Úvod do teorie dělitelnosti

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do teorie dělitelnosti"

Transkript

1 Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace (sčítání, odčítání, násobení a dělení). Abyste se v této činnosti zdokonalili, především při počítání se zlomky, musíte se naučit některá obecná pravidla o celých násobcích čísel. Také se seznámíte se základy matematické disciplíny zvané teorie čísel (teorie čísel spolu s planimetrií stály u zrodu samotné matematiky). Je nutné si uvědomit, že po celou dobu vyučování dělitelnosti přirozených čísel budeme pracovat, jak už název napovídá, pouze s přirozenými čísly (1, 2, 3, ). Zavedení přirozených čísel Na počátku výuky dělitelnosti, se seznámíme s okruhem čísel, se kterým budeme pracovat. V celé kapitole se budeme zabývat pouze čísly přirozenými a jejich vlastnostmi. Přirozených čísel je nekonečně mnoho a žádné největší přirozené číslo neexistuje. Nejmenší přirozené číslo označujeme symbolem 0. Jeho následovníka symbolem 1, a tak dále přesně jak jste zvyklí. Pojem následovník a také pojem předchůdce jsou dva přesně definované matematické pojmy. Jejich význam je jistě z následujícího obrázku zřejmý. Číslo 0 nemá předchůdce Každé přirozené číslo má svého následovníka Předchůdce čísla 4 je číslo 3 Nejmenší přirozené číslo je takové, že nemá svého předchůdce. Je "první". Svého následovníka má naopak každé přirozené číslo. Proto nemůže existovat největší přirozené číslo. I kdybychom nějaké označili za největší, stačí vzít jeho následovníka. Určitě existuje a určitě je větší. Mezi čísla přirozená patří: 1, 2, 3, 4,.., 99, 100, 101,, 489,..

2 Násobek a dělitel Při vytváření pojmu násobek se budeme opírat o vaše předešlé znalosti, především o dobrou znalost malé násobilky. Měli bychom vědět, že čísla 2, 4, 6, 8, 10, jsou násobky čísla 2. Pro přiblížení a popřípadě i pro kontrolu bychom mohli tuto situaci znázornit: např. 1) Pomocí číselné osy 2) Pomocí tabulky (Příklad: Jeden kopeček jahodové zmrzliny stojí 6 korun. Dva kopečky zmrzliny stojí 12 korun. Tři kopečky stojí 18 korun. Doplňte tabulku, podle počtu kopečků zmrzliny.) počet kopečků cena v Kč Pokud si na číselné ose postupně vyznačíte násobky čísel 1, 2, 3, 4, 5, 6, 7, pak lze snadno přijít na to, že číslo 10 je násobkem čísel 1, 2, 5. Postupně se s tak dostáváte k pojmu dělitel. Jestliže číslo 16 je násobkem čísel 1, 2, 4, 8, pak je jistě i těmito čísly dělitelné. Chcete-li například zjistit, zda číslo 81 nebo 107 je násobkem čísla 3, musíte je tímto číslem vydělit. 81 : 3 = 27 (0) Dělení vyšlo beze zbytku, číslo 87 je násobkem čísla : 3 = 35 (2) Dělení nevyšlo beze zbytku, číslo 107 není násobkem čísla 3. Důležité je i základní značení: 12 : 4 = 3 dělenec dělitel podíl

3 Nyní budete říkat, že číslo b je dělitelem čísla a, pokud podíl a : b je celé číslo. Tak o každém z čísel 1, 2, 5 a 10 řeknete, že je dělitelem čísla 10, ale např. číslo 4 není dělitelem čísla 10. Velmi často je zapotřebí, abyste určili všechny dělitele daného čísla. U čísla 10 jsme určili, že to jsou čísla 1, 2, 5 a 10. Symbolicky to budete zapisovat D 10 = {1, 2, 5, 10}. Tento zápis obvykle čteme: Množina dělitelů čísla 10 má prvky 1, 2, 5, 10. Př. Jestliže je možné rozdělit číslo 24 beze zbytku číslem 6, říkáme že: - číslo 6 je dělitelem čísla 24 - číslo 24 je dělitelné číslem 6 24 je dělitelné je dělitelem 6

4 Čísla sudá a lichá V této kapitole se jen krátce zmíníme o číslech sudých a číslech lichých. Čísla sudá a lichá rozlišovali již naši předchůdci Pythagorejci. ( Pythagorás (asi 570 př.n.l př.n.l.) - filozof, matematik a astronom. Pythágorejci byli následovníci matematického myšlení samotného Pythagora ze Sámu. ) Čísla, která se dala uspořádat do dvou řad nazývali čísla sudá. Naopak čísla, která se do dvou řad uspořádat nedala, byly lichá. Pro sudá a lichá čísla platí určité vlastnosti: sudé číslo + sudé číslo = sudé číslo ( = 20 ) sudé číslo + liché číslo = liché číslo ( = 19 ) liché číslo + liché číslo = sudé číslo ( = 18 )

5 Znaky dělitelnosti Někdy se vyskytne situace, ve které je potřeba rychle zjistit, zda je dané číslo dělitelné jiným číslem, čili zda dělení vyjde beze zbytku. Abyste nemuseli pokaždé dělit, můžeme využít určitých znaků dělitelnosti. Těmito znaky se nyní budeme zabývat. Jestliže máte rozhodnout zda číslo a je dělitelné číslem b, není nutné vždy provádět dělení a : b a zjišťovat, zda zbytek při tomto dělení je, či není roven nule. Nejlépe zřejmě poznáme číslo, které je dělitelné číslem 10. Pokud máte rozhodnout, které ze dvou čísel 3586, 5820 je dělitelné deseti, není jistě obtížné na první pohled určit, že číslo 3586 deseti dělitelné není, zatímco číslo 5820 deseti dělitelné je = = Je vidět, že v obou rozkladech jsou první tři sčítance dělitelné deseti, a o tom, zda číslo je, či není, rozhoduje pouze poslední sčítanec. Ten je vyjádřen na místě jednotek daného čísla. Znak dělitelnosti číslem deset Jestliže má dané číslo na místě jednotek číslici 0, pak je dělitelné deseti. Jestliže nemá dané číslo na místě jednotek číslici 0, pak není dělitelné deseti. Podobným způsobem, můžete odvodit znak dělitelnosti čísla 5 a čísla 2. Pokud máte rozhodnout, které ze dvou čísel 2656, 2655 je dělitelné pěti, můžete postupovat obdobně jako v předchozím příkladě = =

6 V obou rozkladech jsou první tři sčítance dělitelné pěti (neboť čísla 1000, 100 i 10 jsou dělitelná pěti). Proto o tom, zda dané číslo je, či není dělitelné pěti, opět rozhoduje poslední sčítanec, vyjádřený poslední číslicí čísla. Znak dělitelnosti číslem pět Jestliže má dané číslo na místě jednotek číslici 0 nebo 5, pak je dělitelné pěti. Jestliže nemá dané číslo na místě jednotek ani číslici 0, ani číslici 5, pak není dělitelné pěti. U čísel 3746, 3747, 3478 a 3749 budete zjišťovat, zda jsou dělitelná číslem dvě = = = = V rozkladech čísel 3746 až 3749 jste zjistili, že dělitelné dvěma jsou ta, které končí na místě jednotky číslem 0, 2, 4, 6, 8. Znak dělitelnosti číslem dva Jestliže má dané číslo na místě jednotek některou z číslic 0, 2, 4, 6 nebo 8, pak je dělitelné dvěma. Jestliže má dané číslo na místě jednotek některou z číslic 1, 3, 5, 7 nebo 9, pak není dělitelné dvěma. U čísel 1027 a 1048 budete zjišťovat, zda jsou dělitelná číslem čtyři. Mohli byste znovu postupně rozkládat číslo 1027 a 1048 násobky čísel 4 a zjistit, které z následujících čísel vyjde beze zbytku. Toto číslo by pak bylo násobkem čísla čtyři = ? 1048 =

7 Z předcházejícího rozkladu si však můžete všimnout, že u čísel 1000 a 100 vždy existuje přirozené číslo, které vynásobíte-li číslem 4 dá znovu číslo 1000 a 100. ( čísla 250 a 25 ) Při rozhodování dělitelnosti číslem čtyři se tedy budete rozhodovat podle posledního dvojčíslí daného čísla. Pokud je tedy poslední dvojčíslí dělitelné číslem čtyři, pak jste dospěli k řešení, že celé toto číslo je dělitelné čtyřmi ~ 27 : 4 = 6,75 není dělitelné 1048 ~ 48 : 4 = 12 je dělitelné Znak dělitelnosti číslem čtyři Jestliže je poslední dvojčíslí daného čísla dělitelné čtyřmi, pak je i dané číslo dělitelné čtyřmi. Jestliže není poslední dvojčíslí daného čísla dělitelné čtyřmi, pak není ani dané číslo dělitelné čtyřmi. U čísel 1567 a 1824 budete zjišťovat, zda jsou dělitelná číslem osm. Postup bude podobný, jako v předcházejícím případě. Znovu byste mohli obě čísla rozložit na násobky čísel 8 a zjistit, které z následujících čísel vyjde beze zbytku = ? + 8? 1824 = Z rozkladu je však patrné, že u čísla 1000 vždy existuje přirozené číslo, které vynásobíte-li číslem osm dostanete znovu číslo ( číslo 125 ) U čísel 100 a 10 již takové přirozené číslo neexistuje. Při rozhodování dělitelnosti číslem osm se tedy budete rozhodovat podle posledního trojčíslí daného čísla. Je-li poslední trojčíslí daného čísla dělitelné číslem osm, pak je i celé číslo dělitelné číslem osm.

8 1567 ~ 567 : 8 = 70,87 není dělitelné 1824 ~ 824 : 8 = 103 je dělitelné Znak dělitelnosti číslem osm Jestliže je poslední trojčíslí daného čísla dělitelné osmi, pak je i dané číslo dělitelné osmi. Jestliže není poslední trojčíslí daného čísla dělitelné osmi, pak není ani dané číslo dělitelné osmi. Pomocí dělení rozhodneme, zda čísla a jsou dělitelná devíti : 9 = : 9 = 2864,5 Číslo tedy je dělitelné devíti, zatímco číslo devíti dělitelné není. Nyní odvodíme znak dělitelnosti devíti, abyste nemuseli vždy dělení provádět. Číslo nejprve rozepíšeme takto: = Čísla 1 000, nejsou dělitelná devíti, ale čísla 999, 99 a 9 devíti dělitelná jsou, proto čísla 1 000, 100 i 10 dávají při dělení devíti zbytek 1. Proto: číslo dává při dělení devíti zbytek 3 1 = 3 číslo dává při dělení devíti zbytek 7 1 = 7 číslo 5 10 dává při dělení devíti zbytek 5 1 = 5 číslo 3 dává při dělení zbytek 3 = 3 Jiný způsob: 3753 = = = 3 ( ) + 7 (99 + 1) + 5 (9 + 1) + 3 = = Součet všech průběžných zbytků je = 18 a to je číslo dělitelné devíti. Proto je devíti dělitelné i dané číslo Podobně byste postupovali i u čísla a zjistili byste, že toto číslo devíti dělitelné není.

9 Znak dělitelnosti číslem devět Jestliže je ciferný součet daného čísla dělitelný devíti, pak je i dané číslo dělitelné devíti. Jestliže není ciferný součet daného čísla dělitelný devíti, pak není ani dané číslo dělitelné devíti. U znaku dělitelnosti třemi můžete opět použít metodu rozkladu daného čísla na jeho násobky, nebo použít mnohem jednoduší způsob: sečíst všechny cifry daného čísla a zkoumat, jestli je součet dělitelný číslem tři. ( Číslo devět má dělitele 1, 3, 9. Protože číslo 3 je jedním z dělitelů čísla 9, můžeme postupovat při řešení stejně jako u znaku dělitelnosti číslem devět.) 215 = = 8 není dělitelné třemi 216 = = 9 je dělitelné třemi Znak dělitelnosti číslem tři Jestliže je ciferný součet daného čísla dělitelný třemi, pak je i dané číslo dělitelné třemi. Jestliže není ciferný součet daného čísla dělitelný třemi, pak není ani dané číslo dělitelné třemi. Pokud chcete zjistit, zda je dané číslo dělitelné číslem šest, musíte prokázat, že je též dělitelné číslem dvě a tři. Číslo šest má dělitele 1, 2, 3, 6, - jedničkou je jistě dělitelné každé číslo, musíme tedy ověřit zda je dané číslo dělitelné i ostatními číslicemi. Jistě postačí ověřit, zda je dané číslo dělitelné dvěmi a třemi současně. Pokud totiž takové číslo nalezneme, bude jistě dělitelné i šesti : 2 = : 3 = : 6 = 43 je dělitelné : 2 = 185,5 371 : 3 = 123,6 371 : 6 = 61,8 není dělitelné Znak dělitelnosti číslem šest Je-li dané číslo dělitelné současně dvěma a třemi, pak je dělitelné šesti. Není-li dané číslo dělitelné dvěma nebo třemi, pak není ani dělitelné šesti.

10 Prvočísla a čísla složená Prvočíslo je takové číslo, které má právě dva dělitele jedničku a sebe sama. 7 = 1 7 Složené číslo je takové číslo, které má alespoň tři dělitele. 8 = 1 8, 2 4 Vezměte si přirozená čísla pěkně popořadě. Číslo jedna je dělitelné pouze jedničkou, a proto ji neřadíme ani mezi prvočísla ani mezi čísla složená. Číslo dvě je dělitelné číslem dvě a jedna, je to tedy prvočíslo. Mimochodem jediné sudé prvočíslo. Číslo tři je dělitelné číslem jedna a tři, je to tedy prvočíslo. Číslo čtyři je dělitelné číslem jedna, dvě a čtyři - je to číslo složené. A takhle bychom mohli pokračovat pořád dál. Je třeba si uvědomit, že každé přirozené číslo větší než jedna je dělitelné alespoň jedním prvočíslem - v nejhorším je číslo samo prvočíslem. Víte, kolik je prvočísel do 100? Přesně 25. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. Př. Číslo 13 má při dělení dvěma zbytek 1, při dělení 3 zbytek 1, při dělení pěti zbytek 3 atd. Beze zbytku je dělitelné pouze 1 a 13. Proto je 13 prvočíslo.číslo 24 je dělitelné čísly 1, 2, 3, 4, 6, 8, 12, 24 proto není prvočíslem. Nyní bychom Vám mohl položit otázku: Víte kolik je prvočísel? Na tuto otázku byste odpověděli, že prvočísel je nekonečně mnoho. Toto tvrzení je dokonce dokázáno řeckým matematikem Eukleidem, který již ve 3. století př. n. l. provedl onen důkaz. Šel na to oklikou (důkaz sporem). Euklides nejprve předpokládal, že prvočísel je konečně mnoho, počet označme n, prvočísla pak p(1), p(2), p(n). A teď si všimněme čísla P = (p(1) * p(2) * p(3) * * p(n)) + 1. (2 3) + 1 = 7 (2 3 5) + 1 = 31 ( ) + 1 = 211 Je vidět, že takto utvořené číslo není dělitelné žádným prvočíslem, které je v součinu. Dělení vždy vychází se zbytkem jedna. Protože každé číslo s výjimkou jedničky je dělitelné alespoň jedním prvočíslem, musí být takto utvořené číslo prvočíslem. My však již žádné další prvočíslo nemáme, do součinu při tvoření čísla P jsme použili úplně všechna. To znamená, že prvočísel není konečně mnoho, ale je jich nekonečně mnoho. ( Mezi čísly n a 2n, kde n 2, existuje vždy alespoň jedno prvočíslo. Toto dokázal v roce 1850 Rus Čebyšev)

11 K čemu nám prvočísla vlastně jsou a proč jsou tak důležitá? Protože každé přirozené číslo je buď prvočíslem, nebo je můžete napsat jako součin konečného počtu prvočísel. Zkuste to: 2, 3, jsou prvočísla, 4 = 2 2, 6 = 2 3, 8 = 2 2 2, nebo něco většího 42 = Když nějaké přirozené číslo takto zapíšete, mluvíte pak o rozkladu přirozeného čísla na součin prvočísel. Někdy se hovoří o rozkladu čísla na prvočinitele nebo o kanonickém rozkladu. Velký praktický význam mají prvočísla také v kryptografii. (Kryptografie neboli šifrování je nauka o metodách utajování smyslu zpráv převodem do podoby, která je čitelná jen se speciální znalostí.) Eratosthenovo síto První systematickou metodu k nalezení prvočísel použil řecký matematik a astronom Eratosthenes, který žil přibližně v letech 275 až 195 př. n. l. Na voskovou tabulku si napsal čísla větší než 1 a menší než 100, první z čísel tak bylo číslo 2. Toto číslo v tabulce ponechal, vypálil však horkou jehlou v tabulce všechny následující násobky dvou. Dalším prvočíslem v tabulce bylo číslo 3. Toto prvočíslo opět ponechal, vypálil však všechny dosud nevypálené násobky tří. Dalším prvočíslem je číslo 5, znovu toto prvočíslo ponechal a opět vypálil všechny dosud nevypálené násobky pěti. Tímto postupem postupoval tak dlouho, až mu v tabulce zbyla samá prvočísla Protože tabulka byla dosti děravá a připomínala síto, nazývá se tato metoda nalézání prvočísel Eratosthenovo síto. Prvočíselná dvojčata Jsou to dvojice prvočísel, jejichž rozdíl je roven dvěma. Takovými dvojčaty jsou například prvočísla 3 a 5, nebo 101 a 103, nebo 179 a 181. Matematici si myslí, že prvočíselných dvojčat je nekonečně mnoho, ale zatím si jim to nepodařilo dokázat.

12 Společný dělitel, největší společný dělitel Společný dělitel Společný dělitel dvou nebo několika čísel je takové číslo, které dělí každé z těchto čísel beze zbytku. Pokud byste chtěli určit společné dělitele čísel 15 a 18, budete postupovat tak, že každé číslo rozepíšete na jeho dělitele: Číslo 15 má dělitele 1, 3, 5, 15 Číslo 18 má dělitele 1, 2, 3, 6, 9, 18 Jedině čísla 1 a 3 dělí zároveň číslo 15 i číslo 18. Takové dělitele nazýváme společné dělitele. Při řešení úloh není vždy nutné ani účelné vyhledávat všechny společné dělitele. Mnohdy stačí určit toho, který je z nich největší. Každý jiný společný dělitel je totiž jeho dělitelem. U některých skupin čísel umíte určit největšího společného dělitele zpaměti: Jestliže např. jedno z čísel zadané skupiny je dělitelem všech ostatních čísel, pak je toto číslo největším společným dělitelem celé skupiny. Tedy největším společným dělitelem dvojice 8 a 24 je číslo 8, trojice 12, 24 a 48 číslo 12. Při hledání největšího společného dělitele můžete vypsat všechny společné dělitele dané skupiny čísel a vybrat z nich největší číslo, využít můžete např. tabulku. Skupina čísel Společné dělitele Největší společný dělitel 8, 12 12, 30 28, 31 9, 12, 15 6, 10, 15 12, 15, 18 1, 2, 4 1, 2, 3, 6 1 1, 3 1 1,

13 Největší společný dělitel Největší společný dělitel skupiny čísel je takový společný dělitel těchto čísel, který je ze všech společných dělitelů největší. Každý jiný společný dělitel je jeho dělitelem. Největšího společného dělitele budeme označovat písmenem D. Budeme tedy zapisovat: D( 24, 54 ) = 6 (viz. obr.) Největší společný dělitel skupiny čísel je součin všech společných prvočinitelů vybraných z rozkladu jednotlivých čísel. Abyste zjistili, kolikrát se které prvočíslo bude v tomto rozkladu vyskytovat, určíte, kolikrát se vyskytuje v jednotlivých rozkladech. Z těchto počtů vyberete nejmenší a tolikrát toto prvočíslo zahrneme do výsledného součinu. Pokud se stane, že daná skupina čísel žádného společného prvočinitele nemá, je největším společným dělitelem takových čísel číslo 1.

14 Čísla soudělná a nesoudělná V předchozí kapitole jste si mohli všimnout, že existují skupiny čísel, jejichž největší společný dělitel je roven číslu 1. Mezi takovéto dvojice či trojice čísel patří např. (3, 5), (7, 9), (8, 15), (5, 9, 13), (2, 5, 21). Čísla nesoudělná Je-li největší společný dělitel skupiny čísel roven 1, říkáme, že tato čísla jsou nesoudělná. Nesoudělná čísla jsou např. čísla 15 a 16 čísla 23 a 27 čísla 6, 10 a 15 Čísla soudělná Je-li největší společný dělitel skupiny čísel větší než 1, říkáme, že tato čísla jsou soudělná. Například čísla 6 a 8 jsou soudělná, neboť jejich největším společným dělitelem je číslo 2. Máte-li ověřit, že daná čísla jsou soudělná, musíme hledat jejich největšího společného dělitele. Stačí, když najdete jednoho společného dělitele, který je větší než 1. Soudělná čísla jsou např. čísla 8 a 14 (společný dělitel 2) čísla 45 a 75 (společný dělitel 5) čísla 33, 66, a 77 (společný dělitel 11)

15 Společný násobek, nejmenší společný násobek Násobky čísla 2: Násobky čísla 3: Čísla 6, 12 a 18 se nazývají společné násobky čísel 2 a 3. Společný násobek Společný násobek dvou nebo několika čísel je takové číslo, které je násobkem každého z těchto čísel. Jistě není obtížné určit zpaměti několik dalších společných násobků čísel 4 a 6. Jsou to čísla 48, 60, 72, 84, (je jich nekonečno mnoho). Tak jako není nutné obvykle vyhledávat všechny společné dělitele dané skupiny čísel, nebývá vždy nutné určovat více společných násobků. Velmi důležité je umět určit takový násobek, který je ze všech společných násobků nejmenší říkáme mu nejmenší společný násobek. každý jiný společný násobek daných čísel je totiž jeho násobkem. U některých skupin čísel lze nejmenší společný násobek určit zpaměti. Jestliže je například jedno z čísel dané skupiny násobkem všech ostatních, pak je toto číslo nejmenším společným násobkem této skupiny. Tedy nejmenším společným násobkem dvojice 8, 24 je číslo 24, trojice 12, 24, 48 číslo 48. U některých dvojic čísel je nejmenším společným násobkem součin těchto čísel: u čísel 3 a 27 číslo 21, u čísel 8 a 9 číslo 72. U jiných dvojic čísel je nejmenší společný násobek menší než jejich součin: u čísel 3 a 6 je to číslo 6, u čísla 6 a 10 je to číslo 30. U nesoudělných čísel je nejmenším společným násobkem jejich součin. U soudělných čísel je nejmenší společný násobek menší než jejich součin.

16 U větších čísel např. 48 a 150 můžete postupovat jinak. Čísla rozložíte na součin prvočísel. Napíšete rozklady tak, aby stejná prvočísla byla pod sebou. Jeden z rozkladů doplníte prvočísly, která jsou navíc ve druhém rozkladu. Součin těchto prvočísel je hledaný nejmenší společný násobek. 48 = = n (48, 150) = n (48, 150) = = 1200 Nejmenší společný násobek Nejmenší společný násobek těchto čísel je ten společný násobek těchto čísel, který je ze všech společných násobků nejmenší. Každý jiný společný násobek je jeho násobkem. Nejmenší společný násobek budete značit písmenem n. Stručně budete zapisovat: n ( 24, 162 ) = 648 (viz. obr. ), n (3, 7) = 21, n (2, 3, 4) = 12 Nejmenší společný násobek skupiny čísel je součin prvočinitelů vybraných z rozkladů jednotlivých čísel.

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

DĚLITEL A NÁSOBEK DIGITÁLNÍ UČEBNÍ MATERIÁL VY_32_INOVACE_TR_01-20_MA-6. autor Hana Trundová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE

DĚLITEL A NÁSOBEK DIGITÁLNÍ UČEBNÍ MATERIÁL VY_32_INOVACE_TR_01-20_MA-6. autor Hana Trundová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 DĚLITEL

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou OD NULY K NEKONEâNU Poãítej jako EgypÈan Nejstarší známý početní systém založený na čísle 10 zavedli před 5 000 lety v Egyptě. Egypťané používali skupinu čar pro vyjádření čísel do devítky. Vypadala asi

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

1. Základní pojmy a číselné soustavy

1. Základní pojmy a číselné soustavy 1. Základní pojmy a číselné soustavy 1.1. Základní pojmy Hardware (technické vybavení počítače) Souhrnný název pro veškerá fyzická zařízení, kterými je počítač vybaven. Software (programové vybavení počítače)

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární.

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární. Číselné soustavy V běžném životě používáme soustavu desítkovou. Desítková se nazývá proto, že má deset číslic 0 až 9 a v jednom řádu tak dokáže rozlišit deset různých stavů. Mikrokontroléry (a obecně všechny

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

OPAKOVACÍ TEST: NÁSOBENÍ A DĚLENÍ V OBORU NÁSOBILKY, PÍSEMNÉ SČÍTÁNÍ A ODČÍTÁNÍ DVOJCIFERNÝCH ČÍSEL

OPAKOVACÍ TEST: NÁSOBENÍ A DĚLENÍ V OBORU NÁSOBILKY, PÍSEMNÉ SČÍTÁNÍ A ODČÍTÁNÍ DVOJCIFERNÝCH ČÍSEL VY_32_INOVACE_M_186 OPAKOVACÍ TEST: NÁSOBENÍ A DĚLENÍ V OBORU NÁSOBILKY, PÍSEMNÉ SČÍTÁNÍ A ODČÍTÁNÍ DVOJCIFERNÝCH ČÍSEL Autor: Mgr. Irena Štěpánová Použití: 3. třída Datum vypracování: 29. 9. 2012 Datum

Více

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete!

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete! Tento seminář pro Vás připravuje vzdělávací agentura Kurzy-Fido.cz...s námi TSP zvládnete! Řešení páté série (27.4.2009) 13. Hlavní myšlenka: efektivní porovnávání zlomků a desetinných čísel Postup: V

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 6. ročník J.Coufalová : Matematika pro 6.ročník ZŠ (Fortuna) O.Odvárko,J.Kadleček : Sbírka úloh z matematiky pro 6.ročník ZŠ (Prometheus)

Více

2. Dělitelnost přirozených čísel

2. Dělitelnost přirozených čísel 2. Dělitelnost přirozených čísel 6. ročník - 2. Dělitelnost přirozených čísel Číslo 4 756 můžeme rozložit 4 756 = 4. 1 000 + 7. 100 + 5. 10 + 6 Obdobně : čtyřciferné číslo můžeme zapsat ve tvaru a bcd

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 11 Nejmenší společný násobek Největší společný dělitel O čem budeme hovořit: Nejmenší společný násobek a jeho vlastnosti Největší

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

VY_42_INOVACE_MA3_01-36

VY_42_INOVACE_MA3_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity VY_42_INOVACE_MA3_01-36 Inovace a zkvalitnění

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Přehled vzdělávacích materiálů

Přehled vzdělávacích materiálů Přehled vzdělávacích materiálů Název školy Název a číslo OP Název šablony klíčové aktivity Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Anotace Základní škola Ţeliv Novými

Více

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150.

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150. Opakování na 2. trimestrální test z MATEMATIKY PRIMA Dělitelnost 1. Z čísel 1800; 356; 168; 855; 380; 768; 2880; 435; 2000 vyberte čísla: a) dělitelná dvěma: b) dělitelná třemi: c) dělitelná čtyřmi: d)

Více

Prvočísla. Příklad 1. Najdi nejmenší číslo, které je možno rozložit na součin čtyř různých činitelů, z nichž ani jeden se nerovná 1 2. 3. 4.

Prvočísla. Příklad 1. Najdi nejmenší číslo, které je možno rozložit na součin čtyř různých činitelů, z nichž ani jeden se nerovná 1 2. 3. 4. Prvočísla Prvočíslo je přirozené číslo, které je beze zbytku dělitelné jen samo sebou a ještě jedničkou, čili 1 není prvočíslo. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

Více

Přirozená čísla. (Zápis přirozených čísel) (Základní početní operace v N a jejich vlastnosti) (Dělitel a násobek přirozeného čísla)

Přirozená čísla. (Zápis přirozených čísel) (Základní početní operace v N a jejich vlastnosti) (Dělitel a násobek přirozeného čísla) Přirozená čísla Jedna, dva, moc Zápis přirozených čísel) 0 a) např. 8 b) např. 0 c) např. CXXVIII např.,, 0 a, d, h 0 0, 0,, 00,,, 00,,, 000 0 A, B, C, D 0 a) ANO b) NE c) NE ANO 0 a) 0 + 0 + 0 + 0 + b)

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

Splněno ANO/NE/hodnota

Splněno ANO/NE/hodnota část 1 - software pro přípravu interaktivních výukových hodin postavený na aktivní účasti žáků základní specifikace: autorský objektově orientovaný výukový software v českém jazyce s implementovanou galerií

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata,

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, 5.1.2.2 Vzdělávací obsah vyučovacího předmětu Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, Zná číslice 1 až 20, umí je napsat a

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání

Více

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA ve studiu učitelství 1. stupně základní školy Vilma Novotná, Bohuslav Pisklák Ostrava 2003 Obsah I. Úvod do teorie množin a matematické logiky

Více

V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace.

V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace. MATEMATIKA Charakteristika vyučovacího předmětu V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace. Žáci v ní mají získat početní

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Matematika. název materiálu

Matematika. název materiálu Seznam "DUMŮ" V případě zájmu kontaktujte naši školu na e-mailu: zsdll.lk@seznam.cz Matematika 32101 Celá čísla, čísla kladná a záporná, opačná čísla 32102 Celá čísla - Absolutní hodnota 32103 Celá čísla

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo.

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace má tyto dílčí úkoly: 1) Naučit žáky číst číslice a správně vyslovovat názvy čísel. 2) Naučit žáky zapisovat čísla v

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE + MP vazby 1. Obor přirozených čísel - používá čísla v oboru 0-20 k modelování reálných situací.- práce s manipulativy - počítá předměty v oboru 0-20, vytváří soubory

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Složitost a moderní kryptografie

Složitost a moderní kryptografie Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

4. 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 4.2.1 Matematika

4. 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 4.2.1 Matematika 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 1 Matematika Hodinová dotace Matematika 4 4 4 4 Realizuje obsah vzdělávacího oboru Matematika a její aplikace RVP ZV. Matematika

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

2.4 POZIČNÍ ČÍSELNÉ SOUSTAVY

2.4 POZIČNÍ ČÍSELNÉ SOUSTAVY 2.4 POZIČNÍ ČÍSELNÉ SOUSTAVY Podívejme se například na čínskou počítací desku. Učiníme-li poslední krůček a nahradíme v každém políčku skupinu tyčinek odpovídající číslicí, obdržíme vyjádření čísla v desítkové

Více

Ročník VI. B. Téma: Cíl: Žák - Vazba na ŠVP Poznámky

Ročník VI. B. Téma: Cíl: Žák - Vazba na ŠVP Poznámky Tématický plán Předmět Matematika Vyučující PhDr. Eva Bomerová Školní rok 2012/2013 Ročník VI. B hod./týd. 4 Učebnice: Hejný, M., Jirotková, D., Bomerová, E., Michnová, J.: Matematika pro 5. ročník ZŠ.

Více

Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže. kde p 1 < p 2 < < p r, q 1 < q 2 < < q s jsou prvočísla a

Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže. kde p 1 < p 2 < < p r, q 1 < q 2 < < q s jsou prvočísla a Přirozená čísla: 1, 2, 3,... = {1, 2, 3,... } Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže p α 1 1 pα 2 2 pα r r = q β 1 1 qβ 2 2 qβ s s, kde p 1 < p 2 < < p r, q 1 < q 2 < < q

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Násobení přirozených čísel. a) Násobení v oboru násobilek

Násobení přirozených čísel. a) Násobení v oboru násobilek Násobení přirozených čísel a) Násobení v oboru násobilek Zvládnutí operace násobení a základních spojů násobilky je pro děti dobrým východiskem pro zvládání dalšího učiva, kterým je dělení, dělení se zbytkem,

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem Ing. Festival Fantazie, 2013 Osnova 1 Základní pojmy Obtížnost Kryptografie 2 Základní princip Matematické souvislosti Historie 3 Vymezení pojmů Základní pojmy Obtížnost Kryptografie

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Školní vzdělávací program - Základní škola, Nový Hrádek, okres Náchod. Část V. Osnovy

Školní vzdělávací program - Základní škola, Nový Hrádek, okres Náchod. Část V. Osnovy Část V. Osnovy I. stupeň KAPITOLA 5. - MATEMATIKA Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor - vyučovací předmět: Matematika a její aplikace Matematika 1. CHARAKTERISTIKA VYUČOVACÍHO

Více

MANUÁL. Výukových materiálů. Matematický kroužek 6.ročník MK2

MANUÁL. Výukových materiálů. Matematický kroužek 6.ročník MK2 MANUÁL Výukových materiálů Matematický kroužek 6.ročník MK2 Vypracovala: Mgr. Jana Kotvová 2014 Číslo hodiny: 1 Téma: Opakování přirozená čísla Očekávané výstupy: Žáci zdokonalují provádění početních operací

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

Už známe datové typy pro representaci celých čísel i typy pro representaci

Už známe datové typy pro representaci celých čísel i typy pro representaci Dlouhá čísla Tomáš Holan, dlouha.txt, Verse: 19. února 2006. Už známe datové typy pro representaci celých čísel i typy pro representaci desetinných čísel. Co ale dělat, když nám žádný z dostupných datových

Více

MATEMATIKA Charakteristika vyučovacího předmětu

MATEMATIKA Charakteristika vyučovacího předmětu MATEMATIKA Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Vyučovací předmět Matematika se vyučuje jako samostatný předmět ve všech ročnících: v 1. ročníku 4 hodiny týdně ve

Více