1. Data mining. Strojové učení. Základní úlohy.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Data mining. Strojové učení. Základní úlohy."

Transkript

1 1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36

2 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36

3 Co bylo v ZUI? Co bude v AUI? P. Pošík c 2010 Aplikace umělé inteligence 3 / 36

4 Co bylo v ZUI? Prohledávání st. prostoru, učení z příkladů konstruktivní neinformované a informované metody Induktivní učení popisu konceptu v predikátové logice generativní metody, deterministické a stochastické Splňování omezujících podmínek Evoluční algoritmy Posilované učení Plánování Plánování jako prohledávání stavového prostoru Reprezentace, fitness, křížení, mutace, selekce Aplikace Znalosti, reprezentace, výroková logika Predikátová logika, Prolog Neurčitost, pravděpodobnost, Bayesovské sítě popis úloh v jazyce STRIPS partially ordered plans Neuronové sítě Typy NN, úlohy pro NN (s učitelem, bez učitele) Trénovací, validační, testovací Učení NN, error backpropagation Aplikace P. Pošík c 2010 Aplikace umělé inteligence 4 / 36

5 Co bude v AUI? Co bylo v ZUI? Co bude v AUI? Předběžný plán přednášek: 1., základní úlohy, učení s učitelem a bez učitele 2. Lineární diskriminační funkce, perceptronový algoritmus, rozšíření báze 3. Optimální rozdělující nadplocha, SVM 4. Neuronové sítě, zpětné šíření chyby 5. Učení bez učitele, hierarchické shlukování, k-means a EM algoritmus. 6. Neuronové sítě - RBF, Kohonenova sít, autoasociativní sít 7. Generativní metody prohledávání stavového prostoru, EA s reálnou reprezentací 8. Alternativní přírodou inspirované techniky ACO, PSO 9. Základní techniky UI pro plánování 10. Úvod do multiagentních systémů a agentních technologií 11. Plánování ve výrobě a v logistice (ukázky systému) 12. Simulace, diagnostika a inteligentní robotika (ukázky systému) P. Pošík c 2010 Aplikace umělé inteligence 5 / 36

6 Definice Rozdílné pohledy na data Účel DM Zdroje DM Úlohy pro DM CRISP-DM P. Pošík c 2010 Aplikace umělé inteligence 6 / 36

7 Definice Definice Rozdílné pohledy na data Účel DM Zdroje DM Úlohy pro DM CRISP-DM je netriviální dobývání skrytých, předem neznámých a potenciálně užitečných informací z dat. Při jejich objevování se využívají expertní systémy, metody umělé inteligence a strojového učení, statistické, grafické a vizualizační techniky a prezentují se způsobem srozumitelným lidem. [FSM92] Český překlad Dolování dat Vytěžování dat Dobývání znalostí z databází (překlad KDD - knowledge discovery in databases) Co má data mining společného s aplikacemi umělé inteligence? DM: obsáhlý proces zahrnující mnoho fází orientovaný na praktický přínos, na aplikace Metody umělé inteligence, strojového učení a rozpoznávání se uplatňují především ve fázi modelování, ale také v několika dalších fázích procesu DM. P. Pošík c 2010 Aplikace umělé inteligence 7 / 36

8 Rozdílné pohledy na data Definice Rozdílné pohledy na data Účel DM Zdroje DM Úlohy pro DM CRISP-DM Exploratorní analýza dat Průzkum dat, první seznámení s daty, formulujeme hypotézy. Hojně se využívají grafické techniky. P. Pošík c 2010 Aplikace umělé inteligence 8 / 36

9 Rozdílné pohledy na data Definice Rozdílné pohledy na data Účel DM Zdroje DM Úlohy pro DM CRISP-DM Exploratorní analýza dat Průzkum dat, první seznámení s daty, formulujeme hypotézy. Hojně se využívají grafické techniky. Konfirmatorní analýza dat Máme hypotézy, data slouží jako prostředek pro jejich ověření. Využívají se statistické metody (ANOVA, regrese, χ-kvadrát testy,... ) P. Pošík c 2010 Aplikace umělé inteligence 8 / 36

10 Rozdílné pohledy na data Definice Rozdílné pohledy na data Účel DM Zdroje DM Úlohy pro DM CRISP-DM Exploratorní analýza dat Průzkum dat, první seznámení s daty, formulujeme hypotézy. Hojně se využívají grafické techniky. Konfirmatorní analýza dat Máme hypotézy, data slouží jako prostředek pro jejich ověření. Využívají se statistické metody (ANOVA, regrese, χ-kvadrát testy,... ) Máme data a chceme vytvořit modely, které fungují a jsou použitelné pro predikce. 1 Využití metod umělé inteligence, strojového učení,... 1 V obchodních a marketingových aplikacích bývá druhořadé, zda tyto modely popisují skutečné závislosti a děje. Při aplikaci metod strojového učení např. na biologické a medicinské aplikace je správnost vyžadována mnohem více. P. Pošík c 2010 Aplikace umělé inteligence 8 / 36

11 Účel DM Definice Rozdílné pohledy na data Účel DM Zdroje DM Úlohy pro DM CRISP-DM DM je orientován na praktickou využitelnost výsledků, hlavně ve formě predikcí (exploratorní analýza dat naproti tomu slouží spíše k popisu dat, výzkumníky při ní napadají souvislosti, které stojí za ověření) Jde hlavně o vytvoření, který přináší užitek, tj., jehož prognózy budou trefné, klasifikace použitelné (a zisky a úspory z něj plynoucí znatelné) Příklady otázek, na něž DM umí dát (přibližnou) odpověd : Kolik člověkohodin bude třeba příští měsíc odpracovat na ARO? Kolik asi bude stát pozemek 20 km severně od Prahy? Odpoví konkrétní člověk z naší databáze na nabídku, kterou bychom mu zaslali? Které produkty se prodávají společně? Které produkty si lidé kupují poté, co si koupili jiné? P. Pošík c 2010 Aplikace umělé inteligence 9 / 36

12 Zdroje DM Definice Rozdílné pohledy na data Účel DM Zdroje DM Úlohy pro DM CRISP-DM P. Pošík c 2010 Aplikace umělé inteligence 10 / 36

13 Typy úloh řešených pomocí DM Definice Rozdílné pohledy na data Účel DM Zdroje DM Úlohy pro DM CRISP-DM Popis dat Vizualizace Sumarizace Hledání nugetů Dominantní struktury, asociační pravidla Segmentace, shluková analýza, popis rozdělení dat Predikce Klasifikace (predikce kategoriální proměnné) Regrese (predikce spojité proměnné) Časové řady (predikce závislé na čase) P. Pošík c 2010 Aplikace umělé inteligence 11 / 36

14 DM jako proces: CRISP-DM Definice Rozdílné pohledy na data Účel DM Zdroje DM Úlohy pro DM CRISP-DM Cross-Industry Standard Process for Data Mining P. Pošík c 2010 Aplikace umělé inteligence 12 / 36

15 AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh P. Pošík c 2010 Aplikace umělé inteligence 13 / 36

16 AI, ML, PR AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Umělá inteligence (Artificial Intelligence, AI) [McC04]: Věda o sestavování inteligentních strojů. AI studuje: inteligentní chování, učení, adaptaci ve strojích a počítačích AI zahrnuje: řízení, plánování a rozhodování, expertní systémy, rozpoznávání ručně psaných znaků, přirozeného jazyka, mluvené řeči, obličejů,... P. Pošík c 2010 Aplikace umělé inteligence 14 / 36

17 AI, ML, PR AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Umělá inteligence (Artificial Intelligence, AI) [McC04]: Věda o sestavování inteligentních strojů. AI studuje: inteligentní chování, učení, adaptaci ve strojích a počítačích AI zahrnuje: řízení, plánování a rozhodování, expertní systémy, rozpoznávání ručně psaných znaků, přirozeného jazyka, mluvené řeči, obličejů,... (Machine Learning, ML) studuje algoritmy umožňující strojům učit se. ML zahrnuje: syntaktické rozpoznávání, diagnostické systémy, bioinformatika, detekce zneužití kreditních karet, analýza akciového trhu, klasifikace DNA sekvencí, rozpoznávání ručně psaných znaků, přirozeného jazyka, mluvené řeči, obličejů, navigace robota,... P. Pošík c 2010 Aplikace umělé inteligence 14 / 36

18 AI, ML, PR AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Umělá inteligence (Artificial Intelligence, AI) [McC04]: Věda o sestavování inteligentních strojů. AI studuje: inteligentní chování, učení, adaptaci ve strojích a počítačích AI zahrnuje: řízení, plánování a rozhodování, expertní systémy, rozpoznávání ručně psaných znaků, přirozeného jazyka, mluvené řeči, obličejů,... (Machine Learning, ML) studuje algoritmy umožňující strojům učit se. ML zahrnuje: syntaktické rozpoznávání, diagnostické systémy, bioinformatika, detekce zneužití kreditních karet, analýza akciového trhu, klasifikace DNA sekvencí, rozpoznávání ručně psaných znaků, přirozeného jazyka, mluvené řeči, obličejů, navigace robota,... Rozpoznávání (Pattern Recognition, PR) je proces, na jehož vstupu jsou surová data a na výstupu je nějaká akce závislá na kategorii pozorovaných dat. Klasifikace dat založená na apriorních znalostech nebo na statistických informacích extrahovaných z dat. PR zahrnuje: syntaktické rozpoznávání, detekce zneužití kreditních karet, analýza akciového trhu, klasifikace DNA sekvencí, rozpoznávání ručně psaných znaků, přirozeného jazyka, mluvené řeči, obličejů, navigace robota,... P. Pošík c 2010 Aplikace umělé inteligence 14 / 36

19 Rozpoznávání AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Rozpoznávání: Statistické, příznakové usuzování podle spojitých či diskrétních znaků měřených na objektu Strukturální usuzování podle vztahů mezi jednotlivými prvky objektu (často: struktura objektu odvozené příznaky příznakové rozpoznávání) Druhy veličin (pro příznakové rozpoznávání): Spojité vs. diskrétní Nezávislé (vstupy) vs. závislé (výstupy) P. Pošík c 2010 Aplikace umělé inteligence 15 / 36

20 Rozpoznávání AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Rozpoznávání: Statistické, příznakové usuzování podle spojitých či diskrétních znaků měřených na objektu Strukturální usuzování podle vztahů mezi jednotlivými prvky objektu (často: struktura objektu odvozené příznaky příznakové rozpoznávání) Druhy veličin (pro příznakové rozpoznávání): Spojité vs. diskrétní Nezávislé (vstupy) vs. závislé (výstupy) Znak Škála Možné operace Příklady Kval. Nominální Ordinální Kvant. Intervalová Poměrová P. Pošík c 2010 Aplikace umělé inteligence 15 / 36

21 Rozpoznávání AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Rozpoznávání: Statistické, příznakové usuzování podle spojitých či diskrétních znaků měřených na objektu Strukturální usuzování podle vztahů mezi jednotlivými prvky objektu (často: struktura objektu odvozené příznaky příznakové rozpoznávání) Druhy veličin (pro příznakové rozpoznávání): Spojité vs. diskrétní Nezávislé (vstupy) vs. závislé (výstupy) Znak Škála Možné operace Příklady Kval. Nominální Popsat příslušnost Ordinální Kvant. Intervalová Poměrová P. Pošík c 2010 Aplikace umělé inteligence 15 / 36

22 Rozpoznávání AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Rozpoznávání: Statistické, příznakové usuzování podle spojitých či diskrétních znaků měřených na objektu Strukturální usuzování podle vztahů mezi jednotlivými prvky objektu (často: struktura objektu odvozené příznaky příznakové rozpoznávání) Druhy veličin (pro příznakové rozpoznávání): Spojité vs. diskrétní Nezávislé (vstupy) vs. závislé (výstupy) Znak Škála Možné operace Příklady Kval. Nominální Popsat příslušnost Barva očí, národnost, pohlaví, místo narození Ordinální Kvant. Intervalová Poměrová P. Pošík c 2010 Aplikace umělé inteligence 15 / 36

23 Rozpoznávání AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Rozpoznávání: Statistické, příznakové usuzování podle spojitých či diskrétních znaků měřených na objektu Strukturální usuzování podle vztahů mezi jednotlivými prvky objektu (často: struktura objektu odvozené příznaky příznakové rozpoznávání) Druhy veličin (pro příznakové rozpoznávání): Spojité vs. diskrétní Nezávislé (vstupy) vs. závislé (výstupy) Znak Škála Možné operace Příklady Kval. Nominální Popsat příslušnost Barva očí, národnost, pohlaví, místo narození Ordinální Seřadit Kvant. Intervalová Poměrová P. Pošík c 2010 Aplikace umělé inteligence 15 / 36

24 Rozpoznávání AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Rozpoznávání: Statistické, příznakové usuzování podle spojitých či diskrétních znaků měřených na objektu Strukturální usuzování podle vztahů mezi jednotlivými prvky objektu (často: struktura objektu odvozené příznaky příznakové rozpoznávání) Druhy veličin (pro příznakové rozpoznávání): Spojité vs. diskrétní Nezávislé (vstupy) vs. závislé (výstupy) Znak Škála Možné operace Příklady Kval. Nominální Popsat příslušnost Barva očí, národnost, pohlaví, místo narození Ordinální Seřadit Popis velikosti (S,M,L,XL,XXL), vzdělání (ZŠ, SŠ, VŠ) Kvant. Intervalová Poměrová P. Pošík c 2010 Aplikace umělé inteligence 15 / 36

25 Rozpoznávání AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Rozpoznávání: Statistické, příznakové usuzování podle spojitých či diskrétních znaků měřených na objektu Strukturální usuzování podle vztahů mezi jednotlivými prvky objektu (často: struktura objektu odvozené příznaky příznakové rozpoznávání) Druhy veličin (pro příznakové rozpoznávání): Spojité vs. diskrétní Nezávislé (vstupy) vs. závislé (výstupy) Znak Škála Možné operace Příklady Kval. Nominální Popsat příslušnost Barva očí, národnost, pohlaví, místo narození Ordinální Seřadit Popis velikosti (S,M,L,XL,XXL), vzdělání (ZŠ, SŠ, VŠ) Kvant. Intervalová Porovnat vzdálenosti Poměrová P. Pošík c 2010 Aplikace umělé inteligence 15 / 36

26 Rozpoznávání AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Rozpoznávání: Statistické, příznakové usuzování podle spojitých či diskrétních znaků měřených na objektu Strukturální usuzování podle vztahů mezi jednotlivými prvky objektu (často: struktura objektu odvozené příznaky příznakové rozpoznávání) Druhy veličin (pro příznakové rozpoznávání): Spojité vs. diskrétní Nezávislé (vstupy) vs. závislé (výstupy) Znak Škála Možné operace Příklady Kval. Nominální Popsat příslušnost Barva očí, národnost, pohlaví, místo narození Ordinální Seřadit Popis velikosti (S,M,L,XL,XXL), vzdělání (ZŠ, SŠ, VŠ) Kvant. Intervalová Porovnat vzdálenosti Kalendářní datum, teplota, úhel, vzrůst zadlužení státu Poměrová P. Pošík c 2010 Aplikace umělé inteligence 15 / 36

27 Rozpoznávání AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Rozpoznávání: Statistické, příznakové usuzování podle spojitých či diskrétních znaků měřených na objektu Strukturální usuzování podle vztahů mezi jednotlivými prvky objektu (často: struktura objektu odvozené příznaky příznakové rozpoznávání) Druhy veličin (pro příznakové rozpoznávání): Spojité vs. diskrétní Nezávislé (vstupy) vs. závislé (výstupy) Znak Škála Možné operace Příklady Kval. Nominální Popsat příslušnost Barva očí, národnost, pohlaví, místo narození Ordinální Seřadit Popis velikosti (S,M,L,XL,XXL), vzdělání (ZŠ, SŠ, VŠ) Kvant. Intervalová Porovnat vzdálenosti Kalendářní datum, teplota, úhel, vzrůst zadlužení státu Poměrová Porovnat velikosti P. Pošík c 2010 Aplikace umělé inteligence 15 / 36

28 Rozpoznávání AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Rozpoznávání: Statistické, příznakové usuzování podle spojitých či diskrétních znaků měřených na objektu Strukturální usuzování podle vztahů mezi jednotlivými prvky objektu (často: struktura objektu odvozené příznaky příznakové rozpoznávání) Druhy veličin (pro příznakové rozpoznávání): Spojité vs. diskrétní Nezávislé (vstupy) vs. závislé (výstupy) Znak Škála Možné operace Příklady Kval. Nominální Popsat příslušnost Barva očí, národnost, pohlaví, místo narození Ordinální Seřadit Popis velikosti (S,M,L,XL,XXL), vzdělání (ZŠ, SŠ, VŠ) Kvant. Intervalová Porovnat vzdálenosti Kalendářní datum, teplota, úhel, vzrůst zadlužení státu Poměrová Porovnat velikosti Objem prodeje, průměr hřídele, hmotnost, ph P. Pošík c 2010 Aplikace umělé inteligence 15 / 36

29 Učení jako indukce AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Dvě fáze: 1. Učení z příkladů (trénovací data) učícímu algoritmu jsou předkládány příklady (a protipříklady) konceptu, který se má naučit rozpoznávat 2. Vybavování, rozpoznávání (testovací data) naučenému jsou předkládány neznámé příklady k ohodnocení (a) Model se učí. Trénovací data (dvojice x, y) jsou předkládány algoritmu učení, který tvoří strukturu a ladí jeho parametry. (b) Model si vybavuje. Testovací data (objekty x) procházejí naučeným modelem, který poskytuje odhady hodnot závislého znaku y. Předpoklad (běžný ve strojovém učení): trénovací a testovací data jsou nezávislá a pocházejí ze stejného pravděpodobnostního rozdělení (IID: Independent and Identically Distributed) P. Pošík c 2010 Aplikace umělé inteligence 16 / 36

30 Učení s učitelem a bez učitele AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Objekty jsou popsány vektorem příznaků x Učení bez učitele žádné další informace nejsou známy snaží se najít v datech přirozenou strukturu (a zakódovat ji v ) Učení s učitelem každý objekt má přiřazen i štítek y (informaci od učitele) snaží se naučit relaci x y (zakódovat ji v ) P. Pošík c 2010 Aplikace umělé inteligence 17 / 36

31 Druhy úloh AI, ML, PR Rozpoznávání Učení jako indukce Učení s učitelem a bez učitele Druhy úloh Klasifikace štítek je kategoriální proměnná Regrese štítek je spojitá proměnná Časové řady významným vstupem (někdy i jediným) je čas Shlukování štítek není dán Predikce je výrok o jisté události v budoucnosti (předpověd, časové řady). V ML se hojně používá i ve smyslu aplikace naučeného na nová data, nebo hodnoty poskytnuté modelem pro nová data. Další často řešenou úlohou je analýza nákupního koše, která dala vzniknout asociačním a sekvenčním pravidlům. P. Pošík c 2010 Aplikace umělé inteligence 18 / 36

32 Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí P. Pošík c 2010 Aplikace umělé inteligence 19 / 36

33 Existuje dokonalý model? Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí Dokonalý model, jehož struktura by umožňovala popsat jakýkoli koncept, jakoukoli relaci,..., neexistuje. Je možné hledat správný model v prostoru všech možných myslitelných modelů? Velikost prostoru modelů roste exponenciálně, často je nekonečný výpočetně neúnosné. Obrovské nároky na počet trénovacích dat. Obvyklý přístup: Zvolíme omezenou třídu modelů (omezený prostor hypotéz). V této třídě hledáme nejlepší model. Tento model je ale už z principu zaujatý (inductive bias). Co je nejlepší model? Dvě (obvykle protichůdná) kritéria: správnost (přesnost, minimální chyba) a jednoduchost. Jak je vyvážit??? P. Pošík c 2010 Aplikace umělé inteligence 20 / 36

34 Základní otázka Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí Co je dobrým ukazatelem kvality z hlediska DM? Při regresních úlohách se často aplikuje tzv. střední kvadratická chyba (mean squared error): MSE = 1 N N (y i f(x i )) 2, (1) i=1 kde f je pro nás modelem, f(x i ) je predikce pro i. objekt x (zde reálné číslo). Je tato veličina (měřená na datech, která máme k dispozici na trénovacích datech) dobrým ukazatelem kvality? P. Pošík c 2010 Aplikace umělé inteligence 21 / 36

35 Který model je lepší? Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí f(x) = x f(x) = x 3 3x 2 +3x P. Pošík c 2010 Aplikace umělé inteligence 22 / 36

36 Který model je lepší? Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí f(x) = x f(x) = x 3 3x 2 +3x Z hlediska MSE jsou oba modely ekvivalentní!!! Je tedy jedno, který použijeme? P. Pošík c 2010 Aplikace umělé inteligence 22 / 36

37 Který model je lepší? Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí f(x) = x f(x) = x 3 3x 2 +3x Z hlediska MSE jsou oba modely ekvivalentní!!! Je tedy jedno, který použijeme? Lineární model je jednodušší! P. Pošík c 2010 Aplikace umělé inteligence 22 / 36

38 Který model je lepší? Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí f(x) = x f(x) = ( 0.31x) + (1.67x 2 ) + ( 0.51x 3 ) P. Pošík c 2010 Aplikace umělé inteligence 23 / 36

39 Který model je lepší? Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí f(x) = x f(x) = ( 0.31x) + (1.67x 2 ) + ( 0.51x 3 ) Z hlediska MSE je kubický model lepší než lineární!!! P. Pošík c 2010 Aplikace umělé inteligence 23 / 36

40 Který model je lepší? Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí f(x) = x f(x) = ( 0.31x) + (1.67x 2 ) + ( 0.51x 3 ) Z hlediska MSE je kubický model lepší než lineární!!! Přesto může být lepší použít jednodušší lineární model. Máme ovšem málo dat, těžko soudit. P. Pošík c 2010 Aplikace umělé inteligence 23 / 36

41 Požadavky na model z hlediska ML Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí Specifika procesu učení s ohledem na využití ML, např. v DM: Model musí být užitečný při predikci Schopnost generalizace: model musí nalézt obecně platné závislosti v datech Nesmí být přeučený: nesmí se naučit na zdánlivé závislosti v datech nebo na šum Základní metodou pro omezení přeučení je ověření na nezávislých, tzv. testovacích datech P. Pošík c 2010 Aplikace umělé inteligence 24 / 36

42 Testovací data Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí X U(0, 10) Y (X 3) 2 + N(0, 6 2 ) Trenovaci MSE: Testovaci MSE: Polynom 0 teho stupne P. Pošík c 2010 Aplikace umělé inteligence 25 / 36

43 Testovací data Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí X U(0, 10) Y (X 3) 2 + N(0, 6 2 ) Trenovaci MSE: Testovaci MSE: Polynom 1 teho stupne P. Pošík c 2010 Aplikace umělé inteligence 26 / 36

44 Testovací data Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí X U(0, 10) Y (X 3) 2 + N(0, 6 2 ) Trenovaci MSE: Testovaci MSE: Polynom 2 teho stupne P. Pošík c 2010 Aplikace umělé inteligence 27 / 36

45 Testovací data Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí X U(0, 10) Y (X 3) 2 + N(0, 6 2 ) Trenovaci MSE: Testovaci MSE: Polynom 3 teho stupne P. Pošík c 2010 Aplikace umělé inteligence 28 / 36

46 Testovací data Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí X U(0, 10) Y (X 3) 2 + N(0, 6 2 ) Trenovaci MSE: Testovaci MSE: Polynom 4 teho stupne P. Pošík c 2010 Aplikace umělé inteligence 29 / 36

47 Testovací data Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí X U(0, 10) Y (X 3) 2 + N(0, 6 2 ) Trenovaci MSE: Testovaci MSE: Polynom 5 teho stupne P. Pošík c 2010 Aplikace umělé inteligence 30 / 36

48 Testovací data Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí X U(0, 10) Y (X 3) 2 + N(0, 6 2 ) Trenovaci MSE: Testovaci MSE: Polynom 6 teho stupne P. Pošík c 2010 Aplikace umělé inteligence 31 / 36

49 Chyba na trénovacích a testovacích datech Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí MSE Trenovaci MSE Testovaci MSE Slozitost Chyba na trénovacích datech se snižuje se vzrůstající flexibilitou Chyba na testovacích datech je pro určitou flexibilitu minimální P. Pošík c 2010 Aplikace umělé inteligence 32 / 36

50 Shrnutí Existuje dokonalý model? Základní otázka Požadavky na model z hlediska ML Testovací data Chyba na trénovacích a testovacích datech Shrnutí Dva extrémy flexibility 1. Málo flexibilní model (jednoduchý model) Model je silně vychýlen, zaujat (biased) Model je stabilní (vzhledem ke změně trénovací množiny) 2. Moc flexibilní model (složitý model) Velice přesný model (trénovacích dat) Model je velice citlivý (na změnu trénovací množiny) Model, který je nejblíž skutečnosti, se nachází někde mezi nimi Chybu, kterou model bude dělat na nových neznámých datech (pocházejících ze stejného zdroje), lze odhadnout chybou na testovacích datech Chybu na testovacích datech lze využít i pro volbu vhodné struktury P. Pošík c 2010 Aplikace umělé inteligence 33 / 36

51 Shrnutí Reference P. Pošík c 2010 Aplikace umělé inteligence 34 / 36

52 Shrnutí Shrnutí Reference DM (či KDD) se dá chápat jako mnohastupňový proces tvorby modelů strojového učení a jejich nasazování do praxe. Umělá inteligence se zabývá tvorbou umělých entit s inteligentním chováním. je podobor umělé inteligence, který studuje algoritmy umožňující strojům učit se. Rozpoznávání je podoblast strojového učení, kde se studují modely umožňující rozeznat určitou situaci nebo jev a zareagovat na ni. Mezi hlavní úlohy řešené v rámci strojového učení patří klasifikace, regrese, shlukování a odhad pravděpodobnostního rozdělení. Základní metodou pro zajištění kvality naučeného je ověření jeho funkce na nových, tzv. testovacích datech. P. Pošík c 2010 Aplikace umělé inteligence 35 / 36

53 Reference Shrnutí Reference [FSM92] [McC04] W. J. Frawley, Piatetsky G. Shapiro, and C. J. Matheus. Knowledge discovery in databases - an overview. AI Magazine, 13:57 70, John McCarthy. What is Artificial Intelligence P. Pošík c 2010 Aplikace umělé inteligence 36 / 36

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Dobývání a vizualizace znalostí

Dobývání a vizualizace znalostí Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

StatSoft Úvod do data miningu

StatSoft Úvod do data miningu StatSoft Úvod do data miningu Tento článek je úvodním povídáním o data miningu, jeho vzniku, účelu a využití. Historie data miningu Rozvoj počítačů, výpočetní techniky a zavedení elektronického sběru dat

Více

Uživatelská podpora v prostředí WWW

Uživatelská podpora v prostředí WWW Uživatelská podpora v prostředí WWW Jiří Jelínek Katedra managementu informací Fakulta managementu Jindřichův Hradec Vysoká škola ekonomická Praha Úvod WWW obsáhlost obsahová i formátová pestrost dokumenty,

Více

IBM SPSS Modeler Professional

IBM SPSS Modeler Professional IBM SPSS Modeler Professional 16 IBM SPSS Software IBM SPSS Modeler Professional Včasné rozhodnutí díky přesným informacím Metodami data miningu získáte detailní přehled o svém současném stavu i jasnější

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.

Více

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU RNDr. Miroslav Pavelka, PhD m.pavelka@sh.cvut.cz Ing. Jan Hovad jan@hovad.cz OBSAH Obchodování a strojové učení Specifika prediktivního

Více

Systémy pro podporu rozhodování. Modelování a analýza

Systémy pro podporu rozhodování. Modelování a analýza Systémy pro podporu rozhodování Modelování a analýza 1 Připomenutí obsahu minulé přednášky Datové sklady, přístup, analýza a vizualizace Povaha a zdroje dat (data, informace, znalosti a interní, externí,

Více

Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z.

Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z. Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z. Operační program Vzdělávání pro konkurenceschopnost Název projektu:

Více

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 18 0:40 Umělá inteligence Umělá inteligence (UI) vlastně

Více

Klasifikace předmětů a jevů

Klasifikace předmětů a jevů Klasifikace předmětů a jevů 1. Úvod Rozpoznávání neboli klasifikace je základní znak lidské činnosti. Rozpoznávání (klasifikace) předmětů a jevů spočívá v jejich zařazování do jednotlivých tříd. Třídou

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Fenomén Big Data Pohled technický

Fenomén Big Data Pohled technický Fenomén Big Data Pohled technický Diribet / Q-DAS Konference Homo Digitalis, 2014-10-09 Motivace Běžná situace při rozhodování: Mám více dat, než jsem schopen zpracovat Mám pocit nedostatku informací Více

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci)

Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci) ..! POSSIBILISTIC Laboratoř pro analýzu INFORMATION: a modelování dat Vědecký tutoriál, část I A Tutorial Vilém Vychodil (Univerzita Palackého v Olomouci) George J. Klir State University of New York (SUNY)

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz

Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz 25. 10. 2012, Praha Ing. Petr Vahalík Ústav geoinformačních technologií Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz 21. konference GIS Esri v ČR Lesní vegetační stupně

Více

Univerzita Hradec Králové Fakulta informatiky a managementu Katedra informačních technologií

Univerzita Hradec Králové Fakulta informatiky a managementu Katedra informačních technologií Univerzita Hradec Králové Fakulta informatiky a managementu Katedra informačních technologií Aplikace strojového učení v oblasti e-komerce Diplomová práce Autor: Pavel Vraný Studijní obor: aplikovaná informatika

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační

Více

MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ

MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ Vladimír Olej, Petr Hájek Univerzita Pardubice, Fakulta ekonomicko-správní, informatiky Ústav systémového inženýrství

Více

Dobývání znalostí z webu web mining

Dobývání znalostí z webu web mining Dobývání znalostí z webu web mining Web Mining is is the application of data mining techniques to discover patterns from the Web (Wikipedia) Tři oblasti: Web content mining (web jako kolekce dokumentů)

Více

METODIKA ZPRACOVÁNÍ EKONOMICKÝCH ČASOVÝCH ŘAD S VYUŽITÍM SIMULÁTORŮ NEURONOVÝCH SÍTÍ

METODIKA ZPRACOVÁNÍ EKONOMICKÝCH ČASOVÝCH ŘAD S VYUŽITÍM SIMULÁTORŮ NEURONOVÝCH SÍTÍ METODIKA ZPRACOVÁNÍ EKONOMICKÝCH ČASOVÝCH ŘAD S VYUŽITÍM SIMULÁTORŮ NEURONOVÝCH SÍTÍ PROCESSING METHODOLOGY OF ECONOMIC TIME SERIES USING NEURAL NETWORK SIMULATORS Jindřich Petrucha Evropský polytechnický

Více

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73) Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální

Více

Credit scoring. Libor Vajbar Analytik řízení rizik. 18. dubna 2013. Brno

Credit scoring. Libor Vajbar Analytik řízení rizik. 18. dubna 2013. Brno Credit scoring Libor Vajbar Analytik řízení rizik 18. dubna 2013 Brno 1 PROFIL SPOLEČNOSTI Home Credit a.s. přední poskytovatel spotřebitelského financování Úvěrové produkty nákup na splátky u obchodních

Více

Big Data a oficiální statistika. Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc.

Big Data a oficiální statistika. Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc. Big Data a oficiální statistika Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc. Obsah příspěvku Charakteristiky Big Data Výzvy a úskalí z perspektivy statistiky Výzvy z perspektivy computing

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

Big Data od velkých očekávání k praktickému využití. DSW, Praha, 23.9.2014

Big Data od velkých očekávání k praktickému využití. DSW, Praha, 23.9.2014 Big Data od velkých očekávání k praktickému využití DSW, Praha, 23.9.2014 Gartner: Hype Cycle for Emerging Technologies Zdroj: Gartner 3D scanners? NFC předběhlo cloud compu3ng? Internet of things zrychlil

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Automatizované řešení úloh s omezeními

Automatizované řešení úloh s omezeními Automatizované řešení úloh s omezeními Martin Kot Katedra informatiky, FEI, Vysoká škola báňská Technická universita Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Česká republika 25. října 2012 M. Kot

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ. www.mestozlin.cz

Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ. www.mestozlin.cz Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ Město Zlín Jednou z možností monitorování a řízení dopravy v obcích je automatické snímání silničního provozu Monitorování dopravy vozidel

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23 Obsah Předmluva... 15 I. Objektivní pravděpodobnosti 1. Pravděpodobnost a relativní četnosti... 23 1.1 Úvod... 23 1.2 Základy frekvenční interpretace... 24 1.2.1 Pravděpodobnost a hromadné jevy... 24 1.2.2

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

0,7 0,6 0,5 0,4 0,3 0,2 0,1

0,7 0,6 0,5 0,4 0,3 0,2 0,1 VÝVOJ PROSTŘEDKŮ VÝPOČTOVÉ INTELIGENCE PRO MONITOROVÁNÍ A ŘÍZENÍ OCELÁŘSKÝCH VÝROBNÍCH PROCESŮ Miroslav Pokorný¹ Václav Kafka² Zdeněk Bůžek³ 1) VŠB TU Ostrava, FEI, 17. listopadu 15, 708 33 Ostrava, ČR,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Udržitelnost vnější ekonomické rovnováhy Pohledem teorie životního cyklu přímých zahraničních investic

Udržitelnost vnější ekonomické rovnováhy Pohledem teorie životního cyklu přímých zahraničních investic Udržitelnost vnější ekonomické rovnováhy Pohledem teorie životního cyklu přímých zahraničních investic 1 Filip Novotný Vysoká škola finanční a správní Praha, 23.4.2009 Osnova prezentace 2 Způsob záznamu

Více

Evoluční algoritmy a umělý život

Evoluční algoritmy a umělý život Evoluční algoritmy a umělý život Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Olomouc, červen 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělý život Odkazy: Steven Levy: Artificial

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

9. Dobývání znalostí v praxi

9. Dobývání znalostí v praxi 9. Dobývání znalostí v praxi 9.1 Příklad úlohy Na závěr knihy se opět vraťme k příkladu zmíněném v první kapitole. Vodítkem při dobývání znalostí nám bude metodologie CRISP-DM. 9.1.1 Porozumění problematice

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Propenzitní modelování. Veronika Počerová 10. 4. 2015

Propenzitní modelování. Veronika Počerová 10. 4. 2015 Propenzitní modelování Veronika Počerová 10. 4. 2015 motivace 2 definice Prediktivní analytika je disciplína, která využívá metod Data Miningu k tomu, aby na základě historického chování sledovaného jevu

Více

Student si po a 1. ročníku podle svého osobního zaměření volí kurzy (předměty).

Student si po a 1. ročníku podle svého osobního zaměření volí kurzy (předměty). Aplikovaná informatika Akreditováno do: 31.10.2013 Délka studia: 3 roky Forma studia: Prezenční studium Předpokládaný počet studentů nastupujících do 1. ročníku: 60 Přijímací zkouška: bez přijímacích zkoušek

Více

Internet inteligentních aktivit

Internet inteligentních aktivit Internet inteligentních aktivit Pavel Burian Internet pro programování informačních systémů Internet a Cloud Computing technologie Internetový portál apex.oracle.com Internet věcí (Thing), inteligentních

Více

Statistika. Semestrální projekt

Statistika. Semestrální projekt Statistika Semestrální projekt 18.5.2013 Tomáš Jędrzejek, JED0008 Obsah Úvod 3 Analyzovaná data 4 Analýza dat 6 Statistická indukce 12 Závěr 15 1. Úvod Cílem této semestrální práce je aplikovat získané

Více

Internet inteligentních aktivit

Internet inteligentních aktivit Internet inteligentních aktivit Pavel Burian Internet pro programování informačních systémů Internet a Cloud Computing technologie Internetový portál apex.oracle.com Internet věcí (Thing), inteligentních

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

Obr. 1 Biologický neuron

Obr. 1 Biologický neuron 5.4 Neuronové sítě Lidský mozek je složen asi z 10 10 nervových buněk (neuronů) které jsou mezi sebou navzájem propojeny ještě řádově vyšším počtem vazeb [Novák a kol.,1992]. Začněme tedy nejdříve jedním

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

FINANČNÍ MODELY. Koncepty, metody, aplikace. Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý

FINANČNÍ MODELY. Koncepty, metody, aplikace. Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý FINANČNÍ MODELY Koncepty, metody, aplikace Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý Recenzenti: Jan Frait, ČNB Jaroslav Ramík, SU v Opavě Autorský kolektiv: Zdeněk Zmeškal vedoucí autorského kolektivu,

Více

EXTRAKCE STRUKTUROVANÝCH DAT O PRODUKTOVÝCH A PRACOVNÍCH NABÍDKÁCH POMOCÍ EXTRAKČNÍCH ONTOLOGIÍ ALEŠ POUZAR

EXTRAKCE STRUKTUROVANÝCH DAT O PRODUKTOVÝCH A PRACOVNÍCH NABÍDKÁCH POMOCÍ EXTRAKČNÍCH ONTOLOGIÍ ALEŠ POUZAR EXTRAKCE STRUKTUROVANÝCH DAT O PRODUKTOVÝCH A PRACOVNÍCH NABÍDKÁCH POMOCÍ EXTRAKČNÍCH ONTOLOGIÍ ALEŠ POUZAR PŘEDMĚT PRÁCE Popis extrakce strukturovaných dat ve vybraných doménách ze semistrukturovaných

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Investiční výdaje (I)

Investiční výdaje (I) Investiční výdaje Investiční výdaje (I) Zkoumáme, co ovlivňuje kolísání I. I = výdaje (firem) na kapitálové statky (stroje, budovy) a změna stavu zásob. Firmy si kupují (pronajímají) kapitálové statky.

Více

Příprava dat v softwaru Statistica

Příprava dat v softwaru Statistica Příprava dat v softwaru Statistica Software Statistica obsahuje pokročilé nástroje pro přípravu dat a tvorbu nových proměnných. Tyto funkcionality přinášejí značnou úsporu času při přípravě datového souboru,

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice OPERAČNÍ VÝZKUM 11. TEORIE ZÁSOB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Fraud management. Richard Dobiš 2.2.2011

Fraud management. Richard Dobiš 2.2.2011 Fraud management Richard Dobiš 2.2.2011 Lidská mysl je úžasný nástroj a když má patričnou zkušenost... Co víc business potřebuje? Odborný odhad HPP al. HPH Zbytečná otázka Kritické množství Projektový

Více

INTLIB. Osnova. Projekt (TA02010182/Inteligentní knihovna) je řešen s finanční podporou TA ČR. ! Legislativní doména

INTLIB. Osnova. Projekt (TA02010182/Inteligentní knihovna) je řešen s finanční podporou TA ČR. ! Legislativní doména INTLIB Projekt (TA02010182/Inteligentní knihovna) je řešen s finanční podporou TA ČR. Osnova! O projektu! Postupy prací podle oblastí! Legislativní doména " Judikatura " Účetní poddoména! Environmentální

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Deset přednášek z teorie statistického a strukturního rozpoznávání

Deset přednášek z teorie statistického a strukturního rozpoznávání Monografie Deset přednášek teorie statistického a strukturního roponávání Michail I. Schlesinger, Václav Hlaváč Praha 1999 Vydavatelství ČVUT 1. přednáška Bayesovská úloha statistického rohodování 1.1

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

4ft-Miner pro začátečníky Získávání znalostí z databází

4ft-Miner pro začátečníky Získávání znalostí z databází 4ft-Miner pro začátečníky Získávání znalostí z databází Dobývání znalostí z databází (DZD) Knowledge Discovery in (from) Databases (KDD) Data Mining (DM) Materiál pro posluchače kurzů IZI211 Metody zpracování

Více

Obsah ČÁST I JAK SE UCHÁZET O ZÁKAZNÍKY NA WEBU KAPITOLA 1

Obsah ČÁST I JAK SE UCHÁZET O ZÁKAZNÍKY NA WEBU KAPITOLA 1 Obsah O autorech 11 Poděkování 13 Předmluva 15 Úvod 17 Proč byste se měli přečíst tuto knihu 17 Co tato kniha obsahuje 18 Jak používat tuto knihu 19 Zpětná vazba od čtenářů 20 Errata 20 ČÁST I JAK SE UCHÁZET

Více

Příklad V. Ruční sepsání smlouvy

Příklad V. Ruční sepsání smlouvy ID-Příklad pro GE 1/15 Příklad V. Ruční sepsání smlouvy (viz Pokyny a zásady MTS úvěr) Analýza Dané téma jsme zvolili jako budoucí e-l (e-learningový) kurs po analýze ve smyslu ISD. Tzn., předpokládáme,

Více

Aplikace matematiky v ekonomii

Aplikace matematiky v ekonomii KMA/SZZAE Aplikace matematiky v ekonomii Matematické modely v ekonomii 1. Klasifikace prostředků matematického modelování v ekonomii. 2. Modely síťové analýzy: metody CPM a PERT. 3. Modely hromadné obsluhy:

Více

Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu

Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu Inteligentní modely, algoritmy, metody g y g y y a nástroje pro vytváření sémantického webu Zahájenie seminára Predseda Programu "Informační společnost (prof. Ing. Miroslav Tůma, CSc.) Pohľad koordinátora

Více

Specializace Kognitivní informatika

Specializace Kognitivní informatika Specializace Kognitivní informatika Otevřené dveře specializace Kognitivní informatika, 10.5.2007 V rámci projektu, financovaného Evropským sociálním fondem pod č. 3206 Multi- a transdisciplinární obor

Více

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování 1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více