return n; 3/29 Ing. Miroslav Balík, Ph.D. - BI-PA1-05 if (n<1) { printf("%d neni prirozene cislo\n", n); exit(0); }

Rozměr: px
Začít zobrazení ze stránky:

Download "return n; 3/29 Ing. Miroslav Balík, Ph.D. - BI-PA1-05 if (n<1) { printf("%d neni prirozene cislo\n", n); exit(0); }"

Transkript

1 1 Příprv studijního prormu Informtik je podporován projektem finncovným z Evropského sociálního fondu rozpočtu hlvního měst Prhy. Prh & EU: Investujeme do vší budoucnosti Funkce, intuitivní chápání složitosti Funkce definice funkce prmetry funkce deklrce funkce vrice n tém největší společný dělitel procedury výstupní prmetry přidělování pměti BI-PA1 Prormování loritmizce 1, ZS Ktedr teoretické informtiky Miroslv Blík Fkult informčních technoloií České vysoké učení technické 1/29 2/29 Funkce fktoriál /* pro5-1.c */ /* vypocet fktorilu */ int i = 1, f = 1; printf("zdejte prirozene cislo: "); scnf("%d", &n); if (n<1) { printf("%d neni prirozene cislo\n", n); while (i<n) { i = i+1; f = f*i; printf("%d! = %d\n", n, f); čtení přirozeného čísl výpočet fktoriálu Fktoriál pomocí funkcí Funkce pro čtení přirozeného čísl int ctiprirozene(void) { printf("zdejte prirozene cislo: "); scnf("%d", &n); if (n<1) { printf("%d neni prirozene cislo\n", n); exit(0); return n; Hlvičk funkce int ctiprirozene(void) vyjdřuje, že funkce nemá prmetry že výsledkem volání funkce je hodnot typu int return n; předepisuje návrt z funkce, výsledkem volání je hodnot n Příkld volání funkce: int n = ctiprirozene(); 3/29 4/29 Fktoriál pomocí funkcí Funkce pro výpočet fktoriálu int fktoril(int n) { int i = 1, f = 1; while (i<n) { i = i+1; f = f*i; return f; Hlvičk funkce vyjdřuje, že funkce má jeden prmetr typu int že výsledkem je hodnot typu int Příkld volání funkce int f = fktoril(4); // vysledek se ulozi do f Fktoriál pomocí funkcí /* pro5-1b.c */ /* vypocet fktorilu */ int ctiprirozene(void) { printf("zdejte prirozene cislo: "); scnf("%d", &n); if (n<1) { printf("%d neni prirozene cislo\n", n); exit(0); return n; Proměnnou n ve funkci min lze vynecht: printf("%d! = %d\n", n, fktoril(n)); 5/29 definice funkce 6/29

2 2 Definice funkce Funkce je podprorm (zápis dílčího loritmu), který vrcí hodnotu (výsledek) Definici funkce tvoří hlvičk funkce tělo funkce Hlvičk funkce v jzyku C má tvr typ jméno( specifikce prmetrů ) typ je typ výsledku funkce jméno je identifikátor funke specifikcí prmetrů se deklrují prmetry funkce, kždá deklrce má tvr typ_prmetru jméno_prmetru oddělují se čárkou - nemá-li funkce prmetry, specifikce prmetrů je void - Tělo funkce je složený příkz nebo blok, který se provede při volání funkce Tělo funkce musí dynmicky končit příkzem kde x je výrz, jehož hodnot je výsledkem volání funkce Prmetry funkce Prmetry funkce jsou lokální proměnné funkce, kterým se při volání funkce přiřdí hodnoty skutečných prmetrů. Jestliže prmetr funkce je typu T, pk přípustným skutečným prmetrem je výrz, jehož hodnotu lze přiřdit proměnné typu T - tedy stejná podmínk, jko u přiřzení. /* pro5-1c.c */ int mx(int x, int y) { if (x>y) return y; int = 10, b = 20; printf("%d\n", mx(, b)); printf("%d\n", mx(32.4, b)); 7/29 8/29 Prmetry funkce Prmetry funkce předávjí vstupní dt loritmu, který funkce relizuje Čstá chyb zčátečník: funkce, která čte hodnoty prmetrů pomocí operce vstupu dt int mx(int x, int y) { scnf("%d%d", &x, &y); // nesmyslný příkz if ( x > y ) else return y; Deklrce funkce Deklrce funkce je tvořen hlvičkou funkce je zkončen středníkem Deklrcí je funkce zveden může být použit /* pro5-1d.c */ int mx(int x, int y); int min(void) { int = 10, b = 20; printf("%d\n", mx(, b)); printf("%d\n", mx(32.4, b)); int mx(int x, int y) { if (x>y) else return y; deklrce funkce definice funkce Definice funkce může být v jiném souboru (uvidíme později) 9/29 10/29 Volání funkce Funkci f můžeme vyvolt z funkce, jestliže ve funkci je znám hlvičk funkce f Hlvičk funkce se zdá buď deklrcí nebo definicí funkce. Zopkujme, že hlvičkou funkce je dáno jméno (identifikátor) funkce, počet typy prmetrů typ výsledku funkce Funkci f, která má n prmetrů vrcí výsledek typu T, můžeme vyvolt zápisem funkce, což je výrz ve tvru f(p 1, p 2,, p n ) kde p 1, p 2,, p n jsou výrzy udávjící skutečné prmetry Hodnoty skutečných prmetrů se přiřdí prmetrům funkce podle prvidel pro přiřzení pk se provede tělo funkce. Hodnotou zápisu funkce je výsledek funkce (zdný v příkzu return). Zápis funkce obvykle používáme jko výrz, tzn. v kontextu, ve kterém je uvedeno, co s výsledkem funkce udělt (npř. přiřdit nějké proměnné). Ze zápisu funkce uděláme příkz, zkončíme-li ho středníkem (výsledek funkce se pk nepoužije zpomene se) Dlší příkld funkce Funkce pro zjištění, zd dný rok je přestupný /* pro5-1e.c */ int jeprestupny(int rok) { if (rok%4==0 && (rok%100!=0 rok%400==0)) else int rok; printf("zdejte rok: "); scnf("%d", &rok); printf("rok %d ", rok); if (jeprestupny(rok)) printf("je prestupny\n"); else printf("neni prestupny\n"); 11/29 12/29

3 Funkce pro výpočet NSD Jednoduchý loritmus výpočtu nsd jsme již uvedli Efektivnější loritmus lze sestvit n zákldě těchto vzthů: je-li x = y, pk nsd( x, y ) = x je-li x > y, pk nsd( x,y ) = nsd( x-y, y ) je-li x < y, pk nsd( x, y) = nsd( x, y-x ) Řešení 2: while (x!=y) if (x>y) x = x-y; else y = y-x; Funkce pro výpočet NSD Do těl cyklu vnoříme místo podmíněného příkzu pro jediné zmenšení hodnoty x nebo y dv cykly pro opkovné zmenšení hodnot x y Řešení 3: while (x!=y) { while (x>y) x = x-y; while (y>x) y = y-x; 13/29 14/29 Euklidův loritmus pro výpočet NSD Vnitřní cykly řešení 3 počítjí nenulový zbytek po dělení většího čísl menším Pro výpočet zbytku po dělení slouží operátor % Euklidův loritmus lze slovně formulovt tkto: určíme zbytek po dělení dných čísel, zbytkem dělíme dělitele určíme nový zbytek, ž dosáhneme nulového zbytku; poslední nenulový zbytek je nsd Řešení 4: int zbytek = x%y; while (zbytek!=0) { x = y; y = zbytek; zbytek = x%y; return y; Procedury Procedur je podprorm (zápis dílčího loritmu), který nevrcí žádnou hodnotu V jzyku C se procedury definují jko funkce, jejichž typ výsledku je void Proceduru je možno dynmicky ukončit kdekoliv příkzem return; Příkz return není nutný, procedur končí po provedení posledního příkzu Příkld procedury: výpis většího ze dvou celých čísel void vypismx(int x, int y) { if (x>y) printf("%d", x); else printf("%d", y); Dále se budeme držet terminoloie jzyk C: řekneme-li funkce, myslíme tím: jk funkci, která vrcí hodnotu, tk proceduru, která hodnotu nevrcí (typ výsledku je void). 15/29 16/29 Vstupní výstupní prmetry Prmetrem funkce je obvykle hodnot, která slouží jko vstup dílčímu loritmu, který je funkcí relizován. Tyto prmetry nzýváme vstupními prmetry Všechny předchozí funkce měly vstupní prmetry Většin prormovcích jzyků umožňuje, by funkce (procedur) měl též výstupní prmetr Výstupní prmetr umožňuje, by funkce (procedur) přiřdil hodnotu do proměnné, která je dán skutečným prmetrem. Příkld (v pseudojzyku): procedur, která ze dvou vstupních prmetrů x y (celá čísl) uloží menší číslo do proměnné dné výstupním prmetrem mensi vetší číslo do proměnné dné výstupním prmetrem vetsi proc minmx(in int x, in int y, out int mensi, out int vetsi) { if (x<y) { mensi = x; vetsi = y; else { mensi = y; vetsi = x; Výstupní prmetry Výstupní prmetry se v jzyku C relizují tk, že funkci (proceduře) se předá dres proměnné, kterou má funkce (procedur) změnit Operátor, který dodá dresu proměnné, už známe. Je to &, který používáme ve volání funkce scnf Proměnná (prmetr) p, jejíž hodnotou může být dres proměnné typu T, se deklruje zápisem T *p Typ T* se nzývá typem ukztel n T Příkld: deklrce procedury, která ze dvou vstupních prmetrů x y (celá čísl) uloží vetší číslo do proměnné dné výstupním prmetrem vetsi menší číslo do proměnné dné výstupním prmetrem mensi void minmx(int x, int y, int *mensi, int *vetsi); Jk tuto proceduru vyvolt: int, b, min, mx; mxmin(, b, &min, &mx); 17/29 18/29 3

4 4 Výstupní prmetry Pro přístup k proměnné, jejíž dres je v proměnné (prmetru) typu ukztel, slouží unární operátor * (dereference) Příkld (pro5-2.c): void minmx(int x, int y, int *mensi, int *vetsi) { if (x<y) { *mensi = x; *vetsi = y; else { *mensi = y; *vetsi = x; int, b, mx, min; printf("zdejte dve cel cisl: "); scnf("%d%d", &, &b); minmx(, b, &min, &mx); printf("min = %d, mx = %d\n", min, mx); vetsi mx *vetsi Prmetry typu ukztel Skutečným prmetrem pro prmetr typu T* musí být dres proměnné typu T. Je-li proměnná jiného typu, překldč vypíše vrovné hlášení (wrnin), prorm se přeloží le nebude správně funovt Příkld (pro5-2b.c): void minmx(int x, int y, int *mensi, int *vetsi) { if (x<y) { *mensi = x; *vetsi = y; else { *mensi = y; *vetsi = x; typ int* flot, b, mx, min; printf("zdejte dve cisl: "); scnf("%f%f", &, &b); minmx(, b, &min, &mx); printf("min = %f, mx = %f\n", min, mx); typ flot* 19/29 20/29 Přidělování pměti proměnným Přidělením pměti proměnné rozumíme určení dresy umístění proměnné v pměti počítče Poznli jsme dv druhy proměnných: lobální proměnné (deklrovné mimo funkci) lokální proměnné funkcí (deklrovné v bloku funkce prmetry funkce) Globálním proměnným se přidělí pměť při spuštění prormu (sttické přidělení pměti) zůstne jim přidělen ž do ukončení běhu prormu Lokálním proměnným prmetrům funkce se pměť přidělí při volání funkce (dynmické přidělení pměti) zůstne jim přidělen jen do návrtu z funkce (po návrtu se přidělené dresy uvolní pro dlší použití) Úseky pměti přidělovné lokálním proměnným prmetrům tvoří tzv. zásobník ( stck ): úseky se přidávjí odebírjí, přičemž se vždy odebere nposledy přidný úsek ( strteie LIFO ) zásobník /29 Přidělování pměti proměnným int ; void f(void) { int b; // 2 h(4); // 4 int h(int x) { // 3 int ; // 1 f(); // 5 x b b b 4 5 zásobník stticky přidělená pměť 22/29 Problém: prvočísl Zjistěte počet prvočísel menších než zdné číslo n určete čs, který n to budete potřebovt prvočíslo: přirozené číslo větší než 1, které je beze zbytku dělitelné pouze jedničkou smo sebou. přirozené číslo: kldné celé číslo větší než 0 Aloritmus: Pro kždé číslo menší než n rozhodněte, zd jde o prvočíslo či ne rději pouze: pro kždé přirozené Nsčítejte prvočísl podproblémy : 1. zjištění zd dné číslo je prvočíslo 2. měření čsu funkce Příkld: prvočísl I Dle definice: Přirozené číslo n je prvočíslo, právě tehdy když jej beze zbytku dělí pouze číslo n číslo 1 int isprvocislo1(lon lon n) { lon lon i; if (n < 2) { int pocetdelitelu = 0; for (i = 1; i <= n; i++) { if (n % i == 0) { pocetdelitelu++; if (pocetdelitelu == 2) { else { 23/29 24/29

5 5 Příkld: prvočísl II Vylepšení 1. - njdeme-li prvního dělitele jiného než čísl 1 n, již to není prvočíslo int isprvocislo2(lon lon n) { lon lon i; if (n < 2) { for (i = 2; i < n; i++) { if (n % i == 0) { Příkld: prvočísl III Vylepšení 2. Číslo složené lze npst jko součin dělitelů, npř. 35=7*5; jedno je menší druhé větší int isprvocislo3(lon lon n) { lon lon i; if (n < 2) { for (i = 2; i <= n / 2; i++) { if (n % i == 0) { 25/29 26/29 Příkld: prvočísl IV Vylepšení 2. Číslo složené lze npst jko součin dělitelů, npř. 35=7*5; jedno je menší druhé větší, pokud nejsou stejné jko 49 = 7*7 int isprvocislo(lon lon n) { lon lon i; if (n < 2) { for (i = 2; i <= sqrt(n); i++) { if (n % i == 0) { sqrt(n) se vyhodnocuje před kždým průchodem cyklem int isprvocislo(lon n) { lon i; int mx = (int)sqrt(n); if (n < 2) { for (i = 2; i <= mx; i++) { if (n % i == 0) { Příkld: prvočísl V 27/29 28/29 Příkld: prvočísl V - složitost Složitost loritmu určuje jeho čsovou prostorovou náročnost t/m n Určete složitost loritmů (n zákldě odhdu čsu) pro všechny typy metod n zjištění, zd dné číslo je prvočíslo 29/29

Funkce, intuitivní chápání složitosti

Funkce, intuitivní chápání složitosti Příprava studijního programu Informatika je podporována projektem financovaným z Evropského sociálního fondu a rozpočtu hlavního města Prahy. Praha & EU: Investujeme do vaší budoucnosti Funkce, intuitivní

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Jazyk C funkce České vysoké učení technické Fakulta elektrotechnická A8B14ADP Algoritmizace a programovaní -Jazyk C -Ver.1.00 funkce J. Zděnek 20151 Funkce Funkce - černá (programová)

Více

Automaty a gramatiky(bi-aag)

Automaty a gramatiky(bi-aag) BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 2/33 Převod NKA ndka BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 4/33 Automty grmtiky(bi-aag) 3. Operce s konečnými utomty Jn

Více

Řídící struktury, if, while, switch

Řídící struktury, if, while, switch Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Řídící struktury, if, while, switch BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík Fakulta informačních

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

Řídicí struktury. alg3 1

Řídicí struktury. alg3 1 Řídicí struktury Řídicí struktura je programová konstrukce, která se skládá z dílčích příkazů a předepisuje pro ně způsob provedení Tři druhy řídicích struktur: posloupnost, předepisující postupné provedení

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M. BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty

Více

Řídící struktury, if, while, switch

Řídící struktury, if, while, switch Příprava studijního programu Informatika je podporována projektem financovaným z Evropského sociálního fondu a rozpočtu hlavního města Prahy. Praha & EU: Investujeme do vaší budoucnosti Řídící struktury,

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:

1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: 1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Algoritmus Daniela Szturcová Tento

Více

Rozklad problému na podproblémy, rekurze

Rozklad problému na podproblémy, rekurze Příprava studijního programu Informatika je podporována projektem financovaným z Evropského sociálního fondu a rozpočtu hlavního města Prahy. Praha & EU: Investujeme do vaší budoucnosti Rozklad problému

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

Rozklad problému na podproblémy

Rozklad problému na podproblémy Rozklad problému na podproblémy Postupný návrh programu rozkladem problému na podproblémy zadaný problém rozložíme na podproblémy pro řešení podproblémů zavedeme abstraktní příkazy s pomocí abstraktních

Více

Rozklad problému na podproblémy, rekurze

Rozklad problému na podproblémy, rekurze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Rozklad problému na podproblémy, rekurze BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík Fakulta informačních

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5. 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Logaritmická funkce, logaritmus, logaritmická rovnice

Logaritmická funkce, logaritmus, logaritmická rovnice Logritmická funkce. 4 Logritmická funkce, ritmus, ritmická rovnice - získá se jko funkce inverzní k funkci eponenciální, má tvr f: = Pltí: > 0!! * * = = musí být > 0, > 0 Rozlišujeme dv zákldní tp: ) >

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Jazyk C řízení běhu programu České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Šest zákonů programování 1. V každém programu je alespoň jedna chyba

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Jazyk C řízení běhu programu České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Šest zákonů programování 1. V každém programu je alespoň jedna chyba

Více

3. přednáška. Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti

3. přednáška. Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti 3. přednáška nalezení největšího prvku, druhého nejvyššího prvku, algoritmus shozeného praporku. Algoritmizace

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA 1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA V této kpitole se ozvíte: co rozumíme lgebrickým výrzem; jk jsou efinovány zlomky jké záklní operce s nimi prováíme; jk je

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Programování v jazyce C pro chemiky (C2160) 3. Příkaz switch, příkaz cyklu for, operátory ++ a --, pole

Programování v jazyce C pro chemiky (C2160) 3. Příkaz switch, příkaz cyklu for, operátory ++ a --, pole Programování v jazyce C pro chemiky (C2160) 3. Příkaz switch, příkaz cyklu for, operátory ++ a --, pole Příkaz switch Příkaz switch provede příslušnou skupinu příkazů na základě hodnoty proměnné (celočíselné

Více

4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33

4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33 . Determinnty Determinnt, znčíme deta, je číslo přiřzené čtvercové mtici A. Je zveden tk, by pro invertibilní mtici byl nenulový pro neinvertibilní mtici byl roven nule. Výpočet: = + = + + - - - + + +

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

Pro kontrolu správného formátu hodnoty N použijeme metodu try-catch.

Pro kontrolu správného formátu hodnoty N použijeme metodu try-catch. 1. ŘEŠENÉ PŘÍKLADY 1.2 PŘÍKLAD 24-2-8-2_DOKONALÉ ČÍSLO Napište program, který má na vstupu přirozené číslo N > 1. Výstupem je informace o tom, zda toto číslo je/není dokonalé. (Dokonalé číslo je takové

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Algoritmus Daniela Szturcová Tento

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

5. přednáška - Rozklad problému na podproblémy

5. přednáška - Rozklad problému na podproblémy 5. přednáška - Rozklad problému na podproblémy Obsah přednášky: Rozklad problému na podproblémy. Rekurze. Algoritmizace (Y36ALG), Šumperk - 5. přednáška 1 Rozklad problému na podproblémy Postupný návrh

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů. Vzth mezi reg. výrzy kon. utomty Automty grmtiky(bi-aag) 7. Převody mezi reg. grm., reg. výrzy kon. utomty Jn Holu Algoritmus (okrčování): 6. Zorzení δ: () δ(, x) oshuje x i, x i Z. () δ(x i, y) oshuje

Více

Funkce, procedury, složitost

Funkce, procedury, složitost Funkce, procedury, složitost BI-PA1 Programování a Algoritmizace 1 Miroslav Baĺık, Ladislav Vagner a Josef Vogel Katedra teoretické informatiky a Katedra softwarového inženýrství Fakulta informačních technologíı

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Petr Schreierová, Ph.D. Ostrv Ing. Petr Schreierová, Ph.D. Vsoká škol áňská Technická univerzit

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

m n. Matice typu m n má

m n. Matice typu m n má MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme

Více

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer 4. Rekurze BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE REALIZACE PŘEKLADAČE I

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE REALIZACE PŘEKLADAČE I PROGRAMOVACÍ JAZYKY A PŘEKLADAČE REALIZACE PŘEKLADAČE I 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Programová realizace DKA typedef enum {q0, q1,... qn,

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:

1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: 1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.

Více

Logaritmické rovnice I

Logaritmické rovnice I .9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme

Více

Rekurze. Pavel Töpfer, 2017 Programování 1-8 1

Rekurze. Pavel Töpfer, 2017 Programování 1-8 1 Rekurze V programování ve dvou hladinách: - rekurzivní algoritmus (řešení úlohy je definováno pomocí řešení podúloh stejného charakteru) - rekurzivní volání procedury nebo funkce (volá sama sebe přímo

Více

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou

Více

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady: 4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26 Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

3.2. LOGARITMICKÁ FUNKCE

3.2. LOGARITMICKÁ FUNKCE .. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34. Vzdělávcí mteriál vytvořený v projektu OP VK Název školy: Gymnázium, Zářeh, náměstí Osvoození 20 Číslo projektu: Název projektu: Číslo název klíčové ktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro

Více

Rekurzivní algoritmy

Rekurzivní algoritmy Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS

Více

Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace

Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace Programování: základní konstrukce, příklady, aplikace IB111 Programování a algoritmizace 2011 Připomenutí z minule, ze cvičení proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady:

Více

Příkazy if, while, do-while, for, switch

Příkazy if, while, do-while, for, switch Příkazy if, while, do-while, for, switch BI-PA1 Programování a Algoritmizace 1 Ladislav Vagner, Josef Vogel Katedra teoretické informatiky a Katedra softwarového inženýrství Fakulta informačních technologíı

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

Programovací jazyk Pascal

Programovací jazyk Pascal Programovací jazyk Pascal Syntaktická pravidla (syntaxe jazyka) přesná pravidla pro zápis příkazů Sémantická pravidla (sémantika jazyka) pravidla, která každému příkazu přiřadí přesný význam Všechny konstrukce

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

type Obdelnik = array [1..3, 1..4] of integer; var M: Obdelnik;

type Obdelnik = array [1..3, 1..4] of integer; var M: Obdelnik; Vícerozměrné pole type Obdelnik = array [1..3, 1..4] of integer; var M: Obdelnik; M[2,3] := 3145; - počet indexů není omezen (v praxi obvykle nejvýše tři) - více indexů pomalejší přístup k prvku (počítá

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla Dobývání znlostí z dtbází (MI-KDD) Přednášk číslo 4 Asociční prvidl (c) prof. RNDr. Jn Ruch, CSc. KIZI, Fkult informtiky sttistiky VŠE zimní semestr 2011/2012 Evropský sociální fond Prh & EU: Investujeme

Více

Rekurze. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Rekurze. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Rekurze doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Rekurze 161 / 344 Osnova přednášky

Více

Operační systémy. Cvičení 4: Programování v C pod Unixem

Operační systémy. Cvičení 4: Programování v C pod Unixem Operační systémy Cvičení 4: Programování v C pod Unixem 1 Obsah cvičení Řídící struktury Funkce Dynamická alokace paměti Ladění programu Kde najít další informace Poznámka: uvedené příklady jsou dostupné

Více

Přednáška 7. Celočíselná aritmetika. Návratový kód. Příkazy pro větvení výpočtu. Cykly. Předčasné ukončení cyklu.

Přednáška 7. Celočíselná aritmetika. Návratový kód. Příkazy pro větvení výpočtu. Cykly. Předčasné ukončení cyklu. Přednáška 7 Celočíselná aritmetika. Návratový kód. Příkazy pro větvení výpočtu. Cykly. Předčasné ukončení cyklu. 1 Příkaz expr výraz Celočíselná aritmetika I Zašle na standardní výstup vyhodnocení výrazu

Více

Rekurze. Jan Hnilica Počítačové modelování 12

Rekurze. Jan Hnilica Počítačové modelování 12 Rekurze Jan Hnilica Počítačové modelování 12 1 Rekurzivní charakter úlohy Výpočet faktoriálu faktoriál : n! = n (n - 1) (n - 2)... 2 1 (0! je definován jako 1) můžeme si všimnout, že výpočet n! obsahuje

Více

Středoškolská technika 2017 PROGRAM NA GENEROVÁNÍ PRVOČÍSEL

Středoškolská technika 2017 PROGRAM NA GENEROVÁNÍ PRVOČÍSEL Středoškolská technika 2017 Setkání a prezentace prací středoškolských studentů na ČVUT PROGRAM NA GENEROVÁNÍ PRVOČÍSEL Vojtěch Pchálek Střední škola technická Kouřílkova 8, Přerov ANOTACE Bratr, který

Více

PODPROGRAMY PROCEDURY A FUNKCE

PODPROGRAMY PROCEDURY A FUNKCE PODPROGRAMY PROCEDURY A FUNKCE Programy bez podprogramů Příklady: a) Napište program, který na obrazovku nakreslí čáru složenou ze znaků pomlčka. program Cara; b) Napište program, který na obrazovku nakreslí

Více

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné 1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2

Více

Racionální čísla, operátory, výrazy, knihovní funkce

Racionální čísla, operátory, výrazy, knihovní funkce Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Racionální čísla, operátory, výrazy, knihovní funkce BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík

Více

for (i = 0, j = 5; i < 10; i++) { // tělo cyklu }

for (i = 0, j = 5; i < 10; i++) { // tělo cyklu } 5. Operátor čárka, - slouží k jistému určení pořadí vykonání dvou příkazů - oddělím-li čárkou dva příkazy, je jisté, že ten první bude vykonán dříve než příkaz druhý. Např.: i = 5; j = 8; - po překladu

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Funkce a procedury. Jan Faigl. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze. Přednáška 5 A0B36PR1 Programování 1

Funkce a procedury. Jan Faigl. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze. Přednáška 5 A0B36PR1 Programování 1 Funkce a procedury Jan Faigl Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Přednáška 5 A0B36PR1 Programování 1 Jan Faigl, 2015 A0B36PR1 Přednáška 5: Funkce a procedury

Více

Vlnová teorie. Ing. Bc. Michal Malík, Ing. Bc. Jiří Primas. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Vlnová teorie. Ing. Bc. Michal Malík, Ing. Bc. Jiří Primas. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Ing. Bc. Michl Mlík, Ing. Bc. Jiří Prims ECHNICKÁ UNIVERZIA V LIBERCI Fkult mechtroniky, informtiky mezioborových studií ento mteriál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinncován

Více

3. Kvadratické rovnice

3. Kvadratické rovnice CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:

Více

Lomené výrazy (sčítání, odčítání, násobení, dělení, rozšiřování, krácení,.)

Lomené výrazy (sčítání, odčítání, násobení, dělení, rozšiřování, krácení,.) Lomené výrz (čítání, odčítání, náoení, dělení, rozšiřování, kráení, ) Lomené výrz jo výrz ve tvr zlomk, v jehož jmenovteli je proměnná, npříkld r ( ) ( ) 9 Počítání lomenými výrz má podoné vltnoti jko

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více