Dynamická pevnost a životnost Přednášky

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Dynamická pevnost a životnost Přednášky"

Transkript

1 DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz

2 DPŽ 2 Přednášky část 3 Koncentrace napětí a její vliv na vysokocyklovou únavu Martin Nesládek mechanika.fs.cvut.cz

3 DPŽ 3 Harmonické zatěžování amplituda napětí: střední hodnota napětí: a m h h 2 2 d d a h m rozkmit napětí: h d d koeficient nesouměrnosti: R d h T perioda kmitu: napěťově řízené zatěžování měkké frekvence kmitu: f T 1 T deformačně řízené zatěžování tvrdé

4 statický v tlaku: pulzující v tlaku: míjivý v tlaku: nesouměrně střídavý: (stř. hodnota v tlaku) DPŽ 4 symetricky střídavý: nesouměrně střídavý: (stř. hodnota v tahu) míjivý v tahu: pulzující v tahu: statický v tahu: Druhy kmitů R = σ d σ h R 0 R 1 R R 0,1 R 1 R 1 R 1, R,1 R 1,0

5 DPŽ 5 Wöhlerova křivka + Frenchova čára R m interkrystalický lom transkrystalický lom oblast R e C pozn.: v angl. literatuře se Wöhlerova křivka běžně označuje jako S-N curve

6 DPŽ 6 Wőhlerova křivka ocel, hliník 1 kpsi = 6,89 MPa

7 DPŽ 7 Wőhlerova křivka popis šikmé části mocninný tvar 1000 Basquin w a N C log w a logn logc log w a w log N logc a w log a logn K logn logc a [MPa] N [1] C 1 1 b f Basquin ' a f 2N b 2 1 w b

8 DPŽ 8 Odvození vztahů mezi regresními koeficienty mocn. tvaru a Basquina σ a w N = C σ a = C N 1 w σ a = σ f 2N b C N 1 w = σf 2 b N b N 1 w = N b w = 1 b C 1 w = σ f 2 b C b = σ f 2 b C = 1 2 σ f 1 b

9 DPŽ 9 Haighův diagram (Goodman diagram) A kt M kt 1 k 1 a x c 1 m F A x c M F 1 k 2 a kt 1 m kt k min k1, k 2 odhad fiktivního napětí: A k a M k m tah: F ohyb: F krut: F Rm 1,5 1,7 Rm 0,7 0,8 Rm

10 DPŽ 10 Koncentrace napětí

11 DPŽ 11 Koncentrátory napětí Náhlé změny průřezu a tvaru součástí se projevují lokálním zvýšením (koncentrací) napětí -> koncentrátory napětí, vruby Vruby konstrukční: drážky, otvory, zápichy, závity, kontakty s jinými tělesy

12 DPŽ 12 Koncentrátory napětí Vruby technologické: rysky, vyražené značení, stopy po manipulaci

13 DPŽ 13 Koncentrátory napětí Vruby metalurgické: poruchy struktury materiálu (nečistoty, vměstky, koroze, mikrotrhliny) 8/

14 DPŽ 14 Koncentrátory napětí Účinek koncentrátorů: Ovlivňují napjatost - špičky napětí v kořeni vrubu Ovlivňují sklon Wöhlerovy křivky a snižují mez únavy Mohou způsobit lokální plastizaci a redistribuci napětí (přednáška č. 4) Zmenšují vliv střední složky napětí a ovlivňují tvar Haighova diagramu Snižují vliv velikosti na únavu

15 DPŽ 15 Koncentrace napětí Součinitel tvaru (součinitel koncentrace elastických napětí): α K t = σ max σ nom α závisí pouze na geometrii Poměrný gradient (gradient normovaný maximálním elastickým napětím): γ = 1 σ max dσ y dx x=0

16 DPŽ 16 Koncentrace napětí K t = 1,67 K t = 3 K t = 7 Schijve, J.: Fatigue of structures and materials. Springer 2009.

17 DPŽ 17 Koncentrace napětí K t =2,55 K t = 1,57 K t =1,92 Schijve, J.: Fatigue of structures and materials. Springer 2009.

18 DPŽ 18 Stanovení nominálního napětí: Koncentrace napětí tah: σ nom = N A ohyb: σ o,nom = M o W o krut: τ nom = M k W k A, W o, W k z rozměrů v kořeni vrubu (pokud není stanoveno jinak)

19 DPŽ 19 Koncentrace napětí Stanovení součinitele tvaru: Experimentálně: tenzometrická měření, DIC, (fotoelasticimetrie) Numericky: metoda konečných prvků Analyticky: pouze elementární případy Katalogy koncentrátorů: Peterson, R.E.: Stress concentration design factors. Wiley, Pilkey, W.D.; Pilkey, D.F.: Peterson s stress concentration factors. Wiley, Young, W.C; Budynas, R.; Sadegh, A.: Roark s formulas for stress and strain. McGraw-Hill, 2011.

20 DPŽ 20 Koncentrace napětí Stanovení součinitele tvaru: Nomogramy:

21 DPŽ 21 Koncentrace napětí Stanovení součinitele tvaru: Webové aplikace:

22 DPŽ 22 Vliv koncentrace napětí na únavovou pevnost Porovnání Wöhlerových křivek naměřených na hladkých a vrubovaných vzorcích: Součinitel vrubu: β K f = σ c σ c β α

23 DPŽ 23 Vliv koncentrace napětí na únavovou pevnost - oblast meze únavy Součinitel vrubové citlivosti (Thum): q = σ ef σ nom = β 1 σ max σ nom α 1 K f 1 K t 1 β = 1 + α 1 q q, resp. β rostoucí s pevností a křehkostí materiálu Poloměr vrubu

24 DPŽ 24 Vliv koncentrace napětí na únavovou pevnost - oblast meze únavy Autor Vztah Poznámka Thum β = 1 + α 1 q q viz slide 22 Neuber Peterson Heywood Siebel-Stiller β = β = 1 + α A/ρ β = 1 + α a/ρ α α 1 α a /ρ α β = 1 + c γ A viz skripta DPŽ strana 46 oceli: a = 0,06 0,25 Al-Cu: a = 0,20 Al-Zn-Mg: a = 0,07 a viz skripta DPŽ strana 199 viz slide 24

25 DPŽ 25 Vliv koncentrace napětí na únavovou pevnost oblast meze únavy Siebel-Stiller: α/β α β R p0,2 0,35+ = 1 + γ q 1,0

26 DPŽ 26 Ostatní vyjádření s vlivem gradientu (informačně) Volejnik, Kogaev, Serensen α β = ν L γ 2πd 0 2 d 0 μ Eichlseder (FEMFAT) α β = 1 + σ 1,b σ 1 1 γ 2 d 0 K D FKM-Richtlinie 0,1 mm 0,1 mm 1mm mm 100mm 1 1 α β = 1 + γ 10 a G 0,5+ α β = γ 10 a R m G+ bg α β = 1 + γ 10 a R m G+ bg R m bg

27 DPŽ 27 Koncentrátory napětí Účinek koncentrátorů: Ovlivňují napjatost - špičky napětí v kořeni vrubu Ovlivňují sklon Wöhlerovy křivky a snižují mez únavy Mohou způsobit lokální plastizaci a redistribuci napětí (přednáška č. 4) Zmenšují vliv střední složky napětí a ovlivňují tvar Haighova diagramu Snižují vliv velikosti na únavu

28 DPŽ 28 Vliv koncentrace napětí na únavovou pevnost oblast meze únavy Vliv koncentrátoru při nesouměrném zatěžováním σ c = σ c β zmenšení bezpečné oblasti (redukce dovolených amplitud) pozn.: snížená mez únavy na vliv vrubovitosti β (K f ), povrchu η p (k SF ), velikosti ε v k S, technologie k T σ C = σ c β η pε v σ C,V = σ c K f k SF k S k T

29 DPŽ 29 Vliv koncentrace napětí na únavovou pevnost oblast meze únavy Vliv koncentrátoru při nesouměrném zatěžováním σ M1,1 σ M2,2 : Δσ A1,2 > Δσ A1,2

30 DPŽ 30 Vliv koncentrace napětí na únavovou pevnost oblast časované pevnosti Součinitel vrubu v oblasti časované pevnosti: β N = σ A σ A

31 DPŽ 31 Vliv koncentrace napětí na únavovou pevnost oblast časované pevnosti Součinitel vrubu v oblasti časované pevnosti: β N = σ A σ A m a te riá l o c e l M, R m = M P a R = -1 a lfa = 1,0..k a ta lo g a lfa = 2,0..k a ta lo g a lfa = 3,0..k a ta lo g Heywood: určeno pro vysokocyklovou oblast μ N = β N 1 β 1 β N = 1 + β 1 μ(n) μ N = logn 4 B + logn 4 A m p lit u d a n a p ě t í k a m [ it M u P a ] a lfa = 5,0..k a ta lo g a lfa = 2,0..v ý p o č e t a lfa = 3,0..v ý p o č e t a lfa = 5,0..v ý p o č e t pro oceli: B = R m [MPa] E E E E E P o č e t k m itů N [1 ]

32 DPŽ 32 Hodnocení napjatosti napočtené MKP ve vrubech r r σ a,mkp σ a,mkp = α σ NOM podmínka pro trvalou pevnost (sym. střídavý cyklus): σ a,mkp α σ C σ a,mkp α β σ C

33 DPŽ 33 Hodnocení napjatosti napočtené MKP ve vrubech Ve složitějších případech, kdy není znám poměr α β : Např. Siebel-Stiller: α β = 1 + c γ, γ = 1 σ a,mkp dσ a,mkp (r) dr Metoda kritické vzdálenosti (informativně): Bodová varianta metody kritické vzdálenosti: Těleso je na mezi únavy, pokud amplituda napětí σ a ve vzdálenosti a 0 /2 pod povrchem je rovna mezi únavy. Liniová varianta metody kritické vzdálenosti: Těleso je na mezi únavy, pokud průměrná amplituda napětí σ a ve vzdálenosti 2a 0 pod povrchem je rovna mezi únavy.

34 DPŽ 34 Příklad: kontrola osy železničního dvojkolí Zadání problému: Kontrola osy železničního dvojkolí na trvalou pevnost Materiál: slitinová ocel 24CrMo4, ASTM 4130 A Bod A v místě potencionální trhliny Tenzometrická měření pom. prodloužení v bodě A a,max 312 microstrain

35 DPŽ 35 Příklad: kontrola osy železničního dvojkolí na trvalou pevnost C 440 MPa

36 DPŽ 36 Příklad: kontrola osy železničního dvojkolí na trvalou pevnost K t 2.09

37 DPŽ 37 Příklad: kontrola osy železničního dvojkolí na trvalou pevnost Kolo Disk brzdy Osa K t 1.95

38 DPŽ 38 Příklad: kontrola osy železničního dvojkolí na trvalou pevnost K t 1.95 q Stress amplitude [MPa] smooth notched FL 100 FL,N ,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 Number of cycles [1]

39 Určení meze únavy v kritickém místě DPŽ 39 Příklad: kontrola osy železničního dvojkolí na trvalou pevnost součinitel k value loading k L 1.00 surface finish k SF 0.67 size factor k S 0.70 CV, k K C SF S f k size factor kt 1.00 CV, MPa 1.83

40 Určení amplitudy napětí na rotující ose: DPŽ 40 Příklad: kontrola osy železničního dvojkolí na trvalou pevnost A Tenzometrická měření pom. prodloužení v bodě A: a,max 312 microstrain a E MPa

41 Určení součinitele bezpečnosti: A DPŽ 41 Příklad: kontrola osy železničního dvojkolí na trvalou pevnost, MPa CV a 64.5 MPa Stress amplitude [MPa] smooth notched k CV, a FL 100 FL,N 0 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 Number of cycles [1]

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 2 Porušování při cyklickém zatěžování All machine and structural designs are problems in fatigue

Více

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík Příklad Zadání: Vytvořte přibližný S-n diagram pro ocelovou tyč a vyjádřete její rovnici. Jakou životnost můžeme očekávat při zatížení souměrně střídavým cyklem o amplitudě 100 MPa? Je dáno: Mez pevnosti

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.

Více

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života Únava materiálu 1) Úvod 2) Základní charakteristiky únavového zatěžování 3) Křivka únavového života 4) Etapy únavového života 5) Klíčové vlivy na únavový život 1 Degradace vlastností materiálu za provozu

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti

Více

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Proces únavového porušení Iniciace únavové trhliny v krystalu Cu (60 000 cyklů při 20 C) (převzato z [Suresh 2006]) Proces únavového porušení Jednotlivé stádia únavového poškození:

Více

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. 5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy) Únava 1. Úvod Mezním stavem únava je definován stav, kdy v důsledku působení časově proměnných zatížení dojde k poruše funkční způsobilosti konstrukce či jejího elementu. Charakteristické pro tento proces

Více

Zvýšení spolehlivosti závěsného oka servomotoru poklopových vrat plavební komory

Zvýšení spolehlivosti závěsného oka servomotoru poklopových vrat plavební komory Zvýšení spolehlivosti závěsného oka servomotoru poklopových vrat plavební komory Miroslav Varner Abstrakt: Uvádí se postup a výsledky šetření porušení oka a návrh nového oka optimalizovaného vzhledem k

Více

Dynamická pevnost a životnost Přednášky

Dynamická pevnost a životnost Přednášky DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz milan.ruzicka@fs.cvut.cz DPŽ 2 Přednášky část 1 Základy únavové pevnosti Milan

Více

Dynamická pevnost a životnost Přednášky

Dynamická pevnost a životnost Přednášky DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz martin.nesladek@fs.cvut.cz DPŽ 2 Přednášky část 13 Ozubená soukolí únosnost

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 3

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 3 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTUOVÁNÍ STOJŮ strojní součásti Přednáška 3 Poškozování při cyklickém zatěžování http://technology.open.ac.uk/ iniciace trhliny Engineers

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická

Více

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně 1 Motivace: trhliny v betonu mikrostruktura Vyhojování trhlin konstrukce Pražec po

Více

HODNOCENÍ PEVNOSTI A ŽIVOTNOSTI ŠROUBŮ DLE NORMY ASME BPV CODE, SECTION VIII, DIVISION 2

HODNOCENÍ PEVNOSTI A ŽIVOTNOSTI ŠROUBŮ DLE NORMY ASME BPV CODE, SECTION VIII, DIVISION 2 HODNOCENÍ EVNOSTI ŽIVOTNOSTI ŠROUBŮ DLE NORMY SME BV CODE, SECTION VIII, DIVISION 2 STRENGTH ND FTIGUE EVLUTION OF BOLTS CCORDING TO SME BV CODE, SEC. VIII, DIV. 2 Miroslav VRNER 1, Viktor KNICKÝ 2 bstract:

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK.

4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK. 4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK. Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, navrhování z hlediska MSÚ a MSP. Návrh na únavu: zatížení, Wöhlerův přístup a

Více

Pevnost a životnost Jur III

Pevnost a životnost Jur III 1/48 Pevnost a životnost Jur III Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím některých obrázků z jeho knihy Aplikovaná lomová

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení: BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky

Více

3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Mezní stav křehké pevnosti Při monotónním zatěžování tělesa může dojít k nepředvídanému porušení křehkým lomem. Poškození houževnaté oceli při různých způsobech namáhání Poškození

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 11 Mechanické pružiny http://www.victorpest.com/ I am never content until I have constructed a

Více

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti

Více

12. Prostý krut Definice

12. Prostý krut Definice p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),

Více

Pevnost a životnost Jur III

Pevnost a životnost Jur III 1/48 Pevnost a životnost Jur III Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím některých obrázků z jeho knihy Aplikovaná lomová

Více

Výpočet únavové bezpečnosti závěsného oka

Výpočet únavové bezpečnosti závěsného oka Výpočet únavové bezpečnosti závěsného oka Jan Turek Vedoucí práce: Prof. Ing. Milan Růžička, CSc. Abstrakt Příspěvek se zabývá stanovením teoretického součinitele tvaru závěsného oka, výpočtem životnosti

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

Základy stavby výrobních strojů Tvářecí stroje I

Základy stavby výrobních strojů Tvářecí stroje I STANOVENÍ SIL A PRÁCE PŘI P I TVÁŘEN ENÍ Většina výpočtů pro stanovení práce a sil pro tváření jsou empirické vzorce, které jsou odvozeny z celé řady experimentálních měření. Faktory, které ovlivňují velikost

Více

- 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI

- 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI - 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI Ing. K. Šplíchal, Ing. R. Axamit^RNDr. J. Otruba, Prof. Ing. J. Koutský, DrSc, ÚJV Řež 1. Úvod Rozvoj trhlin za účasti koroze v materiálech

Více

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha 7.12.2011 -

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha 7.12.2011 - 53A107 Systematický výzkum vlastností vybraného konstrukčního materiálu (litina, slitiny lehkých kovů) typického pro teplotně exponované díly motoru (hlava, blok, skříně turbodmychadla ) s ohledem na kombinované

Více

Je-li poměr střední Ø pružiny k Ø drátu roven 5 10% od kroutícího momentu. Šroub zvedáku je při zvedání namáhán kombinací tlak, krut, případně vzpěr

Je-li poměr střední Ø pružiny k Ø drátu roven 5 10% od kroutícího momentu. Šroub zvedáku je při zvedání namáhán kombinací tlak, krut, případně vzpěr PRUŽINY Která pružina může být zatížena silou kolmou k ose vinutí zkrutná Výpočet tuhosti trojúhelníkové lisové pružiny k=f/y K čemu se používá šroubová zkrutná pružina kolíček na prádlo Lisová pružina

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury. ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ

Více

KONSTRUKČNÍ NÁVRH RÁMU LISU CKW 630 SVOČ FST Bc. Martin Konvalinka, Jiráskova 745, Nýrsko Česká republika

KONSTRUKČNÍ NÁVRH RÁMU LISU CKW 630 SVOČ FST Bc. Martin Konvalinka, Jiráskova 745, Nýrsko Česká republika KONSTRUKČNÍ NÁVRH RÁMU LISU CKW 630 SVOČ FST 2009 Bc. Martin Konvalinka, Jiráskova 745, 340 22 Nýrsko Česká republika ABSTRAKT Práce obsahuje pevnostní kontrolu rámu lisu CKW 630 provedenou analytickou

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Zkoušky základních mechanických charakteristik konstrukčních materiálů (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti Skutečný

Více

VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ, KATEDRA ČÁSTÍ A MECHANISMŮ STROJŮ

VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ, KATEDRA ČÁSTÍ A MECHANISMŮ STROJŮ VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ, KATEDRA ČÁSTÍ A MECHANISMŮ STROJŮ NÁVRH A VÝPOČET DYNAMICKY NAMÁHANÉHO ŠROUBU PŘÍRUBOVÉHO SPOJE Vysokoškolská příručka Květoslav Kaláb Ostrava 013 OBSAH

Více

Porovnání zkušebních metod pro měření interlaminární smykové pevnosti laminátů

Porovnání zkušebních metod pro měření interlaminární smykové pevnosti laminátů Porovnání zkušebních metod pro měření interlaminární smykové pevnosti laminátů Ing. Bohuslav Cabrnoch, Ph.D. VZLÚ, a.s. 21. listopadu 2012 Seminář ČSM, Praha Úvod Interlaminární smyková pevnost Interlaminar

Více

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem Stavba: Stavební úpravy skladovací haly v areálu firmy Strana: 1 Obsah: PROSTAB 1. Technická zpráva ke statickému výpočtu 2 2. Seznam použité literatury 2 3. Návrh a posouzení monolitického věnce nad okenním

Více

2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.

2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. 2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. Struktura oceli Železo (Fe), uhlík (C), "nečistoty". nevyhnutelné

Více

ZKRÁCENÉ ÚNAVOVÉ ZKOUŠKY VRUBOVANÝCH TYČÍ

ZKRÁCENÉ ÚNAVOVÉ ZKOUŠKY VRUBOVANÝCH TYČÍ ZKRÁCENÉ ÚNAVOVÉ ZKOUŠKY VRUBOVANÝCH TYČÍ Ing. Miroslav VARNER, ČKD Blansko Strojírny, a.s. Gellhornova 1, 678 18 Blansko, tel.: 516 402 023, fax.: 516 414 060, e-mail: oam@ckdblansko.cz Abstrakt Censored

Více

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME 1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se

Více

Trend: nákladů na letadlovou techniku ( požadavků na: bezpečnost + komfort +vyšší výkony, )

Trend: nákladů na letadlovou techniku ( požadavků na: bezpečnost + komfort +vyšší výkony, ) Bezpečnost Spolehlivost Letová způsobilost Vývoj požadavků na letecké konstrukce: 1. etapa (úplné začátky létání) konstrukce = funkce 2. etapa (brzy po začátku létání) konstrukce = funkce + bezpečnost

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

Výrobky válcované za tepla z jemnozrnných svařitelných konstrukčních ocelí termomechanicky válcované. Technické dodací podmínky

Výrobky válcované za tepla z jemnozrnných svařitelných konstrukčních ocelí termomechanicky válcované. Technické dodací podmínky Výrobky válcované za tepla z jemnozrnných svařitelných konstrukčních ocelí termomechanicky válcované. Technické dodací podmínky Způsob výroby Dodací podmínky ČS E 10025 4 září 2005 Způsob výroby volí výrobce..

Více

Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování

Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování Jiří Minster, Martin Šperl, ÚTAM AV ČR, v. v. i., Praha Jaroslav Lukeš, FS ČVUT v Praze Motivace a obsah přednášky

Více

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám Zákl. informace Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským

Více

Prvky betonových konstrukcí BL01 5. přednáška

Prvky betonových konstrukcí BL01 5. přednáška Prvky betonových konstrukcí BL01 5. přednáška Dimenzování průřezů namáhaných posouvající silou. Chování a modelování prvků před a po vzniku trhlin, způsob porušení. Prvky bez smykové výztuže. Prvky se

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ

NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ Vypracoval: Zodp. statik: Datum: Projekt: Objednatel: Marek Lokvenc Ing.Robert Fiala 07.01.2016 Zastínění expozice gibonů ARW pb, s.r.o. Posudek proveden dle: ČSN EN

Více

HAIGHŮV DIAGRAM VYBRANÉ PRUŽINOVÉ OCELI HAIGH DIAGRAM OF SELECTED SPRING STEEL

HAIGHŮV DIAGRAM VYBRANÉ PRUŽINOVÉ OCELI HAIGH DIAGRAM OF SELECTED SPRING STEEL VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING

Více

Konstrukční materiály pro stavbu kotlů

Konstrukční materiály pro stavbu kotlů Konstrukční materiály pro stavbu kotlů Hlavní materiály pro stavbu kotlů jsou: materiály kovové trubky prvky nosné konstrukce materiály keramické šamotové cihly, šamotové tvarovky žárobeton Specifické

Více

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 2013 Aktualizováno: 2015 Použitá

Více

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku 1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram

Více

Výpočtové a experimentální řešení provozní pevnosti a únavové životnosti karosérií trolejbusů a autobusů

Výpočtové a experimentální řešení provozní pevnosti a únavové životnosti karosérií trolejbusů a autobusů Výpočtové a experimentální řešení provozní pevnosti a únavové životnosti karosérií trolejbusů a autobusů doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů Provozní

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

10 Navrhování na účinky požáru

10 Navrhování na účinky požáru 10 Navrhování na účinky požáru 10.1 Úvod Zásady navrhování konstrukcí jsou uvedeny v normě ČSN EN 1990[1]; zatížení konstrukcí je uvedeno v souboru norem ČSN 1991. Na tyto základní normy navazují pak jednotlivé

Více

Konstrukční a technologické koncentrátory napětí

Konstrukční a technologické koncentrátory napětí Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem

Více

Funkce pružiny se posuzuje podle průběhu a velikosti její deformace v závislosti na působícím zatížení.

Funkce pružiny se posuzuje podle průběhu a velikosti její deformace v závislosti na působícím zatížení. Teorie - základy. Pružiny jsou konstrukční součásti určené k zachycení a akumulaci mechanické energie, pracující na principu pružné deformace materiálu. Pružiny patří mezi nejvíce zatížené strojní součásti

Více

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012 Prohloubení odborné spolupráce a propojení ústavů lékařské biofyziky na lékařských fakultách v České republice CZ.1.07/2.4.00/17.0058 Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či

Více

NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU

NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU Vypracoval: Zodp. statik: Datum: Projekt: Objednatel: Marek Lokvenc Ing.Robert Fiala 07.01.2016 Zastínění expozice gibonů ARW pb, s.r.o. Posudek proveden dle: ČSN EN

Více

Uplatnění prostého betonu

Uplatnění prostého betonu Prostý beton -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový průřez -Konstrukční ustanovení - Základová patka -Příklad Uplatnění prostého

Více

Zkoušení kompozitních materiálů

Zkoušení kompozitních materiálů Zkoušení kompozitních materiálů Ivan Jeřábek Odbor letadel FS ČVUT v Praze 1 Zkoušen ení kompozitních materiálů Zkoušky materiálových charakteristik Zkouška kompozitních konstrukcí 2 Zkoušen ení kompozitních

Více

15. ŽB TRÁMOVÉ STROPY

15. ŽB TRÁMOVÉ STROPY 15. ŽB TRÁMOVÉ STROPY Samostatné Společně s deskou trámového stropu Zásady vyztužování h = l/10 až l/20 b = h/2 až h/3 V každém rohu průřezu musí být jedna vyztužená ploška Nosnou výztuž tvoří 3-5 vložek

Více

VY_32_INOVACE_C 07 03

VY_32_INOVACE_C 07 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku Autor: Michal Šofer Verze 0 Ostrava 20 Zadání: Proveďte

Více

Nespojitá vlákna. Technická univerzita v Liberci kompozitní materiály 5. MI Doc. Ing. Karel Daďourek 2008

Nespojitá vlákna. Technická univerzita v Liberci kompozitní materiály 5. MI Doc. Ing. Karel Daďourek 2008 Nespojitá vlákna Technická univerzita v Liberci kompozitní materiály 5. MI Doc. Ing. Karel Daďourek 2008 Vliv nespojitých vláken Zabývejme se nyní uspořádanými nespojitými vlákny ( 1D systém) s tahovým

Více

Nespojitá vlákna. Nanokompozity

Nespojitá vlákna. Nanokompozity Nespojitá vlákna Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vliv nespojitých vláken Uspořádaná

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Zkoušky vlastností technických materiálů

Zkoušky vlastností technických materiálů Zkoušky vlastností technických materiálů Stálé zvyšování výkonu strojů a snižování jejich hmotnosti klade vysoké požadavky na jakost hutního materiálu. Se zvyšováním nároků na materiál je nerozlučně spjato

Více

Spoje pery a klíny. Charakteristika (konstrukční znaky)

Spoje pery a klíny. Charakteristika (konstrukční znaky) Spoje pery a klíny Charakteristika (konstrukční znaky) Jednoduše rozebíratelná spojení pomocí per, příp. klínů hranolového tvaru (u klínů se skosením na jedné z ploch) vložených do podélných vybrání nebo

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

ÚNAVOVÉ CHOVÁNÍ NIKLOVÉ SUPERSLITINY INCONEL 713LC ZA VYSOKÝCH TEPLOT FATIGUE BEHAVIOUR OF NICKEL BASE SUPERALLOY INCONEL 713LC AT HIGH TEMPERATURE.

ÚNAVOVÉ CHOVÁNÍ NIKLOVÉ SUPERSLITINY INCONEL 713LC ZA VYSOKÝCH TEPLOT FATIGUE BEHAVIOUR OF NICKEL BASE SUPERALLOY INCONEL 713LC AT HIGH TEMPERATURE. ÚNAVOVÉ CHOVÁNÍ NIKLOVÉ SUPERSLITINY INCONEL 713LC ZA VYSOKÝCH TEPLOT FATIGUE BEHAVIOUR OF NICKEL BASE SUPERALLOY INCONEL 713LC AT HIGH TEMPERATURE. Martin Juliš a Karel Obrtlík b Tomáš Podrábský a Martin

Více

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, 301 00 Plzeň

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, 301 00 Plzeň Pracoviště zkušební laboratoře: 1. Zkušebna Analytická chemie 2. Zkušebna Metalografie 3. Mechanická zkušebna včetně detašovaného pracoviště Orlík 266, 316 06 Plzeň 4. Dynamická zkušebna Orlík 266, 316

Více

Doc. Ing. Jiří Kunz, CSc., Prof. Ing. Ivan Nedbal, CSc., Ing. Jan Siegl, CSc. Katedra materiálů FJFI ČVUT v Praze, Trojanova 13, Praha 2

Doc. Ing. Jiří Kunz, CSc., Prof. Ing. Ivan Nedbal, CSc., Ing. Jan Siegl, CSc. Katedra materiálů FJFI ČVUT v Praze, Trojanova 13, Praha 2 KUNZ, J. - NEDBAL, I. - SIEGL, J.: Vliv vodního prostředí a zvýšené teploty na únavové porušování austenitické oceli. In: Degradácia vlastností konštrukčných materiálov (VIII. celoštátna konferencia so

Více

strol. s.ucasl. Joseph E. Shigley The Iowa State University of Science and Technology Richard G. Budynas Institute of Technology

strol. s.ucasl. Joseph E. Shigley The Iowa State University of Science and Technology Richard G. Budynas Institute of Technology Kon. ; ; nl strol. y; ; s.ucasl. Joseph E. Shigley University of Michigan Charles R. Mischke The Iowa State University of Science and Technology Richard G. Budynas Rochester Institute of Technology VYSOKE

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

POSOUZENÍ A ZVÝŠENÍ BEZPEČNOSTI SKLÁDACÍCH STROPNÍCH SCHODŮ APLIKACE METODY SBRA

POSOUZENÍ A ZVÝŠENÍ BEZPEČNOSTI SKLÁDACÍCH STROPNÍCH SCHODŮ APLIKACE METODY SBRA IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 59 23.až 24.4.2003 Dům techniky Ostrava ISBN 80-02-01551-7 POSOUZENÍ A ZVÝŠENÍ BEZPEČNOSTI SKLÁDACÍCH STROPNÍCH

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

Šroubovitá pružina válcová zkrutná z drátů a tyčí kruhového průřezu [in] 1.3 Provozní teplota T 200,0 1.4 Provozní prostředí

Šroubovitá pružina válcová zkrutná z drátů a tyčí kruhového průřezu [in] 1.3 Provozní teplota T 200,0 1.4 Provozní prostředí Šroubovitá pružina válcová zkrutná z drátů a tyčí kruhového průřezu i ii Výpočet bez chyb. Informace o o projektu? 1.0 1.1 Kapitola vstupních parametrů Volba režimu zatížení, provozních a výrobních parametrů

Více

Téma: Dynamiky - Základní vztahy kmitání

Téma: Dynamiky - Základní vztahy kmitání Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí

Více

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Stručný obsah Předmluva xvii Část 1 Základy konstruování 2 1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Část 2 Porušování

Více

VLIV ASYMETRIE KMITU NA KOROZNÍ ÚNAVU OCELI 13%Cr,1%Ni. Miroslav Varner, ČKD Blansko a.s., Gellhornova 1, Blansko

VLIV ASYMETRIE KMITU NA KOROZNÍ ÚNAVU OCELI 13%Cr,1%Ni. Miroslav Varner, ČKD Blansko a.s., Gellhornova 1, Blansko VLIV ASYMETRIE KMITU NA KOROZNÍ ÚNAVU OCELI 13%Cr,1%Ni Miroslav Varner, ČKD Blansko a.s., Gellhornova 1, 67818 Blansko Abstract: The paper deals with the experimental analysis of the effects of the push-pull

Více

Sylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů

Sylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Pro. Ing. František ald, CSc., místnost B 632

Více

Dalibor Vojtěch, Pavel Novák ml., Ústav kovových materiálů a korozního inženýrství

Dalibor Vojtěch, Pavel Novák ml., Ústav kovových materiálů a korozního inženýrství 1.5 Fyzikální degradace materiálů Dalibor Vojtěch, Pavel Novák ml., Ústav kovových materiálů a korozního inženýrství 1.5.1. Plastická deformace Při zatěžování materiálu mechanickou silou dojde k jeho deformaci,

Více

POSOUZENÍ PEVNOSTI A ŽIVOTNOSTI HYDRAULICKÉHO KLAPKOVÉHO UZÁVĚRU

POSOUZENÍ PEVNOSTI A ŽIVOTNOSTI HYDRAULICKÉHO KLAPKOVÉHO UZÁVĚRU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,

Více

VLIV KOROZE NA ÚNAVOVOU PEVNOST SVAROVÉHO SPOJE

VLIV KOROZE NA ÚNAVOVOU PEVNOST SVAROVÉHO SPOJE ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LV 27 Číslo 5, 2007 VLIV KOROZE NA ÚNAVOVOU PEVNOST SVAROVÉHO SPOJE

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů

Více