Poznámka 1.1. Nechť A(α i i I)jealgebraaA j jepodalgebra Aprokaždé j J.Pak j J A jjerovněžpodalgebra A. Důkaz. Viz[D, 2.1, 2.8].

Rozměr: px
Začít zobrazení ze stránky:

Download "Poznámka 1.1. Nechť A(α i i I)jealgebraaA j jepodalgebra Aprokaždé j J.Pak j J A jjerovněžpodalgebra A. Důkaz. Viz[D, 2.1, 2.8]."

Transkript

1 1. Algebry, homomorfismy, kongruence Definice. Prokaždécelé n 0nazveme n-ární operací na množině Akaždé zobrazení A n A(číslo nbudemenazývataritounebočetnostíoperace).nechť (α i i I)jesystémoperacínamnožině A.Pakdvojici A(α i i I)nazveme algebrou. Příklad. AlgebrytvořínapříkladZ(+),Z(+, ),Z(+,,0,1).Je-liTtěleso,pak jealgebrout(+, )čit(+,,,0,1),provektorovýprostor V nadt,jealgebrou V(+, t t T). Definice.Buď α n-árníoperacena A.Řekneme,žepodmnožina B Ajeuzavřená naoperaci α,pokud α(a 1,...,a n ) Bprovšechna a 1,...,a n B.Řekneme,že B Ajepodalgebraalgebry A(α i i I),pokudje Buzavřenánavšechnyoperace α i, i I. Označíme-li β i = α i B nomezení n-árníoperace α i na B n,potompropodalgebru Bležívšechnyhodnotyzobrazení β i opětvb.zobrazení β i tedymůžemechápat jakooperacenamnožině Batakdostávámestrukturualgebry B(β i i I)na každé podalgebře B. Příklad.(1)Je-li A(α i i I)algebra,pak Azřejmětvoříjejípodalgebru.Pokud navícžádnázoperací α i nenínulární,potom jepodalgebroualgebry A(α i i I). (2) Uvažujeme-li algebru Z(+, ), pak pro každé celé n tvoří množina všech násobků nz={nz z Z}podalgebru. (3) Každý podprostor vektorového prostoru V nad tělesem T, je podalgebrou algebry V(+, t,t T). Poznámka 1.1. Nechť A(α i i I)jealgebraaA j jepodalgebra Aprokaždé j J.Pak j J A jjerovněžpodalgebra A. Důkaz. Viz[D, 2.1, 2.8]. Definice. Nechť symbol α označuje n-ární operaci na množině A. Řekneme, že zobrazení f: A Bjeslučitelnésα,pokud f(α(a 1,...,a n ))=α(f(a 1 ),...,f(a n )). Řekneme,žealgebry A(α i i I)aB(α i i I)jsoustejnéhotypu,pokud α i označujenamnožině Ainamnožině B dvěoperacestejnéarity.zobrazení f : A Bmezidvěmaalgebramistejnéhotypubudemeříkathomomorfismus, pokudjeslučitelnésevšemioperacemi α i, i I.Bijektivníhomomorfismusbudeme nazývat izomorfismus. Příklad. (1)Zobrazení π:z Z n definovanépředpisem π(z)=(z)mod nje homomorfismusalgebryz(+, )doz n (+, ). (2)Nechť Ua V jsoudvavektorovéprostorynadtělesem T.Potomkaždýhomomorfismus vektorových prostorů je homomorfismem algeber U(+, t t T) a V(+, t t T). (3)Označme M n (T)množinuvšechčtvercovýchmaticnadtělesem Ta budiž symbolem násobení matic. Potom zobrazení, které každé matici přiřadí její determinant,jehomomorfismemalgebry M n (T)( )do T( ). Poznámka1.2. Buď A(α i i I), B(α i i I)aC(α i i I)algebrystejného typu.jsou-lizobrazení f : A B a g : B C homomorfismy,pakigf je homomorfismus.je-linavíc fbijekce,je f 1 takéhomomorfismus. 1

2 2 Důkaz. Viz[D, 2.2]. V případě, že nemůže dojít k omylu nebo jednotlivé operace na algebře nepotřebujeme uvažovat, budeme v následujícím označiovat algebru jen její nosnou množinou. Poznámka1.3. Buď AaBdvěalgebrystejnéhotypuabuď f: A Bhomomorfismus.Je-li C podalgebraalgebry AaDpodalgebraalgebry B,pak f(c)je podalgebrou Ba f 1 (D)jepodalgebrou A. Důkaz. Viz[D, 2.3]. Připomeňme, že relací na množině A rozumíme libovolnou podmnožinu A A. Nechť ρ je relace na A, označme: - ρ 1 = {(b,a) (a,b) ρ}(opačnárelace), - ρ + = {(a,b) a=a 0,a 1,...,a n 1,a n = b A;(a i,a i+1 ) ρ}(tranzitivní obal), - id={(a,a) a A}(identita). Řekneme,žerelace ρjesymetrická,pokud ρ 1 ρ,tranzitívní,pokud ρ + ρ, a reflexivní, pokud id ρ. Ekvivalencí budeme nazývat každou symetrickou, tranzitívní a reflexivní relaci. Definice. Nechť ρ je ekvivalence na množině A. Definujme faktor množiny(často seříkátakékvocient) Apodlerelace ρjakomnožinu A/ρ={[a] ρ a A},kde [a] ρ = {b A (a,b) ρ}. Poznámka1.4.(1)Je-li ρekvivalencena A,pak A/ρ={[a] ρ a A}tvořírozklad množiny A. (2)Je-li {B i i I}rozkladmnožiny A,pakrelace ρurčenápodmínkou:(a,b) ρ i I: a,b B i jeekvivalencíaa/ρ={b i i I}. Důkaz.(1) Viz[D, 1.7],(2) zřejmé. Definice. Je-li f : A Bzobrazení,rozumímejehojádrem ker f relacidanou předpisem:(a,b) ker f f(a)=f(b).mějmena Aekvivalenci ρ.přirozenou projekcínazvemezobrazení π ρ : A A/ρdanépředpisem π ρ (a)=[a] ρ. Poznámka1.5.Nechť f: A Bjezobrazeníaρekvivalencenamnožině A.Pak platí: (1) ker f je ekvivalence, (2) ker f= id,právěkdyžje fprostézobrazení, (3) ker π ρ = ρ, (4)Zobrazení g:a/ρ Bsplňujícípodmínku gπ ρ = f existujeprávětehdy, když ρ ker f. Důkaz.(1)(a,a) ker f,neboť f(a)=f(a);pokud(a,b) ker f,pak f(a)=f(b), tedy(b,a) ker f;je-li f(a)=f(b)=f(c),potomzřejmě(a,c) ker f. (2),(3) Plyne přímo z definice. (4) Viz[D, 1.10]. Definice.Nechť ρjerelaceaαje n-árníoperacenamnožině A.Řekneme,že ρje slučitelnásα,pokudprokaždýsystémprvků a 1,...,a n,b 1...,b n A,prokteré a i ρb i, i=1,...,n,platí,že α(a 1,...,a n )ρα(b 1,...,b n ).

3 3 Je-li A(α i i I)algebraaρekvivalencenamnožině A,pak ρnazvemekongruencí,pokudje ρslučitelnásevšemioperacemi α i, i I. Příklad.(1) id a A A jsou kongruence na libovolné algebře A. (2)Vezměmepřirozenéčíslo n 2aoznačme n relacinamnožiněcelýchčísel Zdanoupředpisem: a n b n/(a b).potomje n kongruencenaalgebře Z(+,, ). (3) Každá ekvivalence je slučitekná s libovolnou nulární operací. Poznámka 1.6. Nechť AaB jsoudvěalgebrystejnéhotypuaf : A B je homomorfismus. Pak ker f je kongruence na algebře A. Důkaz. Viz[D, 2.5]. Definice. Nechť ρjeekvivalenceaαje n-árníoperacenamnožině A.Pokud je ρslučitelnásαdefinujemeoperaci αna A/ρnásledovně: α([a 1 ] ρ,...,[a n ] ρ )= [α(a 1,...,a n )] ρ.je-li ρkongruencenaalgebře A,pakstejnýmzpůsobemdefinujeme na A/ρ strukturu algebry. Věta 1.7. Je-li ρ kongruence na algebře A, pak je definice algebry A/ρ korektní, jdeoalgebrustejnéhotypujako Aapřirozenáprojekce π ρ : A A/ρjehomomorfismus. Důkaz. Viz[D, 2.6]. Definice. Algebru G( ) s jednou binární operací nazýváme grupoid. Neutrálním prvkemgrupoidu G( )(nebooperace )rozumímetakovýprvek e G,že g e= e g= gprovšechna g G.Algebru G(,e)nazvememonoidem,pokudjeoperace asociativní a e je neutrální prvek operace. Podgrupoidem(podmonoidem) nazveme každou podalgebru grupoidu(monoidu). Poznámka 1.8. Každý grupoid obsahuje nejvýše jeden neutrální prvek. Důkaz.Jsou-li e,fdvaneutrálníprvky,pak e=e f= f. Příklad. Je-li X aspoň dvouprvková množina a definujeme-li na X binární operaci předpisem x y= x,jeoperace asociativní,ale Xneobsahuježádnýneutrální prvek. Přitom dokonce každý prvek X splňuje první z rovností, kterou je neutrální prvek definován. Příklad. (1)Nechť X jeneprázdnámnožinapísmenam(x)jemnožinavšech slov, tj. všech konečných posloupností písmen. Zaveďme na této množině operaci skládání : x 1...x n y 1...y m = x 1...x n y 1...y m adáleoznačme λprázdnéslovo. Potom M(X)(, λ) tvoří(tzv. slovní) monoid. (2) Buď X nějaká neprázdná množina a označme T(X) množinu všech zobrazení množiny Xdosebe.Potom T(X)(,Id)tvoří(soperacískládání )(tzv.transformační) monoid. (3)Čtvercovématice M n (T)nadtělesem T stupně nspolusnásobenímajednotkovoumaticí M n (T)(,Id)tvořímonoid. Poznámka1.9. Buď S(,1)monoidaa,b,c S.Pokudplatí,že a b=c a=1, potom b=c. Důkaz. c=c 1=c (a b)=(c a) b=1 b.

4 4 Příklad. Uvažujme transformační monoid T(N) na množině všech přirozených číselanechť α(k)=2kaβ(k)=[ k 2 ].Pak βα=idaαβ Id. Definice.Nechť S(,1)jemonoid.Řekneme,žeprvek s Sjeinvertibilní,pokud existujetakovýprvek s 1 S,že s 1 s=s s 1 =1.Prvek s 1 nazvemeinverzním prvkemkprvku s. Poznámka Množina všech invertibilních prvků monidu S(, 1) tvoří jeho podmonoid.navíc,je-li sinvertibilníprvek,pakis 1 jeinvertibilní. Důkaz. Viz[D, 2.16]. Definice. Algebra G(, 1,1)jegrupa,pokud G(,1)jemonoida 1 jeunární operace, která každému prvku přiřadí prvek k němu inverzní, je-li operace komutativní, mluvíme o komutativní(abelově) grupě. Podgrupou budeme rozumět každoupodalgebrualgebry G(, 1,1).Normálnípodgrupajekaždápodgrupa H grupy Gsplňujícínavícpodmínku ghg 1 Hprokaždé g Gah H. Poznámka Nechť S(,1)jemonoidaS označujejehopodmonoidvšech invertibilníchprvků.označme S restrikci S S operace namnožinu S S adefinujemeunárníoperaci 1 tak,že a 1 jeinverzníprvekprolibovolné a S. Pak S ( S, 1,1)jegrupa. Příklad.(1) Grupa invertibilních prvků(podle Poznámky 1.11) slovního monoidu M(X)(, λ) obsahuje pouze neutrální prvek e. (2) Grupu invertibilních prvků transformačního monoidu T(X)(, Id) tvoří právě všechny bijekce S(X) na množině X (mluvíme o symetrické grupě nebo grupě permutací). (3)Grupuinvertibilníchprvkůmonoidučtvercovýchmatic M n (T)(,Id)stupně n tvoří právě všechny regulární matice stupně n. Poznámka Všechny podgrupy komutativní grupy jsou normální. Věta1.13. Nechť G(, 1,1)jegrupaaρrelacena G.Pak ρjekongruencena G(, 1,1)právětehdy,když[1] ρ jenormálnípodgrupa Ga(g,h) ρ g 1 h [1] ρ. Důkaz. Viz[D, 6.10]. 2. Uzávěrové systémy na algebře Definice. Nechť AjemnožinaaC P(A)jenějakýsystémpodmnožinmnožiny A.Řekneme,že Cjeuzávěrovýmsystémemnad A,pokud (1) A C, (2) prokaždýpodsystém {B i i I} C,je {B i i I} C. Pro uzávěrový systém C na množině A a každou podmnožinu B C definujme uzávěr Bv Cjakomnožinu cl C B= {C C B C}. Zobrazení α: P(A) P(A) nazýváme uzávěrovým operátorem, pokud (1) B α(b),provšechna B P(A), (2) α(α(b))=α(b),provšechna B P(A), (3) α(b) α(c),provšechna B C A.

5 5 Příklad. Mějme nějaký vektorový prostor V a označme C množinu všech podprostorů V. Pak C je uzávěrový systém(platnost obou axiomů uzávěrového systému byla dokázána na přednášce lineární algebry). Prostor generovaný množinou X V jeuzávěrem Xv Cazobrazení,kterékaždépodmnožině X V přiřadípodprostor generovaný množinou X, je uzávěrovým operátorem. Poznámka 2.1. Nechť A(α i i I)jealgebra.Pakvšechnypodalgebryalgebry A(α i i I)tvoříuzávěrovýsystémna A. Důkaz.Plynepřímoz1.1azfaktu,že Ajeuzavřenánalibovolnouoperacina A. Věta2.2. (1)Je-li Cuzávěrovýsystémnad A,pak cl C tvoříuzávěrovýoperátor. (2)Je-li αuzávěrovýoperátorna A,pakmnožina C= {C A α(c)=c}tvoří uzávěrovýsystémnad Aaα=cl C. Důkaz. Viz[D, 1.1]. Poznámka 2.3. Všechny uzávěrové systémy nad množinou A tvoří uzávěrový systém nad P(A). Důkaz. Viz[D, 1.2]. Poznámka2.4.Nechť AaBjsoutakovédvauzávěrovésystémynad A,že A B, anechť C D A.Potom cl B (C) cl A (D). Důkaz. Viz[D, 1.3]. Poznámka 2.5. Všechny symetrické(tranzitívní, reflexivní) relace i ekvivalence namnožině Atvoříuzávěrovýsystémna A A. Důkaz. Důkaz, že symetrické(tranzitívní, reflexivní) relace tvoří uzávěrový systém viz[d, 1.4]. Ekvivalence jsou průnikem všech symetrických, tranzitívních a reflexivních relací, proto tvoří uzávěrový systém podle 2.3 Poznámka2.6. Všechnykongruencenaalgebře A(α i i I)tvoříuzávěrovýsystémna A A. Důkaz. Viz[D, 2.4]. Poznámka 2.7. Nechť ρjerelacenamnožině A.Pokudje ρreflexivní(resp. symetrická)relace,pakiρ + i ρ ρ 1 jereflexivní(resp.symetrická). Důkaz. Viz[D, 1.5]. Věta2.8.Buď ρrelacenamnožině A.Potom((ρ id) (ρ Id) 1 ) + =(ρ ρ 1 id) + jenejmenšíekvivalencena Aobsahujícírelaci ρ. Důkaz. Viz[D, 1.6]. Definice. Buď A algebra a X A. Označme A uzávěrový systém všech podalgeber A.Potombudemeříkat,že Xgeneruje(podalgebru) cl A (X). Poznámka 2.9. Buď f,g : A B dvahomomorfismyalgeberstejnéhotypua nechť X Agenerujealgebru A.Jestliže f(x)=g(x)provšechna x X,potom f= g. Důkaz. Viz[D, 3.3].

6 6 Příklad.UvažujmegrupucelýchčíselZ(+,,0)aG(+,,0)nějakádalšíalgebra sjednoubinárníoperací+,unárníoperací anulárníoperací0.nechť f,g:z G je homomorfismus. Uvědomme si, že nejmenší podgrupa obsahující prvek 1 je už rovnacelémuz.podlepředchozípoznámkyjsoutedy fa gshodné,pokud f(1)= g(1). 3. Izomorfismy algeber Připomeňme, že izomorfismus je bijektivní homomorfismus dvou algeber. Pokud mezidvěmaalgebrami AaBexistujeizomorfismus,říkáme,že AaBjsouizomorfní (píšeme A = B).Dálepoznamenejme,ženalibovolnémnožiněalgeberstejného typu Mjerelace =ekvivalencí(viz1.2). Definice. Nechť ρ σjsoudvěekvivalencena A.Definujmerelaci σ/ρna A/ρ následovně:([a] ρ,[b] ρ ) σ/ρ (a,b) σ. Poznámka3.1. (1)Nechť ρ σjsoudvěekvivalencena A.Pak σ/ρjedobře definovaná ekvivalence na A/ρ. (2)Nechť ρjeekvivalencenamnožině Aaηjeekvivalencena A/ρ.Potom existujeprávějednaekvivalence σna A,proníž η= σ/ρ. Důkaz.(1)viz[D,1.8]a(2)viz[D,1.9]. Poznámka3.2. Buď ρkongruencenaalgebře Aaσekvivalencena Aobsahující ρ.pakje σkongruencenaalgebře Aprávětehdy,kdyžje σ/ρkongruencenaalgebře A/ρ. Důkaz. Viz[D, 3.4]. Poznámka3.3. (Větaohomomorfismu)Buď f : A Bhomomorfismusdvou algeberstejnéhotypuanechť ρjekongruencenaalgebře A.Pakexistujehomomorfismus g: A/ρ Bsplňujícípodmínku gπ ρ = fprávětehdy,když ρ ker f. Navíc,pokud gexistuje,je gizomorfismus,právěkdyž fjenaaker f= ρ. Důkaz. Viz[D, 3.7]. Věta3.4(1.větaoizomorfismu).Nechť f: A Bjehomomorfismusdvoualgeber stejnéhotypu.pak f(a)jepodalgebra B(tedyalgebrastejnéhotypu)aA/ker fje izomorfní f(a). Důkaz. Viz[D, 3.9]. Příklad.Mějmehomomorfismus f n :Z Z n grupycelýchčíselz(+,,0)agrupy Z n (+,,0)spočítánímmodulo ndanýpředpisem f n (k)=(k)mod n.pakpodle 1.větyoizomorfismujeZ/ker f n =Zn,navícjezjevně(a b) ker f n,právě když n/(a b). Věta3.5(2.větaoizomorfismu).Nechť ρ σjsoudvěkongruencenaalgebře A. Pak algebra A/σ je izomorfní algebře(a/ρ)/(σ/ρ). Důkaz. Viz[D, 3.10].

7 7 4. Svazy Definice. Relaci na množině M budeme říkat uspořádání, pokud je to reflexivní atranzitivnírelace,pronížplatípodmínka a b, b a a=bprokaždé a,b M(tj.jdeoslaběantisymetrickourelaci). Příklad. Následující relace jsou uspořádáním: - namnožiněvšechpodmnožin P(X)množiny X, - / na množině všech přirozených čísel N, - na množině všech celých(reálných, racionálních) čísel Z(R, Q), - Id na libovolné neprázdné množině M. Definice. Nechť jeuspořádánínamnožině Ma A M.Řekneme,že m A jenejmenší(resp.největší)prvekmnožiny A,pokud m a(resp. a m)pro všechna a A. Supremem(resp. infimem) množiny A budeme rozumět nejmenší prvekmnožiny {n M a A: a n}(resp.největšíprvekmnožiny {n M a A: n a}),supremumznačíme sup ainfimum inf.dvojici(m, ) budemeříkatsvaz,pokudprokaždédvaprvky a,b Aexistujesupremuma infimum množiny {a, b}. Svaz(M, ) je úplným svazem, existuje-li supremum a infimum každé podmnožiny M. Příklad. Snadno nahlédneme, že svazem jsou následující dvojice -(P(X), ),kde sup (A,B)=A Ba inf (A,B)=A B, -(N,/),kde sup / (n,m)=nsn(n,m)ainf / (a,b)=nsd(n,m), -(Z, ),(R, ),(Q, ),kde sup (a,b)=max(a,b)ainf (a,b)=min(a,b). Příklad. (P(X), )jedokonceúplnýsvaz,kde sup (B)= Bainf (B)= B pro každou podmnožinu B P(X). Definice.Nechť(M, )jesvaz.prokaždédvaprvky m,n Moznačme m n= sup ({m,n})am n=inf ({m,n}).potombinárníoperaci nazvemespojení a průsek. Poznámka4.1. Buď(M, )svaz.pakprovšechna a,b,c Mplatí: (S1) a b=b a, a b=b a, (S2) a a=a=a a, (S3) a (b c)=(a b) c, a (b c)=(a b) c, (S4) a (b a)=a=a (b a). Důkaz. Viz[D, s.29]. Poznámka 4.2. Nechť M(, ) je algebra s dvěma binárními operacemi, které splňujípodmínky(s1) (S4).Definujmena M relaci předpisem: a b b= a b.pak(m, )jesvaz,kde sup ({m,n})=m nainf ({m,n})=m n. Důkaz. Viz[D, s.29]. Předchozí dvě poznámky ukazují vzájemně jednoznačnou korespondenci mezi svazy a algebrami M(, ) splňujícími podmínky(s1) (S4). Proto budeme svazem nazývatialgebru M(, )anamnožině Mbudemezároveňpoužívatoperace a i odpovídající relaci. Příklad. U uvedených příkladů svazů máme tedy dva způsoby jak na svaz nahlížet: -(P(X), ) odpovídá algebře P(X)(, ),

8 8 -(N,/)odpovídáalgebřeN(NSD,nsn), -(Z, )(respektive(r, ),(Q, )) odpovídá algebře Z(min, max)(respektive R(min, max), Q(min, max)). Věta4.3.Nechť Cjeuzávěrovýsystém.Pak(C, )tvoříúplnýsvaz,kde sup (B)= cl C ( B)ainf (B)= B. Důkaz. Viz[D, 4.2]. Příklad. Podle předchozí věty je systém všech podalgeber i systém všech kongruencí na algebře spolu s inkluzí svazem. Poznámka 4.4. Nechť M(, )jesvaz.pakim(, )tvořísvaz(mluvíme o opačném svazu s opačným uspořádáním ). Důkaz. Zřejmé. Definice.Nechť(M, )jesvazaa,b,c M.Řekneme,žeprvek bpokrýváprvek a (píšeme a < b),pokud a b, a baa c b c=anebo c=b.nechť e M jenejmenší(resp. f M největší)prveksvazu(m, ).Prvek a M nazveme atomem(resp. koatomem), pokud a pokrývá e(resp. f pokrývá a). Hasseovým diagramem svazu(m, ) rozumíme graf, jehož vrcholy tvoří prvky množinymaajesbspojentakovouhranou,že bsenacházívýšenež a,pokud b pokrývá a. Poznámka4.5. Nechť M(, )jesvaz, a,b,c Ma a c.potom a (b c) (a b) c. Důkaz. Viz[D, 14.1]. Definice.Osvazu M(, )řekneme,žejemodulární,pokudprokaždé a,b,c M takové,že a cplatí,že a (b c)=(a b) c. Příklad.(1) Svaz všech podprostorů vektorového prostoru je modulární. (2)Svaz(A, ),kde A={0,1,a,b,c},danýrelacemi:0< a< c< 1, 0 < b < 1(tzv.pentagon)nenímodulární. Definice. Nechť f: A Bjezobrazenía(A, )a(b, )jsousvazy.řekneme, že ϕjemonotónnízobrazení,platí-liimplikace a 1 a 2 f(a 1 ) f(a 2 ). Poznámka 4.6. Homomorfismus svazů je monotónní zobrazení. Důkaz. Viz[D, 4.3]. Příklad.Uvažujmesvazy(S 1, )a(s 2, ),kde S 1 = {0,1,a,b}, S 2 = {0,1,A,B} adanýrelacemi:0< a< 1,0< b< 1a0< A< B< 1.Potomzobrazení f(0)=0, f(1)=1, f(a)=a, f(b)=bjemonotónní,alenenítohomomorfismus svazů(f(a b)=f(0)=0 A=f(a) f(b)). Věta4.7. Bijekcesvazů f jeizomorfismus,právěkdyž f i f 1 jsoumonotónní zobrazení. Důkaz. Viz[D, 4.4]. Poznámka 4.8. Buď C uzávěrový systém obsažený v systému všech ekvivalencí na množině A.Nechť N P(A)ae Atak,žeplatí: (a) [e] ρ N prokaždé ρ C,

9 9 (b)prokaždé N N existujetakové ρ C,že N=[e] ρ, (c) prokaždé ρ,η Cplatí,že[e] ρ [e] η ρ η. Pak N je uzávěrový systém na A (a tedy svaz) a zobrazení ϕ : C N dané předpisem ϕ(ρ)=[e] ρ jeizomorfismussvazů. Důkaz. Viz[D, 4.7]. Věta 4.9. Všechny normální podgrupy libovolné grupy G tvoří svaz izomorfní svazu všech kongruencí na grupě G. Důkaz. Podle[D, 1.13] systém všech kongruencí C a systém všech normálních podgrup N grupy G(, 1,1)spoluse=1splňujepředpokladyPoznámky4.8.Závěr tedy plyne ze 4.8. Příklad(Galoisova korespondence). Nechť A a B jsou množiny. Dvojici zobrazení α:p(a) P(B)aβ: P(B) P(A)seříkáGaloisovakorespondence,jsou-lipro každé A 1,A 2 P(A)aB 1,B 2 P(B)splněnynásledujícípodmínky: (i) A 1 A 2 α(a 2 ) α(a 1 )ab 1 B 2 β(b 1 ) β(b 2 ), (ii) A 1 βα(a 1 )ab 1 αβ(b 1 ). Galoisova korespondence má následující vlastnosti(důkaz viz[d, 4.9]): Tvrzení. Buď α:p(a) P(B)aβ: P(B) P(A)Galoisovakorespondence. Potom jsou zobrazení βα a αβ uzávěrové operátory. Označme A a B uzávěrové systémypříslušnéuzávěrovýmoperátorům βαaαβ.pak α(a) Baβ(B) A. Označíme-li α : A Baβ : B Apříslušnérestrikcezobrazení αaβ,pak α a β jsoubijekceaα =(β ) 1.Navícprokaždé A 1,A 2 AaB 1,B 2 Bplatí,že A 1 A 2 α(a 2 ) α(a 1 )ab 1 B 2 β(b 2 ) β(b 1 ). Nechť O je množina objektů a V množina vlastností, které mohou mít objekty. Definujme ρ O V tak,že(o,v) ρ,právěkdyžobjekt omávlastnost v.dále definujme α ρ (O 1 )={v V (o,v) ρ o O 1 }(tj.vezmemevšechnyvlastnosti, kterémajívšechnyobjektyzo 1 )aβ ρ (V 1 )={v A (o,v) ρ v V 1 }(tj. vezmemevšechnyobjektysplňujícívšechnyvlastnostizv 1 ).Potom α ρ : P(O) P(V)aβ ρ : P(V) P(O)tvoříGaloisovukorespondenci. 5. Grupy Poznámka5.1.Nechť G(, 1,1)aH(, 1,1)jsougrupyaf: G Hjezobrazení slučitelné s operací. Pak je f homomorfismus grup. Důkaz. Viz[D, 6.1]. Definice.Nechť Ha Kjsoudvěpodmnožinygrupy G(, 1,1)ag G.Definujme množiny HK= {h k h H, k K}, gh= {g}ha Hg= H{g}.Je-li Hpodgrupa G,definujmena Grelaci rmod H(resp. lmod H)podmínkou:(a,b) rmod H(resp. (a,b) lmod H) a b 1 H(resp. a 1 b H). Poznámka5.2. Nechť G(, 1,1)jegrupaaH jejípodgrupa.potomprokaždé a,b Gplatí: (1) rmod Hi lmod Hjsouekvivalencena G, (2) (a,b) rmod H (a 1,b 1 ) lmod H,

10 10 (3) card(g/rmod H) = card(g/lmod H), (4) [a] rmod H = Haa[a] lmod H = ah, (5) card([a] rmod H )=card([a] lmod H )=card(h). Důkaz.(1)a(2)viz[D,6.6].Podle(2)jezobrazení[a] rmod H [a 1 ] lmod H korektnědefinovanoubijekcí,tedyplatí(3).body(4)a(5)viz[d,6.7]. Definice. Buď H podgrupagrupy G.Potomčíslu[G:H]=card(G/rmod H) budemeříkatindexpodgrupy Hvgrupě Gačíslu G =card(g)budemeříkatřád grupy G. Věta5.3(Lagrange). Je-li Hpodgrupagrupy G(, 1,1),pak G =[G:H] H. Důkaz. Viz[D, 6.8]. Důsledek 5.4. Je-li G konečná grupa, potom řád každé její podgrupy dělí řád grupy G. Definice. Nechť G(, 1,1)jegrupaaa G.Definujmeindukcí: a 0 =1, a n = a n 1 aprokaždé n >0, a n =(a 1 ) n aprokaždé n <0. Poznámka 5.5. Nechť G(, 1,1)jegrupa a G.Zobrazení ϕ:z Gdané předpisem ϕ(n)=a n jehomomorfismusgrupyz(+,,0)dogrupy G(, 1,1)a ϕ(z)= a ={a n n Z}. Důkaz. Viz[D, 6.3]. Důsledek5.6. Nechť G(, 1,1)jegrupa a G.Potomprokaždé n,m Zplatí, že a n =(a n ) 1 a(a n ) m = a nm. Důkaz.Podle5.1a[D,6.4]. Definice. Buď G(, 1,1)grupa.Označme a nejmenšípodgrupugrupy Gobsahující prvek a G. Řekneme, že G je cyklická grupa, pokud existuje takový prvek g G,že g =G. Příklad.(1)Z(+,,0)jecyklickágrupa,kdeZ= 1 = 1. (2)Z n (+,,0)jeprokaždépřirozené ncyklickágrupasoperacemidefinovanými modulo n,kdez n = a,pokud NSD(a,n)=1. Prokaždépřirozené k(resp. k Z n )označujme kz= k ={kz z Z}(resp. kz n = k ={k z z Z n }) Poznámka5.7. (1)Je-li A Z,pak AjepodgrupaZ,právěkdyžexistuje k 0 tak,že A=kZ. (2)Je-li A Z n,pak AjepodgrupaZ n,právěkdyžexistuje k Z n tak,že kje buď0nebo kdělí naa=kz n. Důkaz. Viz[D, 8.1]. Věta5.8. Buď G(, 1,1)cyklickágrupa. (1)Je-li Gnekonečná,pak G(, 1,1) =Z(+,,0). (2)Je-li n= G konečné,pak G(, 1,1) =Z n (+,,0). Důkaz. Viz[D, 8.2].

11 11 Důsledek 5.9. Podgrupa i faktorová grupa každé cyklické grupy je opět cyklická. Důkaz. Viz[D, 8.3]. Důsledek5.10. Buď G(, 1,1)konečnágrupa.Potom g G =1prokaždýprvek g G. Důkaz. g jecyklickágrupařádu n,tedyjepodle5.8izomorfníz n (+,,0),proto g n =1.Podle5.4 n/ G,tedy g G =(g n ) G n =1 G n =1 Věta5.11. Nechť G(, 1,1)jekonečnácyklickágrupa.Pakprokaždépřirozené k,kterédělířádgrupy G,existujeprávějednapodgrupagrupy Gřádu k. Důkaz. Viz[D, 8.4]. Poznámka5.12. Nechť n Naa Z n {0}. (1)Nechť k=nsd(a,n),pak az n = kz n, (2) az n =Z n (tj. ajegenerujez n ),právěkdyž NSD(a,n)=1. Důkaz. Viz[D, 8.7]. Definice. Funkci ϕ:n Ndanoupředpisem ϕ(n)= {0 < k < n NSD(k,n)= 1} nazveme Eulerovou funkcí. Poznámka5.13. Je-li n N,pakčíslo ϕ(n)udávápočetprvků,kterégenerují grupuz n (+,,0)apočetinvertibilníchprvkůZ n (,1). Důkaz. Důsledek 5.12(2). Věta 5.14 (MaláFermatovavěta). Pronesoudělnákladnáceláčísla a < nje (a ϕ(n) )mod n=1. Důkaz. Viz[D, 8.13]. Definice. Nech A j (α i i I), j k jsoualgebrystejnéhotypu.definujmena k j=1 A jstrukturualgebryalgebrystejnéhotypupředpisem α i ((a 11,...,a k1 ), (a 12,...,a k2 ),...,(a 1n,...,a kn ))= =(α i (a 11,...,a 1n ),α i (a 21,...,a 2n ),...,α i (a k1,...,a kn )) prokaždou n-árníoperaci α i. Poznámka5.15(Čínskávětaozbytcích). Nechť n 1,n 2,...,n k jsoupodvounesoudělnákladnáceláčíslaan=n 1 n 2 n k,potomzobrazení f:z n k i=1 Z n i danépředpisem f(x)=(x mod n 1, x mod n 2,...,x mod n k )jeizomorfismusalgeberz n (+,,0,,1)a k i=1 Z n i (+,,0,,1). Důkaz. Přímo z definice snadno vidíme, že je f zobrazení slučitelné se všemi operacemi.zbývánahlédnout,žejdeobijekci.protožejsouz n a k i=1 Z n i stejněvelké konečnémnožiny,stačínahlédnout,žeje fprosté.nechťpro a b Z n platí,že f(a)=f(b).potom f(b a)=0,tedy n i /b aprovšechna i=1,...,k.protože jsou n i podvounesoudělnáa0 b a n 1,mámein/b a,tudíž b=a. Poznámka (1)Pokud namjsoudvěnesoudělnákladnáceláčísla,pak ϕ(n m)=ϕ(n) ϕ(m). (2)Pokudje pprvočísloarkladnéceléčíslo,pak ϕ(p r )=(p 1) p r 1.

12 12 Důkaz.(1)[D,8.9]a(2)viz[D,8.10]. Věta5.17. Buď p 1 < p 2 < < p k prvočíslaar 1,r 2,...,r k kladnáceláčísla. Potom ϕ(p r1 1 pr2 2...pr k k )=p r1 1 1 p r p r k 1 k (p 1 1)(p 2 1)...(p k 1). Důkaz. Indukční důsledek Následující věta bude dokázána až v příštím semestru: Věta5.18. Nechť T(+, )jetělesoanechť Gjekonečnápodgrupamultiplikativní grupy T \ {0}(, 1,1).Potom Gjecyklickágrupa. 6.Okruhyaideály Definice. Okruhem budeme nazývat každou takovou algebru R(+,,, 0, 1), že R(+,,0)jekomutativnígrupa, R(,1)jemonoidaprokaždé a,b,c Rplatí,že a (b+c)=a b+a ca(a+b) c=a c+b c. R(+,,,0,1)jekomutativní okruhem, pokud je operace komutativní. Příklad.(1)Z(+,,,0,1)jekomutativníokruh. (2)Z n (+,,,0,1)jeprokaždépřirozené nkomutativníokruhsoperacemidefinovanými modulo n. (3)Je-li T tělesoam n (T)značímnožinuvšechčtvercovýchmaticnad T řádu n,pak M n (T)(+,,,0 n,i n )jeokruh. (4) Nechť V je vektorový prostor. Označme End(V) množinu všech homomorfismů prostoru V do sebe(tzv. endomorfismů). Na této množině můžeme definovat sčítáníaopačnýprvekpředpisem[f+ g](v)=f(v)+g(v)a[ f](v)= f(v) prokaždév V.Označíme-linulovýhomomorfismussymbolem0 V a označuje skládání,pak End(V)(+,,,0 V,Id)jeokruh. Poznámka6.1. Nechť R(+,,,0,1)jeokruh.Pakprokaždé a,b Rplatí: (1) 0 a=a 0=0, (2) ( a) b=a ( b)= (a b), (3) ( 1) a=a ( 1)= a, (4) ( a) ( b)=a b, (5) 1 0,právěkdyž card(r) >1(tj.Rjenetriviálníokruh). Důkaz.Viz[D,7.2]a[D,7.3]. Definice. Nechť R(+,,,0,1)jeokruh.Řekneme,žemnožina I Rjepravý (resp.levý)ideálokruhu R,pokud I jepodgrupagrupy R(+,,0)aprokaždé i Ia r Rplatí,že i r I(resp. r i I).Množinu Inazvemeideálem,pokud je pravým a zároveň levým ideálem. Příklad.(1) {0} a R jsou(tzv. triviálními) ideály každého okruhu R. (2)Množiny ar={a r r R}(resp. Ra={r a r R})jsou(tzv.hlavní) pravé(resp.levé)ideályokruhu Rprokaždé a R. (3)IdeályokruhucelýchčíselZ(+,,,0,1)jsouprávětvaru kz. (4)IdeályokruhuZ n (+,,,0,1)jsouprávětvaru kz n,kde k < nje0nebo dělitel čísla n. Definice. Nechť R(+,,,0,1)jeokruh.O(levém,pravém)ideálu Iřekneme,že jevlastní,pokud I {0}aI R.

13 13 Věta 6.2. Nechť R(+,,,0,1) je okruh. Všechny ideály okruhu R tvoří uzávěrovýsystémazobrazení ρ [0] ρ jeizomorfismussvazuvšechkongruencína R(+,,,0,1)asvazuvšechideálůokruhu R.Navíc ρjekongruencenaokruhu R, právěkdyž[0] ρ jeideála(a,b) ρ a b [0] ρ. Důkaz. Viz[D, 7.4]. Faktor okruhu R podle kongruence jednoznačně odpovídající ideálu I budeme značit(obdobně jako v případu faktorizace grup podle normálních podgrup) R/I. Definice. Řekneme,žeprvekokruhu R(+,,,0,1)jeinvertibilní,jedná-liseo invertibilní prvek monoidu R(, 1). Řekneme, že okruh R je tělesem, pokud jsou všechny prvky množiny R \ {0} invertibilní. Konečně ideál okruhu R(+,,, 0, 1) je maximální, pokud je to koatom svazu všech ideálů okruhu R. Věta6.3. Vnetriviálnímokruhu R(+,,,0,1)jeekvivalentní: (1) Rjetěleso, (2) R neobsahuje žádné vlastní pravé ideály, (3) R neobsahuje žádné vlastní levé ideály. Důkaz.Viz[D,7.11]a[D,7.13]. Věta6.4. Nechť R(+,,,0,1)jekomutativníokruh.Potom R/Ijetělesoprávě tehdy, když I je maximální ideál. Důkaz. Viz[D, 7.14]. Definice. Nechť R(+,,,0,1)jeokruh.Definujmeprokaždé n Z: 0 a=0, n a=((n 1) a)+aprokaždé n >0, n a= n ( a)prokaždé n <0. Poznámka6.5. Nechť R(+,,,0,1)jeokruh.Definujmezobrazení ϕ:z R předpisem ϕ(n) = n 1.Pak ϕjehomomorfismusokruhůaϕ(z)jenejmenší podokruh Robsahujícíprvek1.Navíc(Kerϕ=) {n Z ϕ(n)=0}=pzpro jednoznačněurčenécelé p 0. Důkaz. Viz[D, 7.18]. Definice. Jednoznačně určné číslo p z Poznámky 6.5 se nazývá charakteristika okruhu R. Poznámka6.6(Binomickávěta).Buď R(+,,,0,1)komutativníokruh, a,b R a n N.Potom(a+b) n = n i=0 ( n i) (ai b n i ) Důkaz. Viz[D, 7.20]. Důsledek 6.7. Nechť R je komutativní okruh prvočíselné charakteristiky p. Pak zobrazení a a p jeokruhovýhomomorfismus(jdeotzv.frobeniůvendomorfismus). Důkaz. Viz[D, 7.21]. Definice. Komutativní okruh R(+,,, 0, 1) nazveme oborem integrity, platí-li, že a b=0implikuje a=0nebo b=0

14 14 Příklad.(1) Každé komutativní těleso je oborem integrity. (2)Z(+,,,0,1)jeoboremintegrity. (3)OkruhreálnýchpolynomůR[x](+,,,0,1)jeoborintegrity. Uvažujmeoborintegrity R(+,,,0,1),adefinujmealgebru F(+,,,0,1),kde F = R (R {0})soperacemi:(a,b) (c,d) = (a c,b d),(a,b)+(c,d) = (a d+b c,b d), (a,b)=( a,b),0=(0,1)a1=(1,1).naalgebře F(+,,,0,1) konečnědefinujmerelaci předpisem(a,b) (c,d) a d=b c. Poznámka6.8. Proalgebru F(+,,,0,1)platí: (1) F(+,0)aF(,1)jsoukomutativnímonoidy, (2) jekongruencena F(+,,,0,1), (3) (0,a) 0a(a,a) 1prokaždé a R \ {0}, (4) F/ je komutativní těleso. (5)Zobrazení σ: R F/ danépředpisem σ(r)=[(r,1)] jeprostýokruhový homomorfismus. Důkaz.(1)viz[D,9.2],(2)viz[D,9.3],(3)viz[D,9.4],(4)viz[D,9.5]a(5)viz[D, 9.7]. Definice. Komutativní těleso F/ budeme nazývat podílovým tělesem okruhu R ajehoprvkybudemeznačit a b =[(a,b)]. Příklad. Těleso racionálních čísel Q(+,,, 0, 1) je podílovým tělesem okruhu celýchčíselz(+,,,0,1). [D]- odkazuje na skripta docenta Drápala na adrese drapal/skripta/

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Důkaz. Viz[D, 2.3]. Příklad. Nalibovolnémnožiněalgeberstejnéhotypu Mjerelace =(tj. být izomorfní ) ekvivalencí(viz 1.2).

Důkaz. Viz[D, 2.3]. Příklad. Nalibovolnémnožiněalgeberstejnéhotypu Mjerelace =(tj. být izomorfní ) ekvivalencí(viz 1.2). 1. Algebry, homomorfismy, kongruence Definice. Prokaždécelé n 0nazveme n-ární operací na množině Akaždé zobrazení A n A(číslo nbudemenazývataritounebočetnostíoperace).nechť (α i i I)jesystémoperacínamnožině

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám

Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám Algebra 2 slidy k přednáškám KMI/ALG2 Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. Vytvořeno za podpory projektu FRUP_2017_052: Tvorba a inovace výukových opor

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Co je to univerzální algebra?

Co je to univerzální algebra? Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé

Více

1. Základní příklady a poznatky o monoidech a grupách

1. Základní příklady a poznatky o monoidech a grupách Předmět: Algebra I Semestr: Zimní 2015/2016 Přednášel: J. Žemlička Verze z: 6. ledna 2017 Díky za pomoc s řešeními příkladů: Martin Šerý, Štěpán Hojdar, Petr Houška, Péťa Pelikánová. (A určitě další, ale

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

Úlohy k procvičování textu o svazech

Úlohy k procvičování textu o svazech Úlohy k procvičování textu o svazech Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky - zadání

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde

Více

M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y.

M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y. Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 8. Uspořádání asvazy Uspořádání je další užitečná abstraktní struktura na množině. Modeluje

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2. Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Matematika IV - 3. přednáška Rozklady grup

Matematika IV - 3. přednáška Rozklady grup S Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 s Obsah přednášky Rozklady podle podgrup ô Normální podgrupy s Doporučene zdroje Martin Panák,

Více

Matematika IV - 3. přednáška Rozklady grup

Matematika IV - 3. přednáška Rozklady grup Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 Obsah přednášky Rozklady podle podgrup ô Normální podgrupy Martin Panák, Jan Slovák, Drsná

Více

PŘEDNÁŠKA 7 Kongruence svazů

PŘEDNÁŠKA 7 Kongruence svazů PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

3. Algebraické systémy

3. Algebraické systémy Markl: 3.1. Morfismy a kongruence /ras31.doc/ Strana 1 3. Algebraické systémy Na rozdíl od klasické algebry, jejíž ústředním tématem jsou rovnice a potřebný aparát pro jejich řešení /matice, polynomy,.../,

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška šestá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky. Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při

Více

Algebraické struktury

Algebraické struktury Algebraické struktury KMA/ALG Sylabus Teorie grup - grupy, podgrupy, normální podgrupy, faktorgrupy, Lagrangeova věta. Homomorfismus grup, věty o izomorfismu grup, cyklické grupy a jejich struktura. Direktní

Více

Algebra. 1. Algebry, homomorfismy, kongruence

Algebra. 1. Algebry, homomorfismy, kongruence Algebra 1. Algebry, homomorfismy, kongruence Def.: množina,zobrazení «: Ò,kde Ò ¾ 0 1 jen-árníoperace(òjearita). Def.: «¾ ÁoperacearityΩ na,pak («¾ Á)jealgebra. Def.:mn. jeuzavřenánaoperaci «,když 1 Ò

Více

2. Test 07/08 zimní semestr

2. Test 07/08 zimní semestr 2. Test 07/08 zimní semestr Příklad 1. Najděte tříprvkový poset (částečně uspořádanou množinu), která má právě dva maximální a právě dva minimální prvky. Řešení. Takový poset je až na izomorfismus jeden:

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ BAKALÁŘSKÁ PRÁCE KONEČNÉ GRUPY MALÝCH ŘÁDŮ Ivana Čechová Vedoucí práce: doc. RNDr. Jaroslav Hora, CSc. Plzeň 2012 Prohlašuji, že jsem bakalářskou práci

Více

GRUPY SBÍRKA PŘÍKLADŮ

GRUPY SBÍRKA PŘÍKLADŮ Masarykova Univerzita v Brně Přírodovědecká fakulta GRUPY SBÍRKA PŘÍKLADŮ bakalářská práce Brno 2005 Vít Musil i Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně s použitím uvedené literatury.

Více

Teorie grup 1 Příklad axiomatické teorie

Teorie grup 1 Příklad axiomatické teorie Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní

Více

Obsah 1. Základní algebraické pojmy... 2 2. Monoidové okruhy a některé další základní konstrukce... 4 3. Podgrupy a jiné podstruktury... 7 4.

Obsah 1. Základní algebraické pojmy... 2 2. Monoidové okruhy a některé další základní konstrukce... 4 3. Podgrupy a jiné podstruktury... 7 4. Obsah 1. Základní algebraické pojmy........................ 2 2. Monoidové okruhy a některé další základní konstrukce.............. 4 3. Podgrupy a jiné podstruktury....................... 7 4. Kvocientní

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37

Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37 Svazy Jan Paseka Masarykova univerzita Brno Svazy p.1/37 Abstrakt Zmíníme se krátce o úplných a distributivních svazech, resp. jaké vlastnosti má řetězec reálných čísel. Svazy p.2/37 Abstrakt V této kapitole

Více

Lineární algebra Eva Ondráčková

Lineární algebra Eva Ondráčková Lineární algebra Eva Ondráčková Vektorové prostory Mnozízvásužsenejspíšsetkalispojmemvektor.Ukážemesi,ževektorynejsoujen množiny orientovaných úseček v rovině či trojrozměrném prostoru, ale něco zajímavějšího,

Více

ALGEBRA I. Mgr. Jan Žemlička, Ph.D. cvičení

ALGEBRA I. Mgr. Jan Žemlička, Ph.D. cvičení ALGEBRA I. Mgr. Jan Žemlička, Ph.D. cvičení 6.10. Euklidův algoritmus a ekvivalence Nechť a 0 > a 1 jsou dvě přirozená čísla. Připomeňme Euklidův algoritmus hledání největšího společného dělitele (NSD)

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy

Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice

Více

Algebra I Cvičení. 4) Množina všech matic s nulou v levém dolním rohu a s jedničkami na diagonále.

Algebra I Cvičení. 4) Množina všech matic s nulou v levém dolním rohu a s jedničkami na diagonále. Algebra I Cvičení Podle následující sbírky probíhalo cvičení na PřF v semestru Jaro 2003. Příklady jsou rozděleny na ty, které jsme dělali na cvičení (označeno C), úlohy na kterých lze procvičovat probranou

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní

Více

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x 1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.

Více

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon). Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem

Více

Charakteristika tělesa

Charakteristika tělesa 16 6 Konečná tělesa V této kapitole budeme pod pojmem těleso mít na mysli vždy konečné komutativní těleso, tedy množinu s dvěma binárními operacemi (T, +, ), kde (T, +) je komutativní grupa s neutrálním

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem

Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem Lineární prostory - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem - volné vektory a operace s nimi(sčítání, násobení reálným číslem) -ve 2 nebove 3 vázanévektorysespolečnýmpočátkem

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

ÚVOD DO ARITMETIKY. Michal Botur

ÚVOD DO ARITMETIKY. Michal Botur ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou

Více

ALGEBRA I PRO INFORMATIKY. Obsah

ALGEBRA I PRO INFORMATIKY. Obsah ALGEBRA I PRO INFORMATIKY Obsah 1. Předmět(y) zkoumání 1 2. Základy elementární teorie čísel 4 3. Asociativní binární operace 8 4. Grupy, podgrupy a homomorfismy 10 5. Klasifikace cyklických grup 14 6.

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

1. Pologrupy, monoidy a grupy

1. Pologrupy, monoidy a grupy Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2002/2003 Michal Marvan 1. Pologrupy, monoidy a grupy Algebra dvacátého století je nauka o algebraických strukturách.

Více

ZÁKLADY UNIVERZÁLNÍ ALGEBRY Radan Kučera. 1. Operace a Ω-algebry

ZÁKLADY UNIVERZÁLNÍ ALGEBRY Radan Kučera. 1. Operace a Ω-algebry ZÁKLADY UNIVERZÁLNÍ ALGEBRY Radan Kučera 1. Operace a Ω-algebry Úvod. V průběhu přednášky z algebry jsme studovali řadu algebraických struktur: grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory

Více

Obsah. Množiny (opakování) Relace a zobrazení (opakování) Relace Binární relace na množině Zobrazení Rozklady, ekvivalence Uspořádání

Obsah. Množiny (opakování) Relace a zobrazení (opakování) Relace Binární relace na množině Zobrazení Rozklady, ekvivalence Uspořádání Obsah Množiny (opakování) Relace a zobrazení (opakování) Relace Binární relace na množině Zobrazení Rozklady, ekvivalence Uspořádání lgebry lgebry s jednou operací lgebry se dvěma operacemi Svazy 2 Teorie

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Konečně,všechnyaspoňdvouprvkovémnožinyužzřejměgenerujíceléZ 5.Zjistili jsme,žealgebra(z 5,+)obsahujeprávědvěpodalgebry {0}aZ 5.

Konečně,všechnyaspoňdvouprvkovémnožinyužzřejměgenerujíceléZ 5.Zjistili jsme,žealgebra(z 5,+)obsahujeprávědvěpodalgebry {0}aZ 5. 1. Algebry a podalgebry 4.10. Buď npřirozenéčísloapoložmez n = {0,1,...,n 1}.DefinujmenaZ n binární operace+a předpisem a+b=(a+b)modnaa b=(a b)modn,kdevlevovždy uvažujeme standardní sčítání a násobení

Více

Množiny, relace, zobrazení

Množiny, relace, zobrazení Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení. 2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny

Více

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. zavedení pojmů relace, zobrazení (funkce); prostá zobrazení, zobrazení na, bijekce 2. rozklady, relace ekvivalence, kongruence, faktorizace 3. uspořádání a některé

Více

Lineární zobrazení. V prvním z následujících tvrzení navíc uvidíme, že odtud plynou a jsou tedy pak rovněž splněny podmínky:

Lineární zobrazení. V prvním z následujících tvrzení navíc uvidíme, že odtud plynou a jsou tedy pak rovněž splněny podmínky: Lineární zobrazení Nechť (V, +, ) a (W, +, ) jsou dva vektorové prostory nad týmž tělesem (T, +, ). Nechť f : V W je zobrazení splňující následující podmínky: ( u, v V)(f(u + v) = f(u) + f(v)), ( s T )(

Více

Grupy Mgr. Růžena Holubová 2010

Grupy Mgr. Růžena Holubová 2010 Grupy Mgr. Růžena Holubová 2010 1. Úvod Cílem této práce je přehledně zpracovat elementární teorii algebraických struktur s jednou operací se zaměřením na teorii grup a sestavit sbírku řešených úloh, proto

Více

ZÁKLADY ARITMETIKY A ALGEBRY I

ZÁKLADY ARITMETIKY A ALGEBRY I 1 ZÁKLADY ARITMETIKY A ALGEBRY I (Cvičení) 1. Úvod, jazyk matematiky V učebnici Lineární algebra pročítejte definice a věty, uvědomujte si jejich strukturu, i když prozatím neznáte a nechápete (aaniprozatímchápatnemůžete)jejichmatematický

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 1. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 14. února 2011 Jan Tomeček, tomecek@inf.upol.cz

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Matice lineárních zobrazení

Matice lineárních zobrazení Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze

Více

Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011

Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 MI-MPI, Přednáška č. 3 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 Množiny s jednou binární operací Neprázdná množina M s binární operací (resp. +

Více

Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1

Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Cvičení 1 Příklad 1: Pro každý z následujících formálních zápisů množin uveďte(svými slovy), jaké prvky daná množina obsahuje: a) {1,3,5,7,...} b)

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

Matematika IV - 2. přednáška Základy teorie grup

Matematika IV - 2. přednáška Základy teorie grup Matematika IV - 2. přednáška Základy teorie grup Michal Bulant Masarykova univerzita Fakulta informatiky 25. 2. 2008 oooooooooooo Obsah přednášky Q Grupy - homomorfismy a součiny Martin Panák, Jan Slovák,

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM / Přednáška Struktury se dvěma binárními operacemi O čem budeme hovořit: opakování struktur s jednou operací struktury se dvěma operacemi Struktury

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 4. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 27 Množiny Zavedení pojmu množina je velice

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

(1) Dokažte, že biprodukt je součin (a tím pádem i součet). Splňují-li homomorfismy. A B je izomorfismus stejně jako A B i+j

(1) Dokažte, že biprodukt je součin (a tím pádem i součet). Splňují-li homomorfismy. A B je izomorfismus stejně jako A B i+j 1. cvičení (1) Necht A je komutativní grupa. Dokažte, že End(A) společně s operacemi sčítání a skládání zobrazení je okruh. (2) Dokažte přímo z definice, že na každé komutativní grupě existuje právě jedna

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

10. Vektorové podprostory

10. Vektorové podprostory Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Definice. Bud V vektorový prostor nad polem P. Podmnožina U V se nazývá podprostor,

Více

2. přednáška 8. října 2007

2. přednáška 8. října 2007 2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =

Více

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a Sbírka příkladů z okruhů a polynomů Algebra I Okruhy, podokruhy, obor integrity, těleso, homomorfismus 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): a) M = {a + i a R}, b) M = {a + i

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30 Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

1. Posloupnosti čísel

1. Posloupnosti čísel 1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Matematika pro informatiku 2

Matematika pro informatiku 2 Matematika pro informatiku 2 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 21. února 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky.

Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky. Relace. Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky. Definice. Mějme množiny A a B. Binární relace R z množiny A do množiny B je každá množina uspořádaných dvojic (a, b), kde

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Algebra II pro distanční studium

Algebra II pro distanční studium Algebra II pro distanční studium (1) Předmluva................... 3 I. Struktury s jednou binární operací........ 5 1. Základní vlastnosti grup.......... 5 2. Podgrupy................ 22 3. Grupy permutací.............

Více

Základy teorie grupoidů a grup

Základy teorie grupoidů a grup Základy teorie grupoidů a grup 12. Základní pojmy o grupoidech In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 94--100.

Více

ALGEBRA I. Hlavním tématem je teorie grup. Kromě základních vlastností grup se věnujeme jejich

ALGEBRA I. Hlavním tématem je teorie grup. Kromě základních vlastností grup se věnujeme jejich ALGEBRA I JAN TRLIFAJ Tento text pokrývá látku probíranou na přednášce Algebra I (NALG026) pro druhý ročník bakalářského studia obecné matematiky. Hlavním tématem je teorie grup. Kromě základních vlastností

Více

Princip rozšíření a operace s fuzzy čísly

Princip rozšíření a operace s fuzzy čísly Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře

Více

Doporučené příklady k Teorii množin, LS 2018/2019

Doporučené příklady k Teorii množin, LS 2018/2019 Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více