Úvod do strukturní analýzy farmaceutických látek

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do strukturní analýzy farmaceutických látek"

Transkript

1 Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.7/3..00/33253

2 Nukleární Magnetická Rezonance

3 Nukleární Magnetická Rezonance Nedestruktivní metoda vyžadující obvykle několik mg látky. Pro vysoce citlivé přístroje zlomky µg látky. Umožňuje měření v plynné, kapalné i pevné fázi. NMR je téměř nejsilnějším analytickým nástrojem k řešení struktury organických a bioorganických látek. Umožňuje stanovit kovalentní, sekundární, terciární i kvartérní strukturu. Umožňuje studovat interakce molekul i biomolekul. V následujícím textu je zahrnuta řada zjednodušení a aproximací.

4 Nukleární Magnetická Rezonance Nukleární ( jaderná ) Využívá vlastností jader majících nenulový jaderný spin, I 0. Isotopy mající nulový jaderný spin nelze měřit (tzv. NMR inaktivní jádra). Magnetická Vyžaduje silné magnetické pole ( v součastnosti -24 Tesla; magnetické pole Země je ca. 45 µt ) Resonance resonanční podmínka ( Larmorova frekvence ) Absorbce elektromagnetického záření o frekvenci 0 6 až 0 0 z odnota je přímo úměrná síle použitého magnetickém pole. ( 0 až nm, až kj/mol )

5 Nukleární ( jaderná ) Je-li spinové kvantovéčíslo jádra nenulové, I > 0, pak lze tyto jádra studovat pomocí NMR. Spinové kvantové číslo jádra ( I ) = jaderný spin = spin Spin je kvantově mechanická vlastnost mnoha fundamentálních částic. Spinem se nazývá neboť se jedná o typ momentu hybnosti a platí pro něj vztahy týkající se momentu hybnosti. Jádra s nenulovým jaderným spinem mají nenulový magnetický moment µ h = 6, (33) J.s Planckova konstanta γ = gyromagnetický poměr ( vlastnost jádra )

6 Rezonance PŘÍKLAD PRO PROTON I = ½ B o µ ω ω µ E β E α Přímá úměra síle magnetického pole i gyromagnetickému poměru. E = E β - E α = γћ B o [J] E = hν ћ = h / 2π ω = γ B o / 2π = ν ω - resonanční frekvence [ rad. s - ] LARMOROVA REKVENCE Při stejné orientaci vektorů magnetického pole a magnetického momentu je energie nižší. ν - resonanční frekvence [ s - = z ]

7 Měřitelná jádra ( isotopy ) omezíme se na základy NMR a 3 C NMR spekter

8 Měřitelná jádra ( isotopy ) Je-li hmotnostní i protonové číslo jádra sudé je jaderný spin nulový. 2 6C 6 8O 32 6 S Je-li hmotnostní číslo liché je Jaderný spin poločíselný C N 3 5P Je-li hmotnostní číslo sudé a protonové číslo liché je spin celočíselný N

9 Varian Mercury Plus 300 Mz 7,05 Tesla R2D2 type ;-)

10 Bod varu dusíku -95,795 C (77,355 K) Bod varu helia -268,928 C ( 4,222 K)

11 Varian Mercury Plus 300 Mz 7,05 Tesla

12 23,5 Tesla,76 Tesla JEOL 500 Mz ÚAC VŠCT Praha krát silnější pole než magnetické pole Země

13 Stolní NMR přístroje s permanentními magnety (Benchtop NMR) NMReady 60P,4 Tesla, Tesla,9 Tesla PicoSpin 80 Larmor frequency Nucleus 82 Mz (,9 T) Resolution 20 ppb Magnet type PERMANENT Capillary 40 µl Weight 9,5 kg Dimensions 43 x 35 x 25 cm

14 Varian A-60 vs. NMReady-60

15 Achievement of 020 Mz NMR (24.0 T) Journal of Magnetic Resonance, 205; 256: 30. DOI: 0.06/j.jmr Výška 5 m Váha 5 tun

16 Základní informace z NMR spektra Počet signálů Intenzita signálů Chemický posun signálů Multiplicita signálů Přímá souvislost s molekulovou strukturou studované látky

17 Základní informace z NMR spektra čisté látky Počet signálů odpovídá počtu chemicky neekvivalentních jader v molekule ( omezíme na spektra látek při vyšší teplotě ) Intenzita signálů vypovídá o množství daných jader v molekule ( omezíme na spektra měřená za obvyklých servisních podmínek ) Chemický posun signálů vypovídá o chemickém okolí jader daného signálu ( omezíme na běžná jádra a běžné organické látky ) Multiplicita signálů vypovídá o přítomnosti jader s nenulovým magnetickým spinem (v molekule) ( omezíme na jádra s I = ½, a na spektra prvního řádu )

18 Počet signálů v NMR spektru Počet signálů v NMR spektru čisté látky odpovídá počtu chemicky neekvivalentních jader, tedy jader s různým chemickým okolím. Cl O NMR C NMR NMR 3 2 Chemicky ekvivalentní (neboli omotopní) jádra jsou taková, která jsou v důsledku symetrie nerozlišitelná, mají stejné chemické okolí. Počet signálů vypovídá o symetrii molekuly studované látky

19 Počet signálů v NMR spektru Chemicky ekvivalentní ( neboli omotopní ) jádra jsou taková, která jsou v důsledku symetrie nerozlišitelná, mají stejné chemické okolí. Pro chemicky ekvivalentní jádra platí substituční test : Záměnou jednoho za X vzniká stejná látka jako záměnou druhého za X. X X 2 signály v NMR 4 signály v 3 C NMR X X

20 Počet signálů v NMR spektru Za chemicky ekvivalentní lze považovat i jádra, která jsou ekvivalentní v důsledku rychlé rotace skupiny nebo jiné rychlé chemické výměny. Cl Měření NMR spektra trvá ca. 0 - až 0 s Pro rychlé procesy je pozorována jejich průměrná hodnota. Methyl se otočí mnohotisíckrát za sekundu. Vodíky methylu jsou ekvivalentní. Cl Cl Byla-li by rotace velmi pomalá, vodíky by byly neekvivalentní. Obecně jsou rotace kolem jednoduché vazby rychlé a vedou k ekvivalenci jader rotujících skupin. Pokud nejsou neekvivaletní z jiného důvodu!!!

21 Počet signálů v NMR spektru Uvažujte volnou rychlou rotaci kolem jednoduchých vazeb. C 3 O O 3 C O C 2 C 3 O 3 C C 3 3 C C 3 : 3 C: C O N 3 C O S C 3 O O : 3 C:

22 Počet signálů v NMR spektru NMR není chiroptickou metodou!!!!! Standardním měřením nelze rozlišit enantiomery. Chiralita má však zásadní dopad na NMR spektra. substituční test Cl substituční test X X X X Cl Cl Enantiomery jsou nerozlišitelné vodíky jsou ekvivalentní jeden signál v NMR Enantiotopní jádra Diastereomery jsou rozlišitelné vodíky jsou neekvivalentní dva signály v NMR Diastereotopní jádra

23 Rezonanční frekvence signálů v NMR spektru (C 3 ) 3 Si Rezonanční frekvence tetramethylsilanu ( TMS, standard pro, 3 C i 29 Si NMR ) B 0 [ T ] Tesla jádra [ Mz ] 3 C jádra [ Mz ] 29 Si jádra [ Mz ],4 60,0 5,,9 7,05 300, 75,5 59,6 9,4 400, 00,6 79,5,75 500, 25,8 99,4 4, 600, 50,9 9,2 8,8 800, 20,2 59,0 23,5 000, 25,5 98,7 Silnější magnetické pole = vyšší rezonanční frekvence Na každém přístroji absorbují stejná jádra při jiné frekvenci Pro přenositelnost nutno využít referenční látky (standardu)

24 Chemický posun signálů v NMR spektru Chemický posun signálu δ je bezrozměrné číslo, tj. nezávislé na síle použitého magnetického pole. Vzhledem k jeho obvyklé velikosti 0-6 až 0-4 udáváme jeho hodnotu v ppm. chemický posun signálu x faktor pro přepočet na ppm resonanční frekvence signálu x resonanční frekvence signálu referenční látky (standardu) blízká s tzv. pracovní frekvencí přístroje

25 NMR,96 5,69 6,26 C 3 2,2 COO ppm 3 C NMR 27,9 7,9 C 3 36, COO 73,5 ppm

26 Chemický posun signálů v NMR spektru odnota chemického posunu odráží chemické okolí atomů (stínění). Z rozsáhlých tabulek těchto hodnot lze usuzovat na možné strukturní fragmenty neznámé látky, nebo odhadnout (predikce) chemické posuny pro známou strukturu. Spektrum NMR experimentální chemické posuny tabulky chemických posunů predikční program databáze chemické posuny známých látek očekávané hodnoty chemických posunů potvrzení možné správnosti navržené struktury návrh struktura pravděpodobná strukturní uskupení

27 Chemické posuny v NMR spektrech 5,69 6,26,96 C 3 2,2 COO

28 Chemické posuny v 3 C NMR spektrech 27,9 7,9 C 3 36, COO 73,5

29 Intenzita signálu Integrální intenzita signálu je úměrná počtu chemicky ekvivalentních jader daného izotopu. Při standardním měření lze integrálních intenzit využít při analýze i 9 NMR spekter, nikoli u 3 C NMR spekter. Poměr integrálních intenzit signálů odpovídá poměru počtu ekvivalentních jader v molekule.

30 NMR integrální vlna ( výška ) integrální normalizovaná hodnota ( plocha ) 5,69 6,26,96 C 3 2,2 COO 3 3 C NMR ppm 27,9 7,9 C 3 36, COO 73, ppm

31 Intenzita signálu v NMR spektru porovnání výšky integrální vlny 22 : 67 = ca. :3 porovnání integrálních hodnot,356 : 3,249 = ca. :3 integrální vlna integrální vlna 22 mm hodnoty numerické integrace 67 mm,356 3,249 integrální intenzita integrální intenzita 3

32 Počet a integrální intenzita signálů v NMR spektru Uvažujte volnou rychlou rotaci kolem jednoduchých vazeb. C 3 O O 3 C O C 2 C 3 O 3 C C 3 3 C C 3 3 C: : 2 2 3: 4 3 3:2: :2 3 C O N 3 C O S C 3 O O : 3 C: 4 3:2:2: :2:2:2:3 5

33 Počet signálů O 3 C O C 3 3 C C3 3 C O : 2 ( 3:2 ) 3 C: 2 : 4 ( 3:2:2:3 ) 3 C: 4 : 5 ( 3:2:2:2: ) 3 C: 4 C 3 C 3 O C3 C 3 C 3 O C 3 3 C O 3 C : 3 ( 6::3 ) 3 C: 3 : 4 ( 6::2: ) 3 C: 3 : 2 ( 9: ) 3 C: 2 Tyto konstituční isomery lze snadno rozlišit pomocí NMR nikoli ze spekter IČ, Raman či MS.

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR... Počet signálů C 17 18 2 O 2 MeO Počet signálů = počet neekvivalentních skupin OMe = informace o symetrii molekuly Spektrum 1 MR... Počet

Více

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od

Více

Techniky měření a interpretace NMR spekter. Bohumil Dolenský VŠCHT Praha místnost A28 linka 4110

Techniky měření a interpretace NMR spekter. Bohumil Dolenský VŠCHT Praha místnost A28 linka 4110 Techniky měření a interpretace NMR spekter Bohumil Dolenský VŠCT Praha místnost A28 linka 4110 NMR je nejsilnějším analytickým nástrojem k řešení struktury organický látek královna strukturních metod.

Více

Strukturní analýza. NMR spektroskopie

Strukturní analýza. NMR spektroskopie Strukturní analýza NMR spektroskopie RNDr. Zdeněk Tošner, Ph.D. lavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní

Více

NMR spektroskopie Instrumentální a strukturní analýza

NMR spektroskopie Instrumentální a strukturní analýza NMR spektroskopie Instrumentální a strukturní analýza prof. RNDr. Zdeněk Friedl, CSc. Použitá a doporučená literatura Solomons T.W.G., Fryhle C.B.: Organic Chemistry, 8th Ed., Wiley 2004. Günther H.: NMR

Více

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B. \\PYR\SCRATCH\

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B.  \\PYR\SCRATCH\ Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Seminář z Analytické chemie B Tento materiál vznikl za podpory projektu CHEMnote PPA CZ..7/../48 Inovace bakalářského studijního programu

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

NUKLEÁRNÍ MAGNETICKÁ REZONANCE

NUKLEÁRNÍ MAGNETICKÁ REZONANCE NUKLEÁRNÍ MAGNETICKÁ REZONANCE NMR spektrometrie PRINCIP NMR Jsou-li atomová jádra některých prvků v externím magnetickém poli vystavena vysokofrekvenčnímu elmag. záření, mohou absorbovat záření určitých.

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter LEKCE 1b Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR spekter Počet signálů ve

Více

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805,

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, Vyučující: doc. Ing. Richard rabal, CSc. Ing. ana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, e-mail hrabalr@vscht.cz Termín: každé pondělí od 8.30 do 11.30 Místo: posluchárna

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

Spektrální metody NMR I. opakování

Spektrální metody NMR I. opakování Spektrální metody NMR I opakování Využití NMR určování chemické struktury přírodní látky, organická syntéza konstituce, konformace, konfigurace ověření čistoty studium dynamických procesů reakční kinetika

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm)

Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm) Gyromagnetická částice, jev magnetické rezonance Pojmy s kterýma se můžete setkat: u elektronů lze Bohrův magneton Zkoumat NMR lze jen ty jádra, které mají nenulový jaderný spin: Několik systematických

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

Chemický posun v uhlíkových NMR spektrech

Chemický posun v uhlíkových NMR spektrech 13 -NMR spektrometrie rezonance jader 13 nastává ve srovnání s 1 při cca čtvrtinové frekvenci, tj. pracovní frekvenci 100 Mz (v 1 ) odpovídá 25,15 Mz ( 13 ) a frekvenci 600 Mz (v 1 ) odpovídá 150,9 Mz

Více

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Uplatnění NMR spektroskopie chemická struktura kovalentní struktura konformace, geometrie molekul dynamické procesy chemické a konformační

Více

LEKCE 2a. Interpretace 13 C NMR spekter. NMR a chiralita, posunová činidla. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova)

LEKCE 2a. Interpretace 13 C NMR spekter. NMR a chiralita, posunová činidla. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) LEKCE 2a NMR a chiralita, posunová činidla Interpretace 13 C NMR spekter Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) Symetrie v NMR spektrech - homotopické, enantiotopické, diastereotopické

Více

Úvod Základy Fyzika MRI. Magnetická rezonance. J. Kybic, J. Hornak 1, M. Bock, J. Hozman, P.Doubek. 1

Úvod Základy Fyzika MRI. Magnetická rezonance. J. Kybic, J. Hornak 1, M. Bock, J. Hozman, P.Doubek. 1 Úvod Základy Fyzika MRI Magnetická rezonance J. Kybic, J. Hornak 1, M. Bock, J. Hozman, P.Doubek 2008 2016 1 http://www.cis.rit.edu/htbooks/mri/ Úvod Základy Fyzika MRI Magnetická rezonance Úvod a motivace

Více

Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter NMR a chiralita, posunová činidla Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR

Více

Seminář NMR. Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/

Seminář NMR. Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/ Seminář NMR Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/ Osnova Úvod, základní princip Instrumentace magnety, měřící sondy, elektronika

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 6 Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

Metody pro studium pevných látek

Metody pro studium pevných látek Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

Středoškolská odborná činnost 2005/2006

Středoškolská odborná činnost 2005/2006 Středoškolská odborná činnost 2005/2006 Obor 3 - chemie Autor: Martin Hejda MSŠCH, Křemencova 12 116 28 Praha 1, 3. ročník Zadavatel a vedoucí práce: Mgr. Miroslav Kašpar CSc. Fyzikální ústav AVČR Na Slovance

Více

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované

Více

2. Atomové jádro a jeho stabilita

2. Atomové jádro a jeho stabilita 2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron

Více

Nukleární magnetická rezonanční spektrometrie

Nukleární magnetická rezonanční spektrometrie Nukleární magnetická rezonanční spektrometrie bsah kapitoly Teoretický úvod Pracovní technika NMR 1 -NMR organických sloučenin 13 -NMR 31 P-NMR Aplikace NMR v analýze potravin Nukleární (jaderná) magnetická

Více

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Využití magneticko-rezonanční tomografie v měřicí technice Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Osnova Podstata nukleární magnetické rezonance (MR) Historie vývoje MR Spektroskopie MRS Tomografie MRI

Více

NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech

NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech Spinový hamiltonián Hamiltonián soustavy jader a elektronů v magnetickém poli lze zapsat

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

Měření a interpretace NMR spekter

Měření a interpretace NMR spekter Měření a interpretace NMR spekter Bohumil Dolenský E-mail : Telefon : Místnost : www : dolenskb@vscht.cz (+420) 220 44 4110 budova A, místnost 28 http://www.vscht.cz/anl/dolensky/technmr/index.html Struktura

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Emise vyvolaná působením fotonů nebo částic

Emise vyvolaná působením fotonů nebo částic Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová

Více

Stavba atomů a molekul

Stavba atomů a molekul Stavba atomů a molekul Michal Otyepka V prezentaci jsou použity obrázky z řady zdrojů, které nejsou důsledně citovány, tímto se všem dotčeným omlouvám. Vidět znamená věřit Úvod l cíle seznámit studenty

Více

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. doc. RNDr. Jan Lang, PhD. Ing. Jan Prchal, Ph.D.

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. doc. RNDr. Jan Lang, PhD. Ing. Jan Prchal, Ph.D. Vyučující: doc. Ing. Richard rabal, CSc. Ing. ana Dvořáková, CSc. doc. RNDr. Jan Lang, PhD. Ing. Jan Prchal, Ph.D. Číslo dveří A 42, telefon 3805, e-mail hrabalr@vscht.cz Termín: každý čtvrtek od 10,00

Více

doc. Ing. Richard Hrabal, CSc.

doc. Ing. Richard Hrabal, CSc. doc. Ing. Richard rabal, CSc. NMR laboratoř, Vysoká škola chemicko-technologická v Praze, číslo dveří 42 telefon 220 443 805, e-mail hrabalr@vscht.cz) 15. říjen 2015 základy NMR spektroskopie přístrojové

Více

NMR SPEKTROSKOPIE PRO CHEMIKY

NMR SPEKTROSKOPIE PRO CHEMIKY NMR SPEKTROSKOPIE PRO CHEMIKY 1. Úvod 1.1 Historický úvod 1.2 Jazykové okénko 2. Principy NMR spektroskopie 2.1 Jaderný spin 2.2 Chemický posun 2.3 Snímání NMR signálu 2.4 Fourierova transformace 2.5 Magnetické

Více

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) C Použití GC-MS spektrometrie Vedoucí práce: Doc. Ing. Petr Kačer, Ph.D., Ing. Kamila Syslová Umístění práce: laboratoř 79 Použití GC-MS spektrometrie

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Přírodovědecká fakulta Organická chemie

Přírodovědecká fakulta Organická chemie Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Přírodovědecká fakulta Organická chemie Doc. Čermák 2014 Spektroskopie Spektroskopie nukleární magnetické rezonance a její použití k určení struktury

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

Magnetická rezonance. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Magnetická rezonance. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013 Magnetická rezonance Biofyzikální ústav LF MU Magnetická rezonance Je neinvazivní zobrazovací metoda, která poskytuje informace o vnitřní stavbě lidského těla a o fyziologii a funkci jednotlivých orgánů.

Více

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá

Více

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum

Více

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

Interakce fluoroforu se solventem

Interakce fluoroforu se solventem 18. Vliv solventu Interakce fluoroforu se solventem Fluorescenční charakteristiky fluoroforu se mohou měnit podle toho, jaké je jeho okolí změna kvantového výtěžku posun excitačního či emisního spektra

Více

ATOMOVÉ JÁDRO. Nucleus Složení: Proton. Neutron 1 0 n částice bez náboje Proton + neutron = NUKLEON PROTONOVÉ číslo: celkový počet nukleonů v jádře

ATOMOVÉ JÁDRO. Nucleus Složení: Proton. Neutron 1 0 n částice bez náboje Proton + neutron = NUKLEON PROTONOVÉ číslo: celkový počet nukleonů v jádře ATOM 1 ATOM Hmotná částice Dělit lze: Fyzikálně ANO Chemicky Je z nich složena každá látka Složení: Atomové jádro (protony, neutrony) Elektronový obal (elektrony) NE Elektroneutrální částice: počet protonů

Více

Magnetická rezonance Přednáška v rámci projektu IET1

Magnetická rezonance Přednáška v rámci projektu IET1 INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Magnetická rezonance Přednáška v rámci projektu IET1 Miloslav Steinbauer Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

projekce spinu magnetické kvantové číslo jaderného spinu - M I

projekce spinu magnetické kvantové číslo jaderného spinu - M I Spektroskopie NMR - Teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - Instrumentace - vývoj technik pulsní metody, pulsní sekvence

Více

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekapling Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekaplingem rozumíme odstranění vlivu J-vazby XA na na spektra jader A působením dalšího radiofrekvenčního pole ( ω X )na

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Transverzální magnetizace, která vykonává precesi

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

PRAKTIKUM IV Jaderná a subjaderná fyzika

PRAKTIKUM IV Jaderná a subjaderná fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Jaderná a subjaderná fyzika Úloha č. A15 Název: Studium atomových emisních spekter Pracoval: Radim Pechal dne 19. listopadu

Více

Vybrané spektroskopické metody

Vybrané spektroskopické metody Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky

Více

Mlžnákomora. PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha

Mlžnákomora. PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha Mlžnákomora PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha Historie vývoje mlžné komory Jelikož není možné částice hmoty pozorovat pouhým okem, bylo vyvinutozařízení,ježzviditelňujedráhytěchtočásticvytvářenímmlžné

Více

Přírodní vědy - Chemie vymezení zájmu

Přírodní vědy - Chemie vymezení zájmu Přírodní vědy - Chemie vymezení zájmu Hmota Hmota má dualistický, korpuskulárně (částicově) vlnový charakter. Převládající charakter: korpuskulární (částicový) - látku vlnový - pole. Látka se skládá z

Více

Vybrané kapitoly z praktické NMR spektroskopie

Vybrané kapitoly z praktické NMR spektroskopie Vybrané kapitoly z praktické NMR spektroskopie DRX 500 Avance SPECTROSPIN 500 Způsob snímání dat, CW versus FT CW frekvence RF záření postupně se mění B eff 2 efektivní magnetické pole zůstává konstantní

Více

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění Na www.studijni-svet.cz zaslal(a): Kikusska94 2. ATOM HISTORIE NÁZORŮ NA STAVBU ATOMU - Leukippos (490 420 př. n. l.) - Demokritos (460 340 př. n. l.) - látka je tvořená atomy, které se dále nedělí (atomos

Více

Valenční elektrony a chemická vazba

Valenční elektrony a chemická vazba Valenční elektrony a chemická vazba Ve vnější energetické hladině se nacházejí valenční elektrony, které se mohou podílet na tvorbě chemické vazby. Valenční elektrony často znázorňujeme pomocí teček kolem

Více

Spektrometrické metody. Luminiscenční spektroskopie

Spektrometrické metody. Luminiscenční spektroskopie Spektrometrické metody Luminiscenční spektroskopie luminiscence molekul a pevných látek šířka spektrální čar a doba života luminiscence polarizace luminiscence korekce luminiscenčních spekter vliv aparatury

Více

Relaxace, kontrast. Druhy kontrastů. Vít Herynek MRA T1-IR

Relaxace, kontrast. Druhy kontrastů. Vít Herynek MRA T1-IR Relaxace, kontrast Vít Herynek Druhy kontrastů T1 T1-kl T2 GE MRA T1-IR Larmorova (rezonanční) frekvence Účinek radiofrekvenčního pulsu Larmorova frekvence ω = γ. B Proč se zajímat o relaxační časy? Účinek

Více

Základy NIR spektrometrie a její praktické využití

Základy NIR spektrometrie a její praktické využití Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší

Více

Základní zákony a terminologie v elektrotechnice

Základní zákony a terminologie v elektrotechnice Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj

Více

Magnetická rezonance (2)

Magnetická rezonance (2) NMR spektroskopie Principy zobrazování Fourierovské MRI Magnetická rezonance (2) J. Kybic, J. Hornak 1, M. Bock, J. Hozman 2008 2013 1 http://www.cis.rit.edu/htbooks/mri/ NMR spektroskopie Principy zobrazování

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita

Více

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2)

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2) 1 Pracovní úkoly Pulsní metoda MR (část základní) 1. astavení optimálních excitačních podmínek signálu FID 1 H ve vzorku pryže 2. Měření závislosti amplitudy signálu FID 1 H ve vzorku pryže na délce excitačního

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal

Více

Aplikovaná bioinformatika

Aplikovaná bioinformatika Aplikovaná bioinformatika Číslo aktivity: 2.V Název klíčové aktivity: Na realizaci se podílí: Implementace nových předmětů do daného studijního programu doc. RNDr. Michaela Wimmerová, Ph.D., Mgr. Josef

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti.

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti. 6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných Operátor momentu hybnosti a kvadrátu momentu hybnosti Víme už tedy téměř vše o operátorech Jsou to vlastně měřící přístroje v kvantové

Více

Otázka: Základní chemické pojmy. Předmět: Chemie. Přidal(a): berushka. Základní chemické pojmy

Otázka: Základní chemické pojmy. Předmět: Chemie. Přidal(a): berushka. Základní chemické pojmy Otázka: Základní chemické pojmy Předmět: Chemie Přidal(a): berushka Základní chemické pojmy ATOM nejmenší částice běžné hmoty částice, kterou nemůžeme chemickými prostředky dále dělit (fyzickými ale ano

Více

magnetické rezonance

magnetické rezonance 14 Zpravodaj vojenské farmacie. 1/2005 P i azení struktur reaktivátor organofosfáty-inhibované acetylcholinesterázy na základ spekter nukleární magnetické rezonance Ji í PALE EK 52. úst ední vojenský zdravotní

Více

Test vlastnosti látek a periodická tabulka

Test vlastnosti látek a periodická tabulka DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti

Více

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

Organická chemie I. Miroslav Zabadal. Kapitola 5

Organická chemie I. Miroslav Zabadal. Kapitola 5 Organická chemie I Miroslav Zabadal Kapitola 5 Organická strukturní analýza Organická strukturní analýza infračerven ervená spektroskopie (IR) nukleárn rní magnetická rezonance (NMR) hmotnostní spektrometrie

Více

Metody strukturní analýzy NMR, IČ, Raman. Pavel Matějka

Metody strukturní analýzy NMR, IČ, Raman. Pavel Matějka Metody strukturní analýzy NMR, IČ, Raman Pavel Matějka Metody strukturní analýzy NMR, IČ, Raman 1. NMR 1. Princip metody a základy instrumentace 2. Základy pro interpretaci spekter 3. NMR pevné fáze 4.

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Překryv orbitalů. Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β

Překryv orbitalů. Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β Překryv orbitalů Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β Podmínky překryvu: Vhodná symetrie, znaménko vlnové funkce Vhodná energie, srovnatelná,

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Petr Dvořák

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Petr Dvořák Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Petr Dvořák Studium dynamického chování směsi H 2 O/D 2 O pomocí NMR relaxací Katedra fyziky nízkých teplot Vedoucí diplomové práce:

Více

Struktura atomu. Proč je to důležité? Konečný výklad všech chemických jevů Musí být založen na struktuře atomů. Cotton A., Wilkinson G.

Struktura atomu. Proč je to důležité? Konečný výklad všech chemických jevů Musí být založen na struktuře atomů. Cotton A., Wilkinson G. Struktura atomu Proč je to důležité? Konečný výklad všech chemických jevů Musí být založen na struktuře atomů. Cotton A., Wilkinson G. Atomisté Demokritos 460 před n.l. Atomy nedělitelné částečky hmoty,

Více

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru Úvod do moderní fyziky lekce 7 vznik a vývoj vesmíru proč nemůže být vesmír statický? Planckova délka, Planckův čas l p =sqrt(hg/c^3)=1.6x10-35 m nejkratší dosažitelná vzdálenost, za kterou teoreticky

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Fyzikální podstata DPZ

Fyzikální podstata DPZ Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný

Více

Chemie a fyzika pevných látek p3

Chemie a fyzika pevných látek p3 Chemie a fyzika pevných látek p3 strukturní faktor, monokrystalové a práškové difrakční metody Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl

Více