Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
|
|
- Antonie Doležalová
- před 7 lety
- Počet zobrazení:
Transkript
1 Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1
2 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou délkou Frekvencí λ ( = cτ ) 1 ν = T energií : hc E = hν = = hc ~ ν λ vlnočet hybností E hν p = = = c c h λ Spinem: S = 1 (=boson) Nulovou klidovou hmostností
3 E hc ~ ν 1 E 1 E = E 1 E 0 hc ~ ν E' = E E 0 E 0 E 0 E E = 1 0 hc ~ ν 1 Příklad: E' = E pak: ~ ν = ~ ν 1 Podmínka resonance: Energie fotonu je rovna rozdílu energí dvou kvantových stavů systému (molekuly) 3
4 Různé mechanismy interakce fotonu s atomem/molekulou Jednofotonová absorpce (NMR, ESR, IČ, UV/vis absorpce) hcν ~ Jednofotonová (spontánní vs. stimulovaná) emise (Fluorescenční spektroskopie; FRET) hc ~ ν ~ ν hc hcν ~ spontánní stimulovaná Dvoufotonová absorpce: Simultánní pohlcení fotonů hc ~ ν 1 hc ~ ν Tento proces efektivní pouze při vysoké intenzitě záření
5 (Neelastický) rozptyl: (resonanční) Ramanova spektroskopie V principu jde o dvoufotonovou spektroskopii Elastický rozptyl : ν i = ν f Nelastický rozptyl : ν i ν f Simultánní pohlcení jednoho fotonu a vyzáření druhého hcν ~ i hcν ~ f Stáčení polarizace fotonu: Cirkulární dichroismus; Lineární dichroismus hcν ~ Levotoč vs. hcν ~ pravotoč hc ~ ν // vs. hcν ~ Pravděpodobnost absorpce pravotočivého záření se liší od pravděpodobnosti absorpce levotočivého Pravděpodobnost absorpce // záření se liší od pravděpodobnosti absorpce záření
6 Excitace ze základního stavu do vzbuzeného pohlcením fotonu o energii hν Excitace ze základního stavu do vzbuzeného v důsledku molekulových kolizí Obdobně rozlišujeme : zářivé vs. nezářivé deexcitace 6
7 Základní principy spektroskopie Idealizovaný obrázek: Intenzita Šířka pásu Fotonová energie (cm -1 ) Poloha spektrální křivky Integrovaná Intenzita : Plocha pod křivkou Šířka spektrální křivky Tvar spektrální křivky (např: Lorentzův nebo Gaussův profil) 7
8 Základní principy spektroskopie Poloha pásu : přechod mezi dvěma kvantovými stavy hc ~ ν = E i f Intenzita : pravděpodonost přechodu mezi dvěma kvantovými stavy hcν ~ Šířka pásu + P ψ * ˆ µψ dτ f i Heterogenita prostředí (různé interakce s okolím: povrch/stěna kavity versus bulk atd vliv rozpouštědla / silného externího elektrického či magnetického pole vliv konformací Dopplerovské rozšíření pásu (též vliv teploty ; především v plynné fázi) Rozšíření pásu v důsledku vysokého tlaku (reflektuje teplotu a hustotu částic) míchání pásů (line mixing) či jemná struktura pásu (např: vibrační struktura elektronového přechodu přirozená šířka pásu : doba života excitovaného stavu (rozlišovací schopnost přístroje) f i µ Výběrová pravidla
9 Dopplerovské rozšíření pásu Intenzita Teplotní rozšíření Dopplerův jev: Když se zdroj/přijímač záření od sebe vzdalují rychlostí s: ν 0 ν ' 1+ s c Když se zdroj/přijímač záření k sobě přibližují rychlostí s : ν 0 ν ' 1 s c Gaussův tvar spektrální křivky: Frekvence Gauss Tvar dopplerovsky rozšířené spektrální čáry odráží Maxwellovu distribuci rychlostí ve vzorku při teplotě experimentu. Všiměte si,že čára se při zvyšování teploty rozšiřuje. I b( ν ν ) ( ν ) = ae (rozšíření cca cm -1 ) 0 > ; a, b, ν 0 0
10 Přirozená šířka pásu : doba života excitovaného stavu Heisenbegův princip neurčitosti: δe f δt δe f ~ ~ δν hc ν ± (pozorováno pouze jsou-li ostatní vlivy potlačeny a není žádná stimulovaná emise) Lorentzův tvar spektrální křivky: I Lorentz a + ( ν ν ) ( ν ) = ; a, b, ν 0 b >
11 Přirozená šířka pásu : doba života excitovaného stavu δe f δt Přirozená šířka pásu Doba života excitovaného stavu 11
12 Rozšíření v důsledku vysokého tlaku kolizní rozšíření Konečná doba excitovaného stavu je také podmíněna frekvencí kolizí s ostataními molekulami δ E kolize δτ kolize Čas mezi dvěma kolizemi δτ kolize = 1 z Frekvence srážek: z = Srážkový průřez 4σ p π mkt tlak Lorentzův tvar spektrální křivky 1
13 Teplotní závislost spekter Populace stavů se řídí Boltzmannovým rozdělěním: hc ~ν 1 hc ~ν hc ~ ν 3 E 3 E E 1 Pravděpodobnost, že systém (složený z N molekul) se nachází ve stavu j o energii E J : P j = N N j tot = e E E e i j RT i RT ~ν 1 ~ν ~ν 3 13
14 14
15 15
16 Boltzmannovo rozdělení P N E RT = = E1 RT E N1 + N e + e e RT E E = E E 1 N N 1 = e e E E 1 RT RT = e E RT E 1 N N 1 Populace stavů pro různé teploty a různé E : E 10 cm 1 00 cm cm cm 1 T 1 = 100 K T 1 = 300 K
17 Třídění spektroskopií podle použitých fotonových energií typ kvantové změny Změna spinu rotace vibrace Změna elektronové konfigurace Změna jaderné konfigurace Typ spektroskopie Vlnočet /cm -1 Vlnová 10 m 100 cm 1 cm 100 µm 1000 nm 10 nm 10 pm délka Frekvence /Hz Energie /J mol -1 NMR ESR Mikrovlnná Infračervená UV/vis Röntgenová γ (Mössbauerova)
18 Continuum-wave (CW) spektroskopie Spektroskopie způsob měření Fourrier-transform spektroskopie V jeden okamžik se ozáří vzorek světlem s širokým spektrem vlnových délek; poté se sleduje vývoj signálu v čase Fourrierova transformace: signál vs. čas signál vs. frekvence Časově rozlišená spektroskopie viz druhá strana 18
19 Časově rozlišená spektroskopie Studium změn v látce v průběhu času s použitím spektroskopických metod 19
20 Časové škály v chemii
21 Zesilování světla stimulovanou emisí záření Light Amplification by Stimulated Emission of Radiation LASER 1
Přednáška IX: Elektronová spektroskopie II.
Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném
VíceÚvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
VíceOptické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
VíceATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Více13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VíceSPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
VíceOPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
VíceSpektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti
Spektroskopické metody převážně ve viditelné, ultrafialové a blízké infračervené oblasti Elektromagnetické záření Elektromagnetické záření je postupné vlnění elektromagnetického pole složeného z kombinace
VíceDiskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.
S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního
VíceTeorie Molekulových Orbitalů (MO)
Teorie Molekulových Orbitalů (MO) Kombinace atomových orbitalů na všech atomech v molekule Vhodná symetrie Vhodná (podobná) energie Z n AO vytvoříme n MO Pro začátek dvouatomové molekuly: H 2, F 2, CO,...
VíceINSTRUMENTÁLNÍ METODY
INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,
VíceMetody nelineární optiky v Ramanově spektroskopii
Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu
VíceATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
VíceSpektrometrické metody. Luminiscenční spektroskopie
Spektrometrické metody Luminiscenční spektroskopie luminiscence molekul a pevných látek šířka spektrální čar a doba života luminiscence polarizace luminiscence korekce luminiscenčních spekter vliv aparatury
VíceStručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
VíceÚvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
VíceBorn-Oppenheimerova aproximace
Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra
VíceLaserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
VíceFyzika IV Dynamika jader v molekulách
Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment
VíceKapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie
Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované
VíceSPEKTROSKOPICKÉ VLASTNOSTI LÁTEK
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Ivona Trejbalová, Petr Šmejkal Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou
Více10A1_IR spektroskopie
C6200-Biochemické metody 10A1_IR spektroskopie Petr Zbořil IR spektroskopie Excitace vibračních a rotačních přechodů Valenční vibrace n Deformační vibrace d IR spektroskopie N atomů = 3N stupňů volnosti
Více- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence
ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá
VíceEmise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
VíceZáklady spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
VíceZáklady Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
VíceZdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
VíceÚvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
VíceKmity a rotace molekul
Kmity a rotace moleul Svět moleul je neustále v pohybu l eletrony se pohybují oolo jader l jádra mitají olem rovnovážných poloh l moleuly rotují a přesouvají se Ion H + podrobněji Kmity vibrace moleul
VíceLuminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
VíceLaserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka
VíceSymetrie Platonovská tělesa
Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značka Prvek
VíceVybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
VíceStavba atomů a molekul
Stavba atomů a molekul Michal Otyepka V prezentaci jsou použity obrázky z řady zdrojů, které nejsou důsledně citovány, tímto se všem dotčeným omlouvám. Vidět znamená věřit Úvod l cíle seznámit studenty
VíceMetody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I RNDr. Věra Vodičková, PhD. Molekulová spektroskopie atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením
VíceCHARAKTERIZACE MATERIÁLU II
CHARAKTERIZACE MATERIÁLU II Vyučující a zkoušející Ing. Martin Kormunda, Ph.D. - CN320 Konzultační hodiny: Po 10-12, St 13 14 nebo dle dohody Doc. RNDr. Jaroslav Pavlík, CS.c. - CN Konzultační hodiny:
VíceLuminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
VíceSymetrie Platonovská tělesa
Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značk a
VíceMODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated
VíceNěco o laserech. Ústav fyzikální elektroniky Přírodovědecká fakulta Masarykovy univerzity 13. května 2010
Něco o laserech Ústav fyzikální elektroniky Přírodovědecká fakulta Masarykovy univerzity 13. května 2010 Pár neuspořádaných faktů LASER = Light Amplification by Stimulated Emission of Radiation Zdroj dobře
VíceZajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole
Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Vliv na tvar
VíceNMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet
NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od
VíceSPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
VíceL A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.
L A S E R Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami Stimulovaná emise Princip laseru Specifické vlastnosti laseru jako zdroje
VíceSpektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS
Spektroskopické é techniky a mikroskopie Spektroskopie metody zahrnující interakce mezi světlem (fotony) a hmotou (elektrony a protony v atomech a molekulách Typy spektroskopických metod IR NMR Elektron-spinová
VíceVybrané metody spektráln. lní analýzy. Metody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I Spektroskopické metody: atomové vs molekulové atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením pouze
VíceMěření charakteristik pevnolátkového infračerveného Er:Yag laseru
Měření charakteristik pevnolátkového infračerveného Er:Yag laseru Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Abstrakt: Úkolem bylo proměření základních charakteristik záření pevnolátkového infračerveného
VícePSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.
PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:
VíceABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Více7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )
7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state ) Steady-state měření Excitujeme kontinuálním světlem, měříme intenzitu emise (počet emitovaných fotonů) Obvykle nedetekujeme všechny
VíceŠířka a tvar spektrální čáry Martin Šubr, 2013
Šířka a tvar spektrální čáry Martin Šubr, 2013 Úvod Ukazuje se, že žádná spektrální čára není dokonale úzká (dokonalá delta funkce). Pomocí spektrálních přístrojů s dostatečně vysokým rozlišením bychom
VíceCharakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
VíceÚvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem
VíceOd kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
VíceATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.
ATOMY + MOLEKULY ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE H ˆψ = Eψ PRO PŘÍPAD POTENCIÁLNÍ ENERGIE Vˆ = Ze 2 4πε o r ŘEŠENÍ HLEDÁME
VíceBarevné principy absorpce a fluorescence
Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 27.9.2007 2 1 Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické
VíceFluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
VíceElektronový obal atomu
Elektronový obal atomu Chemické vlastnosti atomů (a molekul) jsou určeny vlastnostmi elektronového obalu. Chceme znát energii a prostorové rozložení elektronů Znalosti o elektronovém obalu byly získány
VíceVIBRAČNÍ SPEKTROMETRIE
VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny
VíceMolekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
VíceZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE
ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Co to je NMR? nedestruktivní spektroskopická metoda využívající magnetických vlastností atomových jader ke studiu struktury molekul metoda č.1 pro určování
VícePokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie
Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie Vibrace molekul mohou být měřeny buď pomocí absorpce infračerveného záření, nebo pomocí neelastického rozptylu záření, tzn. Ramanova
VíceÚvod do moderní fyziky. lekce 3 stavba a struktura atomu
Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi
VíceÚvod do spektroskopických metod. Ondřej Votava
Úvod do spektroskopických metod Ondřej Votava Osnova přednášky 1. Historický ý úvod 2. Zavedení základních pojmů 3. Fyzikální podstata spektroskopie 4. Vybrané moderní spektrální metody Definice spektroskopie
VíceOptoelektronika. Zdroje. Detektory. Systémy
Optoelektronika Zdroje Detektory Systémy Optoelektronika Optoelektronické součástky využívají interakce záření a elektricky nabitých částic v polovodičích. 1839 E. Becquerel - Fotovoltaický jev 1873 W.
VíceOptoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)
Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO
VíceElektromagnetické vlnění, vlny a částice
Elektromagnetické vlnění, vlny a částice Vznik elektromagnetického záření Elektromagnetické vlnění vzniká, když částice s elektrickým nábojem se pohybuje se zrychlením. Příklady: - Střídavé napětí v anténě:
VíceProjekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může
VíceElektronový obal atomu
Elektronový obal atomu Chemické vlastnosti atomů (a molekul) jsou určeny vlastnostmi elektronového obalu. Chceme znát energii a prostorové rozložení elektronů Znalosti o elektronovém obalu byly získány
VíceÚvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
VíceNáboj a hmotnost elektronu
1911 změřil náboj elektronu Pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován, Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
VíceZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
VíceFyzikální podstata DPZ
Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný
VíceLátka jako soubor kvantových soustav
Opakování pojmů Látka jako soubor kvantovýh soustav - foton - kvantování energie - kvantová soustava systém vázanýh části (atom, molekula, iont), jehož energie je kvantována - základní stav kvantové soustavy
VícePolovodičové senzory. Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy
Polovodičové senzory Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy Polovodičové materiály elementární polovodiče Elementární
VíceDetekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
VíceBarevné principy absorpce a fluorescence
Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické složky, které
VíceOsnova. Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech FLASH XFEL
Osnova 1 2 Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech 3 FLASH XFEL 4 Diagnostika Rozpoznávání obrazu Medicína Vysoko parametrové plazma 5 Laserový svazek fokusovaný
VíceLASERY ABSORPČNÍ METODY
1 LASERY ABSORPČNÍ METODY Vítězslav Otruba Lasery v AAS 2 Přednosti proti klasickým zdrojům měřícího záření: 1. Malá šířka spektrální čáry (lineární kalibrace) 2. Spojitá změna vlnové délky (skenování)
VícePlazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
VíceÚVOD DO KVANTOVÉ MECHANIKY
ÚVOD DO KVANTOVÉ MECHANIKY KM popisuje vlastnosti hmoty a světla a fyzikální děje na úrovni atomů KVANTOVÁNÍ (fyzikální veličiny mohou mít pouze některé hodnoty) jedna z nejobecnějších vlastností našeho
VícePřednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Víceλ hc Optoelektronické součástky Fotorezistor, Laserová dioda
Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů
Více4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com
VíceVznik a šíření elektromagnetických vln
Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův
VíceCZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24
MĚŘENÍ SPEKTRA SVĚTLA Antonín Černoch Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/15.0147 AČ (RCPTM) Spektroskopie 1 / 24 Úvod Obsah 1 Úvod 2 Zobrazovací spektrometry Disperzní
VíceOtruba, Novotný LASERY ZÁKLADY. Vítězslav Otruba, Karel Novotný
Otruba, Novotný 1 LASERY ZÁKLADY Vítězslav Otruba, Karel Novotný 2 Laserový systém Asterix Praha (PALS Prague Asterix Laser System) 3 LASERY LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION Spektrální
VíceSpektrometr pro měření Ramanovy optické aktivity: proč a jak. Optická sestava a využití motorizovaných jednotek.
Spektrometr pro měření Ramanovy optické aktivity: proč a jak. Optická sestava a využití motorizovaných jednotek. Josef Kapitán Centrum digitální optiky Digitální Ramanova spektroskopie a Ramanova optická
VíceViková, M. : ZÁŘENÍ II. Martina Viková. LCAM DTM FT TU Liberec, (hranol, mřížka) štěrbina. Přednášky z : Textilní fyzika
Záření II Martina Viková LCAM DTM FT TU Liberec, martina.vikova@vslib.cz kolimátor dalekohled štěrbina (hranol, mřížka) SPEKTRA LÁTEK L I Zářící zdroje vysílají záření závislé na jejich chemickém složení
VíceSpektroskopické metody. Ramanova spektroskopie
Spektroskopické metody Ramanova spektroskopie p Objev Ramanova jevu Sir Chandrasekhara ase a a Venkata Raman a spolu s K.S. Krisnanem v roce 1928 v Kalkatě v Indii a nezávisle také v roce 1928 G. Landsberg
Více2. Pomocí Hg výbojky okalibrujte stupnici monochromátoru SPM 2.
1 Pracovní úkoly 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřené závislosti zpracujte graficky. Stanovte prahový proud i 0. 2. Pomocí Hg výbojky okalibrujte
VíceInterakce fluoroforu se solventem
18. Vliv solventu Interakce fluoroforu se solventem Fluorescenční charakteristiky fluoroforu se mohou měnit podle toho, jaké je jeho okolí změna kvantového výtěžku posun excitačního či emisního spektra
VíceÚloha 15: Studium polovodičového GaAs/GaAlAs laseru
Petra Suková, 2.ročník, F-14 1 Úloha 15: Studium polovodičového GaAs/GaAlAs laseru 1 Zadání 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřenézávislostizpracujtegraficky.Stanovteprahovýproud
VíceObchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště
Název školy Obchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště Název DUMu LASER Autor Mgr. Emilie Kubíčková Datum 16. 2. 2014 Stupeň atypvzdělávání
VíceJiří Oswald. Fyzikální ústav AV ČR v.v.i.
Jiří Oswald Fyzikální ústav AV ČR v.v.i. I. Úvod Polovodiče Zákládní pojmy Kvantově-rozměrový jev II. Luminiscence Si nanokrystalů III. Luminiscence polovodičových nanostruktur A III B V IV. Aplikace Pásová
VíceInovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Elektronový obal Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se stavbou
VíceNa základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena.
Vlnově-korpuskulární dualismus, fotony, fotoelektrický jev vnější a vnitřní. Elmg. teorie záření vysvětluje dobře mnohé jevy v optice interference, difrakci, polarizaci. Nelze jí ale vysvětlit např. fotoelektrický
VíceInterakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,
VíceSpektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
Více