L dz, (8) ( ) f L. (9) Úpravou získáme vztah pro f f v v Lkc A ν A. (2) Konverze složky A na výstupu z reaktoru je X A.85 Příklad 3.2 Ethylacetát se získává esterfkací kyselny octové ethanolem v BATCH zotermním reaktoru. Stechometre reakce je následující CH 3 COOH(A) + CH 2 H 5 OH(B) CH 3 COOC 2 H 5 (R) + H 2 O(S) Reakční směs v reaktoru se skládá z 5 kg m 3 etanolu a 25 kg m 3 kyselny octové. Zbytek směs tvoří voda a stopy HCl, která zde plní funkc katalyzátoru. Hustota reakční směs je 4 kg m 3 a předpokládá se, že během rekce zůstává konstantní Jelkož esterfkace je vratná reakce, je její rychlost popsána těmto vztahy r k c A c B, (2) r 2 k 2 c R c S, (22) r r r 2. (23) 5

6 Hodnoty rychlostních konstant př 373 K jsou k 8 9 m 3 mol s, k m 3 mol s. Reakce je zastavena př konverz X A.3. Pokud je potřeba počítat 3 mnut na vypuštění, vyčštění a napuštění reaktoru, určete objem reaktoru potřebného k produkc t za den. V 7 m 3 Příklad 3.3 Ve vsádkovém, deálně míchaném reaktoru s konstantním objemem probíhá za konstantní teploty a tlaku reakce aa + bb ss. Rychlost reakce je popsána rovncí r V kc α A cβ A, kde α a β. Vyjádřete obecně (v dferencální formě) změnu konverze klíčové složky A v čase. dx A akc (α ) A Příklad 3.4 ( ( XA ) α (c B b a c AX A ) β) Anlín (A) je vyráběn hydrogenací ntrobenzenu (N) na měděném katalyzátoru. Reakce probíhá v plynné fáz v trubkovém reaktoru za atmosférckého tlaku a teploty 5 o C. Reakční rychlost vysthuje následující rovnce r V k(t )CN.58 mol m 3 h, ( ) 2958 k(t ).56 7 exp, T kde T je teplota v K. Hydrogenace je vedena v přebytku vodíku, molární zlomek ntrobenzenu v nástřku je y N.67. Objemový průtok nástřku je.6 m3 h (př normálních podmínkách, p kpa a T 273 K). Jaká bude konverze ntrobenzenu na výstupu pro reaktor dlouhý metr a o průměru 2.5 cm? X N.98 Příklad 3.5 V provozu na syntézu fosgenu se uvažuje o využtí nového typu katalyzátoru. Předpokládá se použtí stávajícího reaktoru. Parametry reaktoru, který je k dspozc jsou následující: Trubkový reaktor o objemu 4 L, maxmální provozní tlak 3 kpa a provozní teplota 5 o C. 6

7 Dále je známo množství nástřku reakční směs a její složení: F.244 mol s, yco y Cl 2.5. Syntéza fosgenu probíhá podle následující rovnce CO(A) + Cl 2 (B) COCl 2 (C). (24) Knetcká rovnce byla určena na základě platnost předpokladu ustáleného stavu (SSH), r V kc A c 3/2 B. (25) V lteratuře byla nalezena data popsující knetcké expermenty provedené na dvou různých typech katalyzátoru, mající stejnou sypnou hustotu. V první laboratoř použl katalyzátor α a naměřl závslost poklesu celkového tlaku v BATCH reaktoru (o konstantním objemu) během reakce 24. Teplota expermentu byla 423 K, reaktor byl na počátku natlakován na 6 kpa a obsahoval ekvmolární směs CO a Cl 2. Naměřená data jsou uvedena v tabulce. V druhé laboratoř použl katalyzátor β a naměřl závslost konverze CO na době zdržení v trubkovém reaktoru o objemu 2 ml. Teplota v reaktoru byla udržována na Tabulka : Tabulka naměřených dat pro syntézu fosgenu na dvou různých typech katalyzátoru (α a β). Kat. α, BATCH Kat. β, PFR t / s p / Pa t r / s X A K a tlak na 3 kpa. Nástřk se skládal z ekvmolární směs CO a Cl 2. Naměřená data jsou uvedena v tabulce. Vypočtěte konverz CO na výstupu z navrhovaného průmyslového reaktoru pro oba typy katalyzátoru (α a β). k α,batch. 3 (m 3 mol ) 3/2 s, X CO,α.33 k β,pfr (m 3 mol ) 3/2 s, X CO,β.965 Nápověda: Řešení ntegrálu X ((2 X)/( X))5/2 dx pro PFR 2 ( x ) x x 2 () x 5 ln 2 ( x + ) 4 5 ln + ) x 4 ( 7

8 Příklad 3.6 Ústav anorgancké technologe: Aplkovaná reakční knetka - cvčení 3 Látka B dmerzuje podle schématu 2B R. Reakce probíhá za teploty 6 K v plynné fáz a je provozována v dskontnuálním vsádkovém reaktoru s konstantním objemem. Reaktor je na počátku naplněn pouze látkou B za tlaku.5 bar. Reakční rychlost je popsána vztahem r V kp 2 B, (26) kde k je mol m 3 Pa 2 s. Jaké bude složení reakční směs a celkový tlak po uplynutí jedné hodny? x B.6, p.6 bar Příklad 3.7 V průtočném reaktoru s pístovým tokem probíhá v kapalné fáz vratná reakce A B, jejíž rychlost je popsána následující knetckou rovncí r V k C A k 2 C B, (27) kde k je.94 h a k 2 je.2 h. Koncentrace složek na vstupu je: C A 9.22 kmol m 3, C B.67 kmol m 3. Vypočtěte objem reaktoru pokud je nástřk.5 m 3 h a je požadována produkce.4 kmol h látky B. Teplota, tlak a hustota reakční směs je konstantní v celém reaktoru. V R.47 m 3 Příklad 3.8 Rozklad azoxdu na dusík a kyslík probíhá podle rovnce 2N 2 O 2N 2 + O 2, v plynné fáz ve vsádkovém reaktoru s konstantním objemem. Teplota v reaktoru je udržována konstantní na hodnotě 2 K. Počáteční tlak v reaktoru je kpa a je naplněn pouze azoxdem. Knetka rozkladné reakce je druhého řádu a rychlostní konstanta je př výše uvedené teplotě rovna.98 3 m 3 mol s. Za jakou dobu stoupne tlak v reaktoru na 45 kpa? Uvažujte deální chování plynů. t 34 s 8

9 Příklad 3.9 Ústav anorgancké technologe: Aplkovaná reakční knetka - cvčení 3 V zotermním-zobarckém trubkovém reaktoru probíhá v plynné fáz následující systém reakcí 2A B r V, k CA 2 B C r V,2 k 2 C B. Rychlostní konstanty uvedených reakcí jsou [ k m 3 mol 8.73 exp 2 ] s RT [ k exp 8 ] s RT Teplota v reaktoru je 623 K a tlak 5 kpa. Nástřk se skládá pouze ze složky A a je roven 2.3 mol s. Navrhněte opatření s cílem zajstt co nejvyšší koncentrac látky B na výstupu z reaktoru. Své úvahy podpořte výpočty! Př uvedených podmínkách V R.5 m 3 Příklad 3. Reakce probíhá v plynné fáz v deálně míchaném vsádkovém reaktoru př konstantní teplotě 5 K A + B C. Na počátku je v reaktoru přítomna eqvmolární směs látek A a B. Počáteční tlak v reaktoru je je 6.4 atm a rychlost reakce je vyjádřena vztahem r V kc 2 Ac B, kde rychlostní konstanta k dm 6 mol s. Vypočtěte čas potřebný k dosažení 9% konverze látky A a taktéž celkový tlak v reaktoru př stejné konverz.... 9

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ ALEŠ KAJZAR BRNO 2015 Obsah 1 Hmotnostní zlomek 1 1.1 Řešené příklady......................... 1 1.2 Příklady k procvičení...................... 6 2 Objemový zlomek 8 2.1

Více

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku.

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. Koncentrace roztoků Hmotnostní zlomek w Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. w= m A m s m s...hmotnost celého roztoku, m A... hmotnost rozpuštěné látky Hmotnost roztoku

Více

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2.

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2. Roztoky směsi dvou a více látek jsou homogenní (= nepoznáte jednotlivé částečky roztoku - částice jsou menší než 10-9 m) nejčastěji se rozpouští pevná látka v kapalné látce jedna složka = rozpouštědlo

Více

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B)

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B) Hmotnostní jednotka: Atomová relativní hmotnost: Molekulová relativní hmotnost: Molární hmotnost: Hmotnost u = 1,66057.10-27 kg X) Ar(X) = m u Y) Mr(Y) = m u Mr(AB)= Ar(A)+Ar(B) m M(Y) = ; [g/mol] n M(Y)

Více

Úlohy z fyzikální chemie

Úlohy z fyzikální chemie Úlohy z fyzikální chemie Bakalářský kurz Kolektiv ústavu fyzikální chemie Doc. Ing. Lidmila Bartovská, CSc., Ing. Michal Bureš, CSc., Doc. Ing. Ivan Cibulka, CSc., Doc. Ing. Vladimír Dohnal, CSc., Doc.

Více

Ú L O H Y. kde r je rychlost reakce vyjádřená úbytkem látkového množství kyslíku v molech v objemu 1 m

Ú L O H Y. kde r je rychlost reakce vyjádřená úbytkem látkového množství kyslíku v molech v objemu 1 m Ú L O H Y 1. Různé vyjádření reakční rychlosti; Př. 9.1 Určete, jaké vztahy platí mezi rychlostmi vzniku a ubývání jednotlivých složek reakce 4 NH 3 (g) + 5 O (g) = 4 NO(g) + 6 H O(g). Různé vyjádření

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1. Úkol 1. Ředění roztoků. Teoretický úvod - viz návod

Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1. Úkol 1. Ředění roztoků. Teoretický úvod - viz návod Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1 Teoretický úvod Uveďte vzorec pro: výpočet směrodatné odchylky výpočet relativní chyby měření [%] Použitý materiál, pomůcky a přístroje Úkol 1. Ředění

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Chemie paliva a maziva cvičení, pracovní sešit, (II. část).

Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Ing. Eliška Glovinová Ph.D. Tato publikace je spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Byla vydána

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Roztoky výpočty koncentrací autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

IV. Chemické rovnice A. Výpočty z chemických rovnic 1

IV. Chemické rovnice A. Výpočty z chemických rovnic 1 A. Výpočty z chemických rovnic 1 4. CHEMICKÉ ROVNICE A. Výpočty z chemických rovnic a. Výpočty hmotností reaktantů a produktů b. Výpočty objemů reaktantů a produktů c. Reakce látek o různých koncentracích

Více

VYHODNOCOVÁNÍ CHROMATOGRAFICKÝCH DAT

VYHODNOCOVÁNÍ CHROMATOGRAFICKÝCH DAT VYHDNCVÁNÍ CHRMATGRAFICKÝCH DAT umístění práce: laboratoř č. S31 vedoucí práce: Ing. J. Krupka 1. Cíl práce: Seznámení s možnostmi, které poskytuje GC chromatografie pro kvantitativní a kvalitativní analýzu.

Více

Rozklad přírodních surovin minerálními kyselinami

Rozklad přírodních surovin minerálními kyselinami Laboatoř anoganické technologie Rozklad příodních suovin mineálními kyselinami Rozpouštění příodních mateiálů v důsledku pobíhající chemické eakce patří mezi základní technologické opeace řady půmyslových

Více

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce Termochemie Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona U = Q + W U změna vnitřní energie Q teplo W práce Teplo a práce dodané soustavě zvyšují její

Více

Laboratorní cvičení z kinetiky chemických reakcí

Laboratorní cvičení z kinetiky chemických reakcí Laboratorní cvičení z kinetiky chemických reakcí LABORATORNÍ CVIČENÍ 1. Téma: Ovlivňování průběhu reakce změnou koncentrace látek. podmínek průběhu reakce. Jednou z nich je změna koncentrace výchozích

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Vlhký vzduch a jeho stav

Vlhký vzduch a jeho stav Vlhký vzduch a jeho stav Příklad 3 Teplota vlhkého vzduchu je t = 22 C a jeho měrná vlhkost je x = 13, 5 g kg 1 a entalpii sv Určete jeho relativní vlhkost Řešení Vyjdeme ze vztahu pro měrnou vlhkost nenasyceného

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Základy chemické termodynamiky v příkladech

Základy chemické termodynamiky v příkladech Základy chemické termodynamiky v příkladech Karel Řehák, Ivan Cibulka a Josef Novák (8. října 2007) Tato učební pomůcka je primárně určena pro předmět Základy chemické termodynamiky, který je vyučován

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

CHEMIE výpočty. 5 z chemických ROVNIC. 1 vyučovací hodina chemie 9. ročník Mgr. Renata Zemková ZŠ a MŠ L. Kuby 48, České Budějovice

CHEMIE výpočty. 5 z chemických ROVNIC. 1 vyučovací hodina chemie 9. ročník Mgr. Renata Zemková ZŠ a MŠ L. Kuby 48, České Budějovice CHEMIE výpočty 5 z chemických ROVNIC 1 vyučovací hodina chemie 9. ročník Mgr. Renata Zemková ZŠ a MŠ L. Kuby 48, České Budějovice 1 definice pojmu a vysvětlení vzorové příklady test poznámky pro učitele

Více

Pozn.: Pokud není řečeno jinak jsou pod pojmem procenta míněna vždy procenta hmotnostní.

Pozn.: Pokud není řečeno jinak jsou pod pojmem procenta míněna vždy procenta hmotnostní. Sebrané úlohy ze základních chemických výpočtů Tento soubor byl sestaven pro potřeby studentů prvního ročníku chemie a příbuzných předmětů a nebyl nikterak revidován. Prosím omluvte případné chyby, překlepy

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:

Více

Chemie lambda příklady na procvičování výpočtů z rovnic

Chemie lambda příklady na procvičování výpočtů z rovnic Chemie lambda příklady na procvičování výpočtů z rovnic Příklady počítejte podle postupu, který vám lépe vyhovuje (vždy je více cest k výsledku, přes poměry, přes výpočty hmotností apod. V učebnici v kapitole

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

test zápočet průměr známka

test zápočet průměr známka Zkouškový test z FCH mikrosvěta 6. ledna 2015 VZOR/1 jméno test zápočet průměr známka Čas 90 minut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. U otázek označených symbolem? uvádějte

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x).

V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x). 3. FUNKCE NÁHODNÉ VELIINY as ke studu: 40 mnut Cíl: Po prostudování této kaptol budete umt transformovat náhodnou velnu na náhodnou velnu Y, je l mez tmto náhodným velnam vzájemn jednoznaný vztah VÝKLAD

Více

KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení. Ing. Miroslav Richter, PhD.

KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení. Ing. Miroslav Richter, PhD. KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení Ing. Miroslav Richter, PhD., EUR ING 2014 Materiálové bilance 3.5.1 Do tkaninového filtru vstupuje 10000

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Pracovní postupy k experimentům s využitím PC

Pracovní postupy k experimentům s využitím PC Inovace profesní přípravy budoucích učitelů chemie CZ..07/2.2.00/5.0324 Prof. PhDr. Martin Bílek, Ph.D. Pracovní postupy k experimentům s využitím PC (teplotní čidlo Vernier propojeno s PC) Stanovení tepelné

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Příprava oxidu měďnatého autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační číslo

Více

koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku.

koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku. 2.2.2 Slovní úlohy vedoucí na lineární rovnice III Předpoklady: 22 Pedagogická poznámka: Příklady na míchání směsí jsou do dvou hodin rozděleny schválně. Snažím se tak zvýšit šanci, že si hlavní myšlenku

Více

Ing. Jana Vápeníková: Látkové množství, chemické reakce, chemické rovnice

Ing. Jana Vápeníková: Látkové množství, chemické reakce, chemické rovnice Látkové množství Symbol: n veličina, která udává velikost chemické látky pomocí počtu základních elementárních částic, které látku tvoří (atomy, ionty, molekuly základní jednotkou: 1 mol 1 mol kterékoliv

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.79 Název DUM: Hydrostatický tlak

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-2-3-14 III/2-2-3-15 III/2-2-3-16 III/2-2-3-17 III/2-2-3-18 III/2-2-3-19 III/2-2-3-20 Název DUMu Ideální plyn Rychlost molekul plynu Základní rovnice pro tlak ideálního

Více

kde p je celkový tlak par nad vroucí kapalinou, u atmosférické destilace shodný s atmosférickým tlakem,

kde p je celkový tlak par nad vroucí kapalinou, u atmosférické destilace shodný s atmosférickým tlakem, Destilace diferenciální bilance a posouzení vlivu aparaturních dílů na složení destilátu Úvod: Diferenciální destilace je nejjednodušší metodou dělení kapalných směsí destilací. Její výsledky závisí na

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Relativní atomová hmotnost

Relativní atomová hmotnost Relativní atomová hmotnost 1. Jak se značí relativní atomová hmotnost? 2. Jaké jsou jednotky Ar? 3. Zpaměti urči a) Ar(N) b) Ar (C) 4. Bez kalkulačky urči, kolika atomy kyslíku bychom vyvážili jeden atom

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt

Více

Použití injektorů pro aeraci vody

Použití injektorů pro aeraci vody Dolejš P., Dobiáš P.: Použití injektorů pro aeraci vody, Zborník prednášok z XV. konferencie s medzinárodnou účasťou PITNÁ VODA, Trenčianské Teplice 8. - 10. října 2013, s. 97-102, VodaTím s.r.o, ISBN

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2 7 Tenze par kapalin Tenze par (neboli tlak sytých, případně nasycených par) je tlak v jednosložkovém systému, kdy je za dané teploty v rovnováze fáze plynná s fází kapalnou nebo pevnou. Tenze par je nejvyšší

Více

ODSTRAŇOVÁNÍ SÍRANŮ Z PRŮMYSLOVÝCH VOD

ODSTRAŇOVÁNÍ SÍRANŮ Z PRŮMYSLOVÝCH VOD ODSTRAŇOVÁNÍ SÍRANŮ Z PRŮMYSLOVÝCH VOD STRNADOVÁ N., DOUBEK O. VŠCHT Praha RACLAVSKÝ J. Energie a.s., Kladno Úvod Koncentrace síranů v povrchových vodách, které se využívají krom jiného jako recipienty

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Měření ph nápojů a roztoků

Měření ph nápojů a roztoků Měření ph nápojů a roztoků vzorová úloha (ZŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Kyselý nebo zásaditý roztok? Proč je ocet považován za kyselý roztok? Ocet obsahuje nadbytek (oxoniových kationtů).

Více

CHEMICKÉ VÝPOČ TY S LOGIKOU II

CHEMICKÉ VÝPOČ TY S LOGIKOU II OSTRAVSKÁ UNIVERZITA [ TADY KLEPNĚ TE A NAPIŠTE NÁZEV FAKULTY] FAKULTA CHEMICKÉ VÝPOČ TY S LOGIKOU II TOMÁŠ HUDEC OSTRAVA 2003 Na této stránce mohou být základní tirážní údaje o publikaci. 1 OBSAH PŘ EDMĚ

Více

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT

Více

Mikroekonomie. Minulá přednáška - podstatné. Náklady firmy v krátkém a dlouhém období. Důležité vzorce. Náklady v krátkém období - graficky

Mikroekonomie. Minulá přednáška - podstatné. Náklady firmy v krátkém a dlouhém období. Důležité vzorce. Náklady v krátkém období - graficky Minulá přednáška - podstatné Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Typologie nákladů firmy Náklady v krátkém období Náklady v dlouhém období Důležité vzorce TC = FC + VC AC =

Více

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku))

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) OBSAH: 1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) 2) ŘEDĚNÍ ROZTOKŮ ( m 1 w 1 + m 2 w 2 = (m 1 + m 2 ) w ) 3) MOLÁRNÍ KONCENTRACE (c = n/v) 12 příkladů řešených + 12příkladů s

Více

LABORATORNÍ CVIČENÍ Z FYZIKÁLNÍ

LABORATORNÍ CVIČENÍ Z FYZIKÁLNÍ MASARYKOVA UNIVERZITA FAKULTA PŘÍRODOVĚDECKÁ LABORATORNÍ CVIČENÍ Z FYZIKÁLNÍ CHEMIE ÚLOHY ZÁKLADNÍHO PRAKTIKA PRO POSLUCHAČE VYSOKOŠKOLSKÉHO STUDIA ODBORNÉ A UČITELSKÉ CHEMIE KOLEKTIV: PAVEL BROŽ MIROSLAV

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Specifikace přístrojů pro laboratoř katalyzátorů

Specifikace přístrojů pro laboratoř katalyzátorů Specifikace přístrojů pro laboratoř katalyzátorů Uchazeč použije části odpovídající jeho nabídce. V tabulkách do sloupců doplní podle povahy parametru buď ANO/NE (případně jiný slovní údaj) nebo konkrétní

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Konfigurace polí se sondami

Konfigurace polí se sondami Konfigurace polí se sondami Určení objemového průtoku: Vycházíme s následujícího vzorku: Q = m x c x t Takým způsobem vypočítáme oběhové množství v zemině. Q = Množství tepla kwh m = Hmota (oběhové množství)

Více

ANODA KATODA elektrolyt:

ANODA KATODA elektrolyt: Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -

Více

SLOŽENÍ ROZTOKŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 4. 2012. Ročník: osmý

SLOŽENÍ ROZTOKŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 4. 2012. Ročník: osmý Autor: Mgr. Stanislava Bubíková SLOŽENÍ ROZTOKŮ Datum (období) tvorby: 12. 4. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Směsi 1 Anotace: Žáci se seznámí se složením roztoku a s veličinou

Více

Experimenty se systémem Vernier

Experimenty se systémem Vernier Experimenty se systémem Vernier Izotermický děj Petr Kácovský, KDF MFF UK Tyto experimenty vznikly v rámci diplomové práce Využívání dataloggerů ve výuce fyziky, obhájené v květnu 2012 na MFF UK v Praze.

Více

Měření tlaku v závislosti na nadmořské výšce KET/MNV

Měření tlaku v závislosti na nadmořské výšce KET/MNV Měření tlaku v závislosti na nadmořské výšce KET/MNV Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P 1. Zadání Změřte hodnotu atmosférického tlaku v různých nadmořských výškách (v několika patrech

Více

ě č č Č Č Í ěř ý é ý ě é á á ř á Č á á ě é Č á á šť ř ž Č á á Š ě á á ě č Č Č ž é á ě é á ýš č á á ů é ýš č é á ě é á á ě é á é á š č é ř ú ě á ů á á á é ě č ě á ě ě š á á ř é á é č ý áá é ě š ř ů á ř

Více

TUNEL PANENSKÁ Za použití vizualizace požárního větrání horkým kouřem pomocí aerosolu s reálným energetickým zdrojem

TUNEL PANENSKÁ Za použití vizualizace požárního větrání horkým kouřem pomocí aerosolu s reálným energetickým zdrojem Komplexní zkouška požárně bezpečnostních zařízení tunelu na Dálnici D8 Praha Ústí nad Labem státní TUNEL PANENSKÁ Za použití vizualizace požárního větrání horkým kouřem pomocí aerosolu s reálným energetickým

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část II. - 9. 3. 2013 Chemické rovnice Jak by bylo možné

Více

Analýza chování servopohonů u systému CNC firmy Siemens

Analýza chování servopohonů u systému CNC firmy Siemens Analýza chování servopohonů u systému CNC frmy Semens Analyss and behavour of servo-drve system n CNC Semens Bc. Tomáš áčalík Dplomová práce 00 UTB ve Zlíně, Fakulta aplkované nformatky, 00 4 ABSTRAKT

Více

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu - 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, 2009-10. Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacn-tchnolog.cz/nrgtckblanc-lopatkovych-stroju.html.

Více

Ing.Hugo Kittel, CSc., MBA, ČeR a.s. Kralupy n.vlt. Presentace vypracovaná pro ČAPPO Praha 2.10.2002

Ing.Hugo Kittel, CSc., MBA, ČeR a.s. Kralupy n.vlt. Presentace vypracovaná pro ČAPPO Praha 2.10.2002 Ing.Hugo Kittel, CSc., MBA, ČeR a.s. Kralupy n.vlt Presentace vypracovaná pro ČAPPO Praha 2.10.2002 GTL (Gas-to-Liquid) představuje obecný pojem používaný pro technologie konverze plynu na kapalné produkty

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Střední průmyslová škola, Karviná. Protokol o zkoušce

Střední průmyslová škola, Karviná. Protokol o zkoušce č.1 Stanovení dusičnanů ve vodách fotometricky Předpokládaná koncentrace 5 20 mg/l navážka KNO 3 (g) Příprava kalibračního standardu Kalibrace slepý vzorek kalibrační roztok 1 kalibrační roztok 2 kalibrační

Více

MO 1 - Základní chemické pojmy

MO 1 - Základní chemické pojmy MO 1 - Základní chemické pojmy Hmota, látka, atom, prvek, molekula, makromolekula, sloučenina, chemicky čistá látka, směs. Hmota Filozofická kategorie, která se používá k označení objektivní reality v

Více