Matijasevičova věta. studijní materiál, draft verse k připomínkování, Michal Černý, katedra ekonometrie, VŠE Praha

Rozměr: px
Začít zobrazení ze stránky:

Download "Matijasevičova věta. studijní materiál, draft verse k připomínkování, 16. 11. 2007 Michal Černý, katedra ekonometrie, VŠE Praha"

Transkript

1 Matijasevičova věta studijní materiál, draft verse k připomínkování, Michal Černý, katedra ekonometrie, VŠE Praha Cílem tohoto materiálu je podat důkaz důležitého tvrzení, známého jako Matijasevičova věta. Jeho moderní historie se odvíjí od roku 1900, kdy David Hilbert položil otázku, zdali existuje obecná metoda řešení diofantických rovnic (tzv. desátý Hilbertův problém). Diofantické rovnice jsou rovnice tvaru P (x 1, x 2,..., x n ) = 0, kde P (x 1, x 2,..., x n ) je polynom s celočíselnými koeficienty, a řešení hledáme buď v oboru přirozených nebo v oboru celých čísel. Známé příklady takových rovnic jsou: a 2 + b 2 c 2 = 0; jistě nikoho nepřekvapí, že tato diofantická rovnice má řešení třeba 3, 4, 5. Co třeba rovnice a 3 + b 3 + c 3 = 29? Tato má samořejmě řešení a = 3, b = 1, c = 1. Rovnice a 3 + b 3 + c 3 = 30 má taktéž řešení, je jím a = , b = , c = (Řešení pochází z roku 1999.) Pro rovnici je existence řešení otevřený problém. a 3 + b 3 + c 3 = 33 Problém je to těžký, protože přirozená a celá čísla jsou diskrétní. Takové problémy by nevzikaly, kdybychom hledali řešení v oboru reálných či komplexních čísel. V IR a v C jsou polynomy spojité funkce, díky čemuž lze o existenci řešení rovnic v IR a v C rozhodovat algoritmicky (jde ovšem o silně netriviální výsledek, viz větu 50). Hilbert položil důraz na otázku, zdali existuje metoda, jak hledat řešení diofantických rovnic. Taková metoda musí mít dva kroky: (i) rozhodnout, zdali vůbec nějaké řešení existuje a (ii) najít jej. Je zřejmé, že z algoritmického 1

2 hlediska je podstatný krok (i) jakmile dokážeme zjistit, že daná rovnice P (x 1, x 2,..., x n ) = 0 má řešení, pak jej stačí hledat hrubou silou, tzn. postupně enumerovat všechny n-tice čísel (x 1, x 2,..., x n ) a dosazovat je do P. Pak je jen otázkou času, kdy náš postup skončí a nalezne řešení, protože z kroku (i) máme zaručeno, že toto existuje. Matijasevičova věta dává na Hilbertovu otázku zápornou odpověď: neexistuje algoritmus, který by dostal na vstup polynom P a v konečném čase rozhodl, zdali rovnice P = 0 má nebo nemá řešení v oboru přirozených nebo celých čísel. Proto se někdy o Matijasevičově větě hovoří jako o záporném řešení desátého Hilbertova problému. Následující věta ukazuje, že není podstatné, klademe-li otázky po řešitelnosti rovnic v oboru přirozených a v oboru celých čísel. Věta 1. Existuje algoritmus rozhodující řešitelnost rovnic P = 0 (P je polynom s celočíselnými koeficienty) v oboru přirozených čísel, právě když existuje algoritmus rozhodující řešitelnost rovnic P = 0 v oboru celých čísel. Důkaz. Mějme algoritmus, který rozhoduje o existenci řešení rovnice P (x 1, x 2,..., x n ) = 0 v oboru přirozených čísel. Můžeme jej snadno využít k řešení v oboru celých čísel, předhodíme-li mu rovnici (s 1,s 2,...,s n) { 1,1} n P (s 1 x 1, s 2 x 2,..., s n x n ) = 0. Tato rovnice má evidentně řešení, jestliže alespoň pro jednu volbu znamének s 1, s 2,..., s n je P (s 1 x 1, s 2 x 2,..., s n x n ) = 0. Tak získáme odpověď na existenci řešení v oboru celých čísel. Na druhou stranu, nechť máme algoritmus, který rozhoduje o řešitelnosti v oboru celých čísel, a chceme rozhodnout, zdali existuje řešení rovnice P (x 1, x 2,..., x n ) = 0 v oboru přirozených čísel. Lze dokázat (to je známá věta z teorie čísel), že každé přirozené číslo lze psát jako součet čtyř druhých mocnin přirozených čísel: x i = a 2 i + b 2 i + c 2 i + d 2 i. (1) Takže našemu algoritmu stačí předhodit k rozhodutí o existenci řešení rovnici P (a b c d 2 1,..., a 2 n + b 2 n + c 2 n + d 2 n) = 0 se 4n neznámými. Pokud algoritmus odpoví, že tato rovnice má celočíselné řešení, pak máme i pomocí (1) i přirozené řešení. 2

3 Důsledek 2. Ke každé diofantické rovnici P (x 1, x 2,..., x n ) = 0 existuje diofantická rovnice Q(x 1, x 2,..., x n ) = 0 taková, že P = 0 má řešení v celých číslech, právě když Q = 0 má řešení přirozených číslech. Je tedy zřejmé, že rozhodnout, zdali daná diofantická rovnice má řešení v celých číslech a v přirozených číslech jsou dva stejně obtížné problémy (alespoň v tom smyslu, že algoritmicky je řešitelný první, právě když je algoritmicky řešitelný druhý). Patrně nejznámějších verse formulace Matijasevičovy věty zní, že ani jeden z těchto dvou problémů není řešitelný. Věta 3 (Matijasevič (Robinsonová, Davis, Putnam)).. Neexistuje algoritmus (řekněme Turingův stroj), který (v konečném čase) rozhodne, zda daná diofantická rovnice má řešení v oboru přirozených (nebo celých) čísel. Při hledání řešení diofantických rovnic by člověk mohl očekávat jistou naději. I kdyby třeba nehledal přímo nějaký vzoreček, jako máme třeba vzoreček pro řešení kvadratických rovnic v komplexníxh číslech, mohl by hledat alespoň jistý horní odhad na řešení. Mohl by doufat, že se mu podaří dokázat větu typu jestliže je daný polynom P stupně n s koeficienty a 1, a 2,..., a m, pak existuje-li řešení x rovnice P = 0, pak x f(n, a 1, a 2,..., a m ), kde f je nějaká rozumná funkce. Matijasevičova věta říká, že každá taková funkce je f nerekursivní. Lze ji tedy zformulovat i slovy, že neexistuje rekursivní horní odhad na velikost řešení diofantických rovnic. (Samozřejmě: kdyby takový rekursivní horní odhad existoval, stačilo by prozkoumat f(n, a 1, a 2,..., a m ) čísel, a kdybychom řešení rovnice P = 0 nenalezli, prohlásili bychom, že rovnice nemá řešení to by byla rekursivní procedura řešící diofantické rovnice, a tato neexistuje.) Není marné si rozmyslet, že pro některé typy polynomů rekursivní horní odhad existuje; například, je-li P součtem druhých mocnin polynomů prvního stupně. Dokážeme Matijasevičovu větu v obecnější versi; ukážeme, že diofantické rovnice představují další formalisaci pojmu algoritmus, podobně jsme formalisovali algoritmy pomocí Turingových strojů a částečné rekursivních funkcí. Nejprve je však třeba říci, co míníme diofantickou representací funkcí a množin. Definice 4. (a) Řekneme, že množina (relace, predikát) A IN n má diofaktickou representaci P (x 1, x 2,..., x n, y 1, y 2,..., y m ), 3

4 jestliže P (x 1, x 2,..., x n, y 1, y 2,..., y m ) je polynom s celočíselnými koeficienty a platí, že rovnice P (x 1, x 2,..., x n, y 1, y 2,..., y m ) = 0 má řešení v oboru přirozených čísel, právě když (x 1, x 2,..., x n ) A. Jinými slovy, (x 1, x 2,..., x n ) A právě když existují přirozená čísla y 1, y 2,..., y n taková, že P (x 1, x 2,..., x n, y 1, y 2,..., y m ) = 0. (b) Řekneme, že funkce f : IN n IN má diofaktickou representaci P (z, x 1, x 2,..., x n, y 1, y 2,..., y m ), jestliže P (z, x 1, x 2,..., x n, y 1, y 2,..., y m ) je polynom s celočíselnými koeficienty a platí, že rovnice P (z, x 1, x 2,..., x n, y 1, y 2,..., y m ) = 0 má řešení v oboru přirozených čísel, právě když z = f(x 1, x 2,..., x n ). Jinými slovy, z = f(x 1, x 2,..., x n ) právě když existují přirozená čísla y 1, y 2,..., y n taková, že P (z, x 1, x 2,..., x n, y 1, y 2,..., y m ) = 0. Funkce, resp. množina je diofantická, má-li diofantickou representaci. Tato definice dovoluje výpočet (některých) funkcí a charakteristických funkcí (některých) predikátů vyjádřit pomocí diofantických rovnic. Vyvineme nemalé úsilí, abychom dokázali následující silné tvrzení: Věta 5. Funkce f : IN n IN je částečně rekursivní, právě když je diofantická. Predikát (množina přirozených čísel) A(x 1, x 2,..., x n ) je rekursivně spočetný, právě když je diofantický. Konvence. V definici 4 jsme uvedli, že množina má diofantickou representaci, jestliže existuje polynom P s celočíselnými koeficienty tak, že rovnice P = 0 má řešení. Naším cílem bude, mimo jiné, pracovat s polynomy jako s 4

5 objekty aritmetiky, a tato (obvykle) pracuje s přirozenými čísly. Není však žádný problém v rovnici P = 0 přeházet členy se zápornými znaménky na pravou stranu, takže dostaneme rovnost dvou polynomů s přirozenými koeficienty. Jsme-li ve světě přirozených čísel, měli bychom definovat diofantičnost množin tak, že existují dva polynomy Q, R s přirozenými koeficienty tak, že rovnice Q(x 1, x 2,..., x n, y 1, y 2,..., y n ) = R(x 1, x 2,..., x n, y 1, y 2,..., y n ) (2) má řešení v přirozených číslech. (Analogicky i pro diofantičnost funkcí.) V důkazu Matijasevičovy věty budeme pracovat s versí P = 0 a nikoliv s Q = R ; není to újmě na obecnosti. Mohli bychom ekvivalentně vyslovit Matijasevičovu větu ve versi, že množina A je rekursivně spočetná, právě když existuje dvojice polynomů Q, R s přirozenými koeficienty taková, že (x 1,..., x n ) A, právě když existují přirozená y 1, y 2,..., y n splňující rovnost (2). Důkaz triviální implikace věty 5. Snadno se nahlédne, že funkce f, jež je diofantická, je částečně rekursivní; její graf je totiž rekursivně spočetný. Chceme-li enumerovat její graf stačí vzít polynom {(x 1, x 2,..., x n, z) : z = f(x 1, x 2,..., x n )}, P (z, x 1, x 2,..., x n, y 1, y 2,..., y m ), který je její diofantickou representací, a postupně enumerovat všechny (n + m + 1)-tice přirozených čísel (z, x 1,..., x n, y 1,..., y m ) a dosazovat je do polynomu P (z, x 1, x 2,..., x n, y 1, y 2,..., y m ). Jakmile jej vyhodnotíme a obdržíme, že P = 0, nalezli jsme bod na grafu (x 1, x 2,..., x n, z) a zapíšeme jej na výstup. Tím postupně enumerujeme graf funkce f a tato je tudíž částečně rekursivní. Podobě to učiníme s diofantickou množinou A, stejným způsobem dokážeme enumerovat její prvky, takže je rekursivně spočetná. Obtížná je samozřejmě druhá implikace, že každá částečně rekursivní funkce a každá rekursivně spočetná množina (relace, predikát) je diofantická. Důkaz této implikace provedeme tak, že ukážeme, že třída diofantických funkcí obsahuje funkce základní (nulu, následníka, projekci to je však triviální) a 5

6 je uzavřena na primitivní rekursi a minimalisaci (což není triviální). Z faktu, že třída částečných rekursivních funkcí splývá s třídou funkcí vyčíslitelných Turingovým strojem, dostáváme důsledek, že funkce je Turingovsky vyčíslitelná, právě když je diofantická, a dokonce lze překlad z jedné representace do druhé učinit pomocí algoritmického překladače. Je zřejmé, že až budeme mít dokázánu větu 5, snadno z ní plyne věta 3. Víme totiž, že existují rekursivě spočetné množiny, které nejsou rekursivní, například K = {e : e W e } (halting problem). Podle Matijasevičovy věty existuje polynom P (e, y 1, y 2,..., y n ) takový, že e K právě když pro nějaká y 1, y 2,..., y n je P (e, y 1, y 2,..., y n ) = 0. Kdybychom měli algoritmus, který rozhoduje o řešitelnosti diofantické rovnice vpravo, rozhodoval by tento i o řešení halting problemu, což jak víme není možné. Z důkazu Matijasevičovy věty plyne i následující pozoruhodný výsledek (formulujeme jej jen pro funkce, ale není problém jej reformulovat pro množiny čísel). Důsledek 6. Existuje algoritmus A takový, že je-li dán program (Turingův stroj) T, pak A po konečném počtu kroků na výstup napíše polynom, který je diofantickou representací funkce, již program T počítá. Tvrzení plyne z toho, že celý důkaz Matijasevičovy věty je konstruktivní, a lze jej tudíž naprogramovat. Lze tedy sestavit program, který daný Turingův stroj přepíše na polynom. Mějme dán Turingův stroj: podle věty o simulacích lze algoritmicky sestavit částečně rekursivní funkci, jež počítá funkci vyčíslovanou tímto strojem. Přesněji: získáme odvození této funkce, tedy popis, jak funkci dostat ze základních funkcí postupným užíváním operátorů skládání, minimalisace a primitivní rekurse. Důkaz Matijasevičovy dává diofantickou representaci základních funkcí (ta je triviální) a funkcí vznikajících skládáním, primitivní rekursí a minimalisací. Tak jsme neformálně popsali algoritmus, který dostane na vstup Turingův stroj a vyplivne hledanou diofantickou representaci. Uveďme na tomto místě ještě jedno (na první pohled pozoruhodné) tvrzení. 6

7 Tvrzení 7 (o neuvěřitelném polynomu, Jones, Sato, Wada, Wiens). Množina {α IN : ( a, b,..., z IN) α = = (k + 2) [1 ([wz + h + j q] 2 + [(gk + 2g + k + 1)(h + j) + h z] 2 + +[16(k + 1) 3 (k + 2)(n + 1) f 2 ] 2 + +[2n + p + q + z e] 2 + [e 3 (e + 2)(a + 1) o 2 ] 2 + +[(a 2 1)y x 2 ] 2 + [16r 2 y 4 (a 2 1) + 1 u 2 ] 2 + +[((a + u 2 (u 2 a)) 2 1)(n + 4dy) (x + cu) 2 ] 2 + +[(a 2 1)l m 2 ] 2 + [ai + k + 1 l i] 2 + [n + l + v y] 2 + +[p + l(a n 1) + b(2an + 2a n 2 2n 2) m] 2 + +[q + y(a p 1) + s(2ap + 2a p 2 2p 2) x] 2 + +[z + pl(a p) + t(2ap p 2 1) pm] 2 )] } je množina všech prvočísel. Netvrdíme, že důkaz této konkrétní věty je jednoduchý; nám ani tolik nejde o tento konkrétní ošklivý polynom (co komu řekne?), ale o to, že je jednoduché polynomy takového typu algoritmicky generovat. Máme-li Turingův stroj, který rozhoduje o náležení do množiny prvočísel (ta je rekursivní, a tudíž diofantická), lze algoritmicky vygenerovat polynom, který je diofantickou representací množiny prvočísel. Tvrzení 8. Existuje polynom P (x 1, x 2,..., x n ) s celočíselnými koeficienty takový, že diofantická rovnice P = 0 má řešení, právě když neplatí Riemannova hypotéza. Tento (možná na první pohled překvapivý) výsledek je snadným důsledkem faktu, že množina protipříkladů Riemannovy hypotézy je rekursivně spočetná (to není přesné, neboť tyto protipříklady mohou být komplexní čísla s iracionální imaginární částí, nicméně záhy to alespoň zhruba vyjasníme). Riemannova hypotéza je stále otevřený problém a považuje se za jednu z nějtěžších otevřených otázek matematiky. Podobně jako problém P =? NP je v seznamu Millenium Problems Clayova matematického institutu (www.claymath.org) a na jeho vyřešení je vypsána odměna milion USD. Otázku po důkazu nebo vyvrácení Riemannovy hypotézy též zdůraznil David Hilbert na matematickém kongresu v roce 1900; Riemannova hypotéza se proto někdy označuje jako osmý Hilbertův problém (a narozdíl od desátého problému zůstává nevyřešena dodnes). Přehled všech třiadvaceti 7

8 problémů a stav jejich řešení lze najít ve Wikipedii (http://en.wikipedia.org/wiki/hilbert%27s problems). Riemannova zeta-fuknce je definována vzorcem ζ(x) = 1 i=1. Pro reálná x n x známe všelijaké vlastnosti této funkce; snadno se nahlédne, že ζ(1) diverguje, ζ(2) = π2 (což ale není tak úplně snadné). ζ(3) 1.202; to je tzv. Apéryho 6 konstanta; Apéry v roce 1979 (!) dokázal, že toto číslo je iracionální. Pro ζ(5), ζ(7),... je (i)racionalita otevřený problém. Je však známo, že alespoň jedno z čísel ζ(5), ζ(7), ζ(9) a ζ(11) je iracionální (tzv. Zudilinova věta). Jako funkce komplexní proměnné c se ζ(c) chová trochu složitěji. Lze ukázat, že řada 1 i=1 konverguje pro libovolné c C s Re c > 1 (Re značí reálnou n c část komplexního čísla), a že na této množině definuje analytickou funkci (to znamená, že má všechny (komplexní) derivace a na okolí každého bodu se rovná svému Taylorovu rozvoji). Lze sestrojit její (jednoznačné) analytické rozšíření na skoro celou komplexní rovinu, totiž na množinu C\{1}. Hovoří-li se o Riemannově zeta-funkci jako o funkci komplexní proměnné, má se na mysli na toto rozšíření. O Riemannově zeta-funkci je známo mnoho; jedno její vyjádření je například 1 1 n ( ) n ζ(c) = ( 1) k c 2 n+1 k (k + 1) c platné pro c C \ {1}. n=0 ζ(c) je na C meromorfní, má jediný, a to jednoduchý, pól v bodě 1. (Připomeňme, že meromorfní funkce na C je funkce, která má komplexní derivaci ve všech bodech C s výjimkou nanejvýš spočetné množiny isolovaných bodů (tzv. pólů); v našem případě je pól jediný, c = 1. Tento pól je jednoduchý: lim c 1 (c 1)ζ(c) konverguje, takže k přebití divergence funkce ζ v bodě 1 stačí ζ přenásobit lineární funkcí.) Takže, shrnuto, chtělo by se říci, je to docela hezká funkce. Není těžké dokázat, že pro čísla c = 2, 4, 6,... je ζ(c) = 0, to jsou tzv. triviální řešení rovnice ζ(c) = 0. Pak existuje řada netriviálních řešení, a všechna dosud známá řešení (ví se, že je jich nekonečně mnoho) mají tvar c = 1 + ix, kde x 2 je nějaké reálné číslo. Riemannova hypotéza tvrdí: všechna netriviální řešení mají tento tvar. Dále lze ukázat, že veškerá netriviální řešení mají reálnou část z intervalu (0, 1) a existuje-li netriviální řešení c = y + ix s y (0, 1 ), pak existuje také 2 8 k=0

9 netriviální řešení tvaru (1 y) + ix. Dále se ví, že všechna řešení rovnice ζ(c) = 0 jsou symetrická kolem reálné osy. Takže, pokud bychom chtěli vyvrátit Riemannovu hypotézu, stačí prohledávat množinu čísel {y + ix : y ( 1, 1), x > 0}. Na těchto poznatcích lze postavit algoritmus, který bude protipříklady Riemannovy hypotézy systematicky hledat. Jedna z možností je 2 následující. Snadno se nahlédne, že pro každý obdélník v pásu {y + ix : y ( 1, 1), x > 2 0} je Z = 1 ζ (c) 2πi ζ(c) dc = počet řešení rovnice ζ(c) = 0 uvnitř. (ζ je komplexní derivace ζ.) Má-li totiž uvnitř obdélníku funkce ζ nulový bod, má tamtéž funkce ζ jednoduchý pól (derivace je tam nenulová), a ζ 1 podle residuové věty pak integrál (s normalisací ) přes jednoduchou uzavřenou křivku počítá póly uvnitř. (Absolutní hodnota je zde jen proto, 2πi abychom se nemuseli trápit s orientací obdélníku.) Hodnotu Z lze numericky aproximovat, a dokonce chytře aproximovat: lze ukázat, že odchýlí-li se chytrá aproximace od nuly hodnotě dostatečně daleko, už nutně je Z 0. S tímto poznatkem se dá sestavit algoritmus, který bude systematicky aproximovat hodnoty Z pro všechny obdélníky Z s racionálními souřadnicemi. Přesněji: program bude enumerovat devítice přirozených čísel (a, a, b, b, c, c, d, d, e) a jestliže budou čísla a + b i a c + d i uvnitř pásu a b c d {y + ix : y ( 1, 1), x > 0}, vezme tato čísla za souřadnice dvou protilehlých 2 vrcholů obdélníku a provede e kroků aproximace Z. Jakmile by program našel nějakou hodnotu Z 0, nalezl i protipříklad Riemannovy hypotézy, napíše na výstup jedničku a skončí. Jinak bude počítat dále. Diofantická representace P tohoto algoritmu je přesně tvrzení věty: diofantická rovnice P (1, y 1,..., y m ) = 0 má řešení, právě když algoritmus skončí a na výstup dá z = 1, právě když Riemannova hypotéza neplatí. Tím jsme vlastně ukázali, že Riemannova hypotéza je ekvivalentní platnosti jisté uzavřené aritmetické Π 1 -formule ve standarních přirozených číslech. (Jistě by byl hezký výsledek, kdyby se ukázala ekvivalence Riemannovy hypotézy s nějakou Σ 1 -formulí; pak by byla, podle Postovy věty, rozhodnutelná algoritmicky.) Je známa dlouhá řada tvrzení ekvivalentních Riemannově hypotéze; zatím však důkaz ekvivalence s Riemannovou hypotézou slouží spíše jako důkaz 9

10 obtížnosti daného problému, než jako cesta k odpovědi na Riemannovu hypotézu. Jedna známá ekvivalentní formulace (tzv. Lagariasovo tvrzení) je: pro každé n 1 platí T n, kde T n je tvrzení d n d H n + e Hn ln H n, přičemž rovnost nastává pouze pro n = 1 (H n := n 1 k=1 je n-té harmonické k číslo). Z toho plyne rekursivní spočetnost množiny {n : T n neplatí}, a tedy i algoritmická možnost vyvrátit Riemannovu hypotézu, jestliže tato neplatí, okamžitě. Jistě není překvapením, že i tzv. Goldbachovu doměnku (tvrzení každé přirozené číslo je součtem dvou prvočísel ), jež rovněž patří mezi slavné otevřené problémy, lze převést na otázku řešitelnosti jisté diofantické rovnice: i množina protipříkladů Goldbachovy doměnky je rekursivně spočetná. Rekursivně spočetná je i množina {(a, b, c, n) : a n + b n = c n ; a, b, c, n IN, n 3} (tzv. Fermatova velká (též poslední) věta). Množina je opět rekursivně spočetná a lze ji tedy representovat jistou diofantickou rovnicí; dnes je však již znám slavný výsledek (Wiles, 1994), že tato množina je dokonce rekursivní je prázdná. Je na místě reformulovat tvrzení Matijasevičovy věty i aritmeticky. Řekneme, že formule f(x 1, x 2,..., x n ) je diofantická, jestliže je tvaru ( y 1, y 2,..., y n )(P = Q), kde P a Q jsou polynomy v proměnných x a y. Důsledek 9. Ke každé Σ 1 -formuli f(x 1,..., x n ) existuje diofantická formule g(x 1,..., x n ) taková, že pro každé x 1,..., x n IN platí IN = f(x 1,..., x n ) g(x 1,..., x n ). Během důkazu Matijasevičovy věty uvidíme, že asi nejtěžší krok v důkazu tohoto tvrzení je nalezení diofantické representace omezeného obecného kvantifikátoru, který se může vyskytovat ve formuli f. V čem bude jádro celé práce: uvažme pro příklad, že formule f(u, v) je tvaru ( x < v)( y)g(y, x, u), kde g je v nějakém smyslu jednoduchá (není zde důležité toto vágní vyjádření blíže precisovat). Formule říká, že jsou-li dána u a v, tak ke každému x pod 10

11 v máme číslo y, které dosvědčuje platnost g(y, x, u). Můžeme na to nahlížet tak, že k danému u a v se ve formuli skrývá funkce ν : x y definovaná pro x < v, která číslům x = 1, 2,..., v 1 přiřazuje svědky y. Při hledání diofantické representace formule f budeme hledat formuli h (zhruba) tvaru ( z)k(u, v, z), kde k je rovnost dvou polynomů v proměnných u, v, z. Budeme postaveni před tento úkol: je-li dáno u a v, musíme vhodným způsobem zakódovat do jediného čísla z informaci o všech svědcích y příslušících číslům x = 1, 2,..., v 1. Musíme tedy vhodným způsobem vytvořit jakéhosi supersvědka z, který najednou dosvědčí platnost ( x < v)( y)g(y, x, u), takže do čísla z musíme zakódovat celou funkci ν. Obtížný krok důkazu je právě v sestrojení tohoto zakódování můžeme totiž kódovat pouze diofantickými prostředky. Číslo z může obecně být strašně veliké; bude proto třeba najít diofantické prostředky pro vyjádření rychle rostoucích funkcí. Proto nejprve vyvineme nemalé úsilí k nalezení diofantické representace funkcí ( n k), n! a x n, bez nichž se tato konstrukce neobejde. Matijasevičova věta má ještě jeden důležitý důsledek. Důsledek 10 (věta o representaci). Nechť T je bezesporná teorie s rekursivní mnižnou axiomů, jež obsahuje Robinsonovu aritmetiku. (a) V teorii T jsou representovatelné částečně rekursivní funkce a rekursivně spočetné predikáty. Dokonce, existuje formule, jež representuje danou částečně rekursivní funkci (predikát) ve všech takových teoriích. (b) Silně representovatelné predikáty jsou právě predikáty rekursivní. Věta o representaci je důležitý důsledek, který nám přenáší algoritmy do světa Robinsonovy aritmetiky RA a jejích různých rozšíření, např. RA, I open, RA, IΣ 0, RA, IΣ 1, PA. Díky této větě se (částečně) rekursivní funkce a rekursivně spočetné (rekursivní) predikáty stávají objekty, o kterých hovoří formální aritmetické teorie různé síly. Můžeme si pak klást otázky, co dokáží různě silné či slabé teorie o nich dokázat. Měli bychom však nejprve přesněji říci, co myslíme pojmem representace. Definice 11. Buď T bezesporná teorie s rekursivní množinou axiomů. Řekneme, že formule f representuje funkci h v teorii T, jestliže platí T f(x 1, x 2,..., x n, ζ) ζ = h(x 1,..., x n ). (3) (symboly s jsou numerály, např. 2 = 2 = s(s(o)) nebo 1 2π e x2 /2 dx = s(o), tedy objekty jazyka aritmetiky zapsané meta-jazykově). 11

12 Formule f representuje predikát A v teorii T, jestliže platí A(x 1, x 2,..., x n ) implikuje T f(x 1, x 2,..., x n ) a A(x 1, x 2,..., x n ) implikuje T f(x 1, x 2,..., x n ). Formule f silně representuje predikát A v teorii T, jestliže platí A(x 1, x 2,..., x n ) implikuje T f(x 1, x 2,..., x n ) a A(x 1, x 2,..., x n ) implikuje T f(x 1, x 2,..., x n ). Řekneme, že funkce či predikát je (silně) representovatelný v teorii T, jestliže existuje příslušná (silná) representace. Je patrné, že formule, o které tvrzení věty hovoří, je diofantická representace částečné rekursivní funkce, resp. predikátu (k tomu však uvedeme za chvíli drobnou poznámku). Diofantická representace má právě tvar (existenční kvantifikace) následovaná rovností dvou polynomů: f(x 1, x 2,..., x n, z) = = ( y 1, y 2,..., y m )(P (z, x 1,..., x n, y 1,..., y m ) = Q(z, x 1,..., x n, y 1,..., y m )) (připomeňme zde konvenci ze str. 4). Základním jazykem rozumíme jazyk, který kromě symbolů pro proměnné obsahuje pouze rovnost, sčítání a násobení (nic jiného k vyjádření rovnosti dvou polynomů nepotřebujeme). Podívejme se na definici a větu o representovatelnosti malinko podrobněji. Nejobtížnější je dokázat representovatelnost v Robinsonově aritmetice, která je z uvedených systémů nejslabší (nemá žádnou indukci). Matijasevičova věta (v souladu s konvencí ze str. 4) nám dává polynomy P a Q takové, že pro libovolná přirozená čísla z, x 1, x 2,..., x n platí z = h(x 1, x 2,..., x n ) právě když IN = ( y 1, y 2,..., y m )P (z, x 1,..., x n, y 1,..., y m ) = Q(z, x 1,..., x n, y 1,..., y m ). 12

13 Využijeme-li Σ 1 -úplnost Robinsonovy aritmetiky (připomeňme: to je věta, která říká, že pro libovolnou uzavřenou Σ 1 formuli g platí, že RA g, právě když IN = g), dostáváme i, že z = h(x 1, x 2,..., x n ) právě když RA ( y 1, y 2,..., y m )P (z, x 1,..., x n, y 1,..., y m ) = Q(z, x 1,..., x n, y 1,..., y m ), a pak lze odvodit RA ζ = h(x 1, x 2,..., x n ) [( y 1, y 2,..., y m ) P (ζ, x 1,..., x n, y 1,..., y m ) = Q(ζ, x 1,..., x n, y 1,..., y m )], čímž je v Robinsonově aritmetice dokázána implikace v (3) z definice representace částečně rekursivních funkcí, a tudíž i v silnějších teoriích, které ji obsahují. Implikace v (3) činí ve slabých teoriích trochu problémy. Problém je totiž tento: formule [( y 1,..., y m )P (ζ, y 1,..., y m ) = Q(ζ, y 1,..., y m )] ζ = h(x 1, x 2,..., x n ) (4) nemusí být splněna v některém nestandardním modelu RA; tam mohou existovat nestandardní y 1, y 2,..., y m taková, že rovnost polynomů platí, a přitom ζ h(x 1, x 2,..., x n ) (třeba proto, že ζ je nestandardní, zatímco h(x 1, x 2,..., x n ) je numerál, a tudíž jej v každém nestandardním modelu realisuje standardní přirozené číslo). Chtěli bychom ukázat, že RA dokazuje formuli (4), což je podle věty o úplnosti predikátové logiky ekvivalentní platnosti v každém modelu. Víme (z Matijasevičovy věty), že (4) platí ve standardních přirozených číslech IN (to je jen jeden z mnoha možných modelů RA), avšak to k dokazatelnosti nestačí. Nicméně existuje cesta, jak tento problém řešit. Z Matijasevičovy věty víme, že formule f(x 1, x 2,..., x n, z) = ( y 1,..., y m )P (z, y 1,..., y m ) = Q(z, y 1,..., y m ) popisuje v IN funkci, a samozřejmě je tato formule Σ 1. Lze ukázat, že potom se jen malou modifikací f dostane formule f, která je Σ 1 a možné patologické nestandardní modely odbourá, a lze ji tudíž užít jako formuli representující příslušnou částečnou rekursivní funkci v RA splňující (3). Detaily o f a důkaz lze najít v [Sochor], str. 215, věta 2. Věta o representovatelnosti říká, že je možné i ve slabých aritmetikách, které znají jen rovnost, sčítání a násobení, o algoritmech mluvit. Nic neříkáme o tom, co umí Robinsonova aritmetika o těchto funkcích dokázat; vždyť neumí dokázat ani ( a, b)(a + b = b + a), takže si nedělejme velké iluse. Například, exponenciální funkce je rekursivní, a tedy representovatelná, ale lze ukázat, že RA, IΣ 0 exponenciální funkce je totální (uvozovky znamenají formalisaci tvrzení uvnitř). 13

14 Všimněme si krátce rozdílu mezi representovatelností a silnou representovatelností. Silná representovatelnosti je opravdu silnější než jen representovatelnost. V definici representovatelnosti jen požadujeme, aby teorie cosi nepříjemného nedokazovala; v definici silné representovatelnosti požadujeme, aby byla silnější, aby dokazovala dokonce negaci. Je však zřejmé tvrzení věty (b): silná representace ja vlastně reformulace Postovy věty. Pro rekursivní predikát A(x) (řekněme, pro jednoduchost, s jednou proměnnou) podle Postovy věty platí, že A(x) i A(x) jsou rekursivně spočetné, tedy mají oba Σ 1 representaci (dokonce diofantickou): (α) A(x) právě když ( y)(p (x, y) = Q(x, y)); (β) A(x) právě když ( y)(p (x, y) = Q(x, y)) právě když (γ) právě když ( z)(r(x, z) = S(x, z)) (použli jsme zkratku y za y 1, y 2,..., y m, podobně z). Z toho plyne silná representovatelnost: podle (α) a Σ 1 -úplnosti RA je RA ( y)(p (x, y) = Q(x, y)), podle (γ) je RA ( z)(r(x, y) = S(x, y)) a tudíž podle (β) se nahlédne, že i RA ( y)(p (x, y) = Q(x, y)), takže RA f i RA f (to je definice silné representace). (Upozorněme, že ( y)(p (x, y) = Q(x, y)) obecně narozdíl od této naší situace, kdy A je rekursivní nemusí být Σ 1 formule.) Na druhou stranu, je-li predikát silně representovatelný, je rekursivní. Silná representovatelnost totiž implikuje existenci algoritmu, který pro dané x rozhodne, zdali A(x) nebo A(x). Stačí totiž enumerovat všechny důkazy teorie (předpokládali jsme, že teorie má rekursivní množnu axiomů) a čekat, kdy narazíme na důkaz A(x) nebo A(x), dříve nebo později se jeden z nich objevit musí. Že je tato procedura rekursivní (jinými slovy: vždy po konečně mnoha krocích skončí), zaručuje silná representovatelnost. Uvedené důsledky lze dále prohlubovat. Důkaz Matijasevičovy věty lze formalisovat v teorii RA, IΣ 1 (a dokonce i v RA, IΣ 0 (exp)). Důkaz, který my předvedeme na metahladině, lze vhodným způsobem reformulovat uvnitř poměrně slabé teorie RA, IΣ 1 (a dokonce i ve slabších). Důkaz následujícího tvrzení by tedy spočíval v tom, že náš metajazykový důkaz Matijasevičovy věty, který záhy podáme, bychom přeformulovali důkazovými prostředky, které jsou k disposici uvnitř RA, IΣ 1, což je s jistým úsilím možné. Tvrzení 12 (Matijasevič v RA, IΣ 1 ).. Ke každé Σ 1 -formuli f(x 1, x 2,..., x n ), jejíž Gödelovo číslo je f, existuje číslo g, přičemž g je číslem diofantické 14

15 formule (existenční kvantifikace následovaná rovností dvou polynomů) s n proměnnými taková, že RA, IΣ 1 ( x)(sat( f, x) Sat( g, x)), kde Sat(q, x) je formule, jež v RA, IΣ 1 formalisuje tvrzení x je kódem n- tice čísel, která splňují Σ 1 -formuli s n volnými proměnnými, jejíž číslo je q. Detaily viz [Hájek, Pudlák], kap. 3(d). Všimněme si explicitně ještě jednoho samozřejmého, leč důležitého důsledku Matijasevičovy věty. Důsledek 13. Neomezená obecná kvantifikace a negace nezachovávají diofantičnost. Kdyby negace zachovávala diofantičnost, tak bychom měli pro každý diofantický predikát P, že i P je diofantický. To ovšem není možné, vezměme za P nějaký Σ 1 -úplný, např. x W x (halting problem). Potom je P Π 1 - úplný a tudíž P Σ 1 (množina K není rekursivně spočetná). Proto nemůže mít diofantickou representaci (ta je Σ 1 ). Podobně se nahlédne, že obecně nezachovává diofantičnost; vždyť obecnou kvantifikací ( x)p bychom mohli dostat Π 2 predikát, který není v Σ 1. Je tedy třeba dávat pozor: někdy negace zachovává diofantičnost (je-li použita rekursivně ) a někdy nikoliv. Na tomto místě tedy upozorňujeme, že se budeme negaci a neomezené obecné kvantifikaci vyhýbat. I proto jsou některé obraty na první pohled trochu umělé: neříkáme třeba x y (tam je skryta negace), ale říkáme (vlastně tedy ( z)[(x y) 2 = z + 1] ( z)[(x x) + (y y) = (s(s(o)) (x y)) + (z + s(o))], abychom se vyjádřili přímo jazykem aritmetiky), což je v aritmetice totéž, leč bez negace. Shrňme důležité věci. Matijasevičova věta říká, že každá Σ 1 -formule má diofantickou representaci (těžký krok důkazu je najít diofantickou representaci 15

16 omezeného obecného kvantifikátoru). Třída diofantických formulí je uzavřená na primitivní rekursi a minimalisaci, pročež třída částečně rekursivních funkcí = třída diofantických funkcí. Podobně třída rekursivně spočetných predikátů (množin přirozených čísel, relací) = třída diofantických predikátů (množin přirozených čísel, relací). Z ekvivalence mezi Turingovými stroji a částečně rekursivními funkcemi (a rekursivně spočetnými predikáty) plyne ekvivalence Turingových strojů s diofantickými funkcemi a predikáty (a též s dalšími formalisacemi pojmu algoritmus, např. s Chomského gramatikami typu 0, pokud se s mini čtenář někdy například při nákupu v zelenině setkal). Důkaz Matijasevičovy věty je konstruktivní, takže vlastně dává algoritmus, jak k danému Turingovu stroji sestavit jeho diofantickou representaci. Důsledkem Matijasevičovy věty je i representovatelnost algoritmů v aritmetických teoriích, a to velmi jednoduchým způsobem. Dalším důležitým důsledkem je i neexistence algortmu, který by rozhodoval o řešitelnosti diofantických rovnic (záporná odpověď Hilbertovi na jeho desátou otázku.) Matijasevičovu větu lze zformalisovat i uvnitř poměrně slabých teorií (např. RA, IΣ 1 ). * Jízdní řád. Vydáme se nyní na cestu k důkazu věty. Dokážeme, že třída diofantických funkcí je uzavřená na primitivní rekursi a minimalisaci, z čehož už vyplyne, že každá částečná rekursivní funkce je diofantická (viz ještě jednou důkaz triviální implikace věty 5). (i) Nejprve uvedeme několik snadných lemmat (lemma 14, 15) o počítání s čísly a polynomy. Vesměs jde o snadná cvičení. Celý důkaz Matijasevičovy věty je postaven na důmyslém užití kongruencí, (ne)soudělnosti a dělitelnosti přirozených čísel, takže tato lemmata uvádíme spíše proto, aby si čtenář uvědomil časté (i když jednoduché) obraty, které se mnohokrát užívají. (ii) Dokážeme čínskou větu o zbytcích (věta 7). Jde o snadné, leč velmi výtěžné tvrzení: zajistí existenci vhodného čísla při konstrukci diofantické representace omezeného obecného kvantifikátoru (věta 45) a při konstrukci diofantické funkce, jež kóduje konečné posloupnosti čísel do čísla jediného (věta 47). Protože jde však o větu, která má široké užití, ukážeme i některé další její souvislosti; ty však nejsou pro Matijasevičovu větu podstatné a lze je přeskočit. (iii) Dokážeme, že pelliána (diofantická rovnice tvaru x 2 y 2 d = 1, kde d je konstanta taková, že d není celé číslo), má v IN 2 nekonečně mnoho řešení. 16

17 (Triviální řešení x = ±1, y = 0 je vidět na první pohled.) Ukážeme, že řešení lze enumerovat dvojicí jistých funkcí A(n) a B(n) a že ke každému řešení x, y IN existuje n tak, že x = A(n) a y = B(n). Práce s pelliánou bude mít dva velké kroky: nejprve ukážeme, že pelliána má nějaké netiviální řešení (věta 29). Důkaz je zajímavý sám o sobě, notně využívá tzv. Dirichletova (též holubníkového) principu a otvírá dveře ke studiu svébytné teorie. Druhý krok spočívá v tom, že množinu řešení popíšeme pomocí jisté grupy a efektivně popíšeme funkce A a B. Nechť si čtenář všimne, že ačkoliv důkaz existence netriviálního řešení pelliány je toliko existenční, konečná charakterisace množiny řešení funkcemi A a B už množinu řešení popisuje konstruktivně. (iv) Funkce A(n) a B(n) (které přeznačíme na A a B) budeme zkoumat dále. Ukáže se, že funkce B je na naší cestě velmi vhodná, neboť je diofantická (věta 39) a lze jejím prostřednictvím najít diofantickou representaci exponenciální funkce (41). (v) Je třeba ukázat řadu triviálních i méně triviálních vlastností funkcí A a B. Základem pro lemmata 37 a 38 je především Moivreova věta (pozorování 34), opět sama o sobě pozoruhodná. Mezi důležitými vztahy zde alespoň jmenujme, že čísla A(n) a B(n) jsou nesoudělná, operátor B zachovává dělitelnost (lemma 38(a)) a funkce B(n) roste rychle. Čtenář může kapitoly 5 a 6 brát jen jako technickou vsuvku a vracet se k nim ve chvílích, kdy se na ně odvolávají další věty. (vi) Ukážeme, že funkce B je diofantická. K tomu dobře poslouží právě pelliána je to diofantická rovnice, tedy přímo objekt vyjádřitelný jazykem aritmetiky. (vii) Díky tomu, že funkce B roste rychle (exponenciálně) a je diofantická, už dokážeme zkonstruovat diofantickou representaci exponenciální funkce y = z n. Zde končí první velký krok důkazu. (Připomeňme zde analogii se slabými aritmetickými teoriemi, jako je např. RA, IΣ 0 ; zde je hlavní problém taktéž v definici funkcí, které rychle rostou v takových teoriích máme bezprostředně k disposici pouze sčítání, násobení a jen velmi slabou indukci, a je tudíž nesnadné s těmito prostředky vybudovat rychle rostoucí funkce, o nichž by tyto teorie dokázaly alespoň základní fakta.) Jakmile máme k disposici exponenciální funkci, mnohé se láme: s její pomocí je již možné přistoupit např. ke kódování konečných posloupností přirozených čísel. (My tak učiníme 17

18 až později.) (viii) Pomocí exponenciální funkce zkonstruujeme diofantickou representaci binomického koeficinetu a faktoriálu (9). Nyní se již ukazuje, že jde zdiofantisovat více, než by člověk na první dojem očekával. (ix) Druhý velký krok důkazu spočívá v tom ukázat, že omezená obecná kvantifikace je diofantická (narozdíl od omezené i neomezené existenční kvantifikace). Je totiž třeba ukázat, že k formuli typu A(x, n) = ( i < n)( y)[p (x, y, i) = 0] (ke každému i pod n najdeme svědka y, jenž dokládá platnost P ), existuje vhodná formule typu ( z)q. Věta 45 je vlastně důmyslné zakódování existenčních svědků pro každé i do velesvědka z, který v sobě obsáhne informaci o všech svědcích y pro i n pomocí dosud odvozených diofantických funkcí, tj. pomocí eponenciály, binomického koeficientu a faktoriálu. (x) Po tomto kroku je již vše snadné. Omezený obecný kvantifikátor je totiž silný vyjadřovací nástroj, takže se snadno ukáže konstrukce diofantického kódování konečných posloupností přirozených čísel do čísla jediného (věta 47) a diofantičnost primitivní rekurse a minimalisace (48). Tím bude důkaz hotov. 1 Čísla a základní diofantické relace a funkce Nejprve zde uveďme několik jedoduchý faktů o celých číslech (obecně celých, často však pracujeme jen s přirozenými). Řekneme, že číslo a je dělitelem čísla b (nebo jen a dělí b) a píšeme a b, jestliže pro nějaké k je b = ka. Číslo a je kongruentní s b modulo c, což zapisujeme a c b (někdy se též píše a b mod c), jestliže pro nějaké k je a = kc + b, nebo, jinými slovy, c (a b). Tuto relaci lze ještě reformulovat tak, že zbytek (braný v intervalu 0, 1,..., c 1) po celočíselném dělení čísla a číslem c je stejný jako zbytek po celočíselném dělení čísla b číslem c. Takže například Čísla jsou nesoudělná, jestliže jejich prvočíselné rozklady mají prázný průnik; jinými slovy, největším společným dělitelem dvou nesoudělných čísel je 18

19 jednička. Všimněme si například, že je-li číslo a nesoudělné s číslem b!, pak všichni prvočinitelé a musí být větší než b (což budeme využívat). Definujeme funkce div(a, b) = k a mod(a, b) = r, kde k a r jsou dány z rozkladu a = kb + r (k je celočíselný podíl a r zbytek po celočíselném dělení) takové, že r {0, 1,..., b 1}. Následující dvě lemmata jsou velmi jednoduchá. Lemma 14 (o dělitelnosti). (a) Nechť číslo d > 1 dělí číslo a a nedělí b. Pak d nedělí a + b. (b) Nechť a m l, x m ab. Pak x m lb. (c) Nechť a m b a d m. Pak a d b. (d) Buďte a, m, b 0. Pak z a m b a b < m plyne a = mod(a, m). (e) Nechť čísla a, b jsou nesoudělná a platí c a d a c b d. Pak c ab d. Důkaz je směšný; rozeberme např. (b): podle předpokladu existují k 1 a k 2 tak, že a = k 1 m + l, x = k 2 m + ab = k 2 m + (k 1 m + l)b = (k 2 + k 1 b)m + lb, takže x m lb. Lemma 15 (o polynomech). (a) Nechť P (x 1, x 2,..., x n ) je polynom a celá čísla y 1, y 2,..., y n taková, že P (y 1, y 2,..., y n ) = 0. Pak číslo P (k 1 p + y 1, k 2 p + y 2,..., k n p + y n ) je dělitelné číslem p. (b) Nechť P (a, x 1, x 2,..., x n ) je polynom. Pak se polynom P (a, k 1 p+x 1, k 2 p+x 2,..., k n p+ x n ) dá psát ve tvaru Q(p)+P (a, x 1, x 2,..., x n ), kde Q(p) je polynom bez absolutního členu (tj. dělitelný p). (c) Nechť P (x) je polynom. Pak pro čísla b 1, b 2 platí P (b 1 ) b1 b 2 P (b 2 ). Důkaz (a) provedeme třeba pro n = 3, pro jiná n je to stejné (jen je pro větší n zápis perverznější). Polynom tří proměnných lze psát ve tvaru P (x 1, x 2, x 3 ) = a i1 i 2 i 3 x i1 1 x i 2 2 x i 3 3 i 1,i 2,i 3 (sumace běží přes přirozená čísla i 1, i 2, i 3 v rozmezí od nuly až po jisté číslo podle stupně polynomu v té které proměnné.) Podle binomické věty je (bereme konvenci ( 0 0) = 1, 0 i=1 = 19

20 0): P (k 1 p + y 1, k 2 p + y 2, k 3 p + y 3 ) = = [ y i [ i2 m 2=0 i 2 m 2 =1 ( i2 a i1i 2i 3 (k 1 p + y 1 ) i1 (k 2 p + y 2 ) i2 (k 3 p + y 3 ) i3 = i 1,i 2,i 3 = [ i1 ( ] i1 )(k 1 p) m1 (y 1 ) i1 m1 m 2 = ( i2 i 1,i 2,i 3 a i1 i 2 i 3 m 1 =0 )(k 2 p) m 2 (y 2 ) i 2 m 2 ] i 1,i 2,i 3 a i1i 2i 3 m 2 [ y i1 1 + i1 m 1 =1 )(k 2 p) m2 (y 2 ) i2 m2 ] m 1 [ i3 m 3=0 ( i1 [ m 1 y i ( i3 m 3 )(k 3 p) m 3 (y 3 ) i 3 m 3 ] )(k 1 p) m 1 (y 1 ) i 1 m 1 ] i 3 m 3 =1 ( i3 m 3 = )(k 3 p) m3 (y 3 ) i3 m3 ] = [ ] [ a i1i 2i 3 y i1 1 + S 1 y i 2 ] [ 2 + S 2 y i 3 ] 3 + S 3, i 1,i 2,i 3 kde jsme S 1, S 2, S 3 označili vnitří sumy. Čísla S i (i = 1, 2, 3) jsou evidentně dělitelná k i (k i lze vytknout). Když nyní roznásobíme hranaté závorky v posledním výrazu člen po členu, dostaneme (dlouhý) součet, přičemž jediný sčítanec y i1 1 yi2 2 yi3 3 neobsahuje žádné S, všechny ostatní sčítance obsahují S a jsou tak dělitelné číslem k. Proto můžeme poslední sumu psát ve tvaru = 1 y i 2 2 y i číslo dělitelné k ) i 1,i 2,i 3 a i1 i 2 i 3 ( y i1 a roztržením na dvě sumy dostaneme = ( a i1 i 2 i 3 y i1 1 y i 2 2 y i ) i 1,i 2,i 3 i 1,i 2,i 3 a i1 i 2 i 3 (číslo dělitelné k). (5) Levá suma je polynom P (y 1, y 2,..., y n ), takže podle předpokladu je to nula, pročež celý výraz je dělitelný k. Důkaz (b) je jen snadná reformulace (a); hledaný polynom Q je druhá suma ve výrazu (5). Na proměnnou a lze nahlížet jako na konstantu, jež je zahrnuta v koeficientech a i1 i 2 i 3. (c) je též jednoduché: polynom P má absolutní člen a 0, takže P (b 1 ) = a 0 + i 1 a i b i 1, P (b 2 ) = a 0 + i 1 a i b i 2, = a P (b 1 ) P (b 2 ) = i 1 a i(b i 1 b i 2) (absolutní členy se odečetly). Každý výraz typu b i 1 b i 2 lze rozložit do tvaru b i 1 b i 2 = (b 1 b 2 )(b n b n 2 1 b 2 + b n 3 1 b b 1 b n b n 1 2 ) (6) 20

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı

Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Jihomoravske centrum mezina rodnı mobility T-exkurze Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Brno 2013 Petr Pupı k Obsah Obsah 2 Šifrovací algoritmy RSA a ElGamal 12 2.1 Algoritmus RSA.................................

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické

Více

Algebra 2 Teorie čísel. Michal Bulant

Algebra 2 Teorie čísel. Michal Bulant Algebra 2 Teorie čísel Home Page Michal Bulant katedra matematiky, Přírodovědecká fakulta, Masarykova univerzita, Janáčkovo nám. 2a, 662 95 Brno E-mail address: bulant@math.muni.cz Page 1 of 103 Abstrakt.

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Historie matematiky a informatiky Cvičení 1

Historie matematiky a informatiky Cvičení 1 Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

0. Lineární rekurence Martin Mareš, 2010-07-04

0. Lineární rekurence Martin Mareš, 2010-07-04 0 Lineární rekurence Martin Mareš, 2010-07-04 V tomto krátkém textu se budeme zabývat lineárními rekurencemi, tj posloupnostmi definovanými rekurentní rovnicí typu A n+k = c 0 A n + c 1 A n+1 + + c k 1

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;

Více

1. Toky, řezy a Fordův-Fulkersonův algoritmus

1. Toky, řezy a Fordův-Fulkersonův algoritmus 1. Toky, řezy a Fordův-Fulkersonův algoritmus V této kapitole nadefinujeme toky v sítích, odvodíme základní věty o nich a také Fordův-Fulkersonův algoritmus pro hledání maximálního toku. Také ukážeme,

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie čísel a úvod do šifrování RNDr. Zbyněk Šír, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online

Více

Převyprávění Gödelova důkazu nutné existence Boha

Převyprávění Gödelova důkazu nutné existence Boha Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie),

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

1. MATEMATICKÁ LOGIKA A MNOŽINY

1. MATEMATICKÁ LOGIKA A MNOŽINY . MATEMATICKÁ LOGIKA A MNOŽINY Průvodce studiem V následující kapitole si připomeneme některé význačné poznatky z matematické logiky a teorie množin, tvořící základ množinově logického aparátu. S celou

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

z nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další).

z nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další). 0. Tři věty o prvočíslech Martin Mareš Úvodem Při analýze algoritmů se často využívají různá tvrzení o prvočíslech. Většina z nich byla poprvé dokázána v 9. století velikány analytické teorie čísel (Pafnutij

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Mnohočleny z různých stran Mgr. Karel Pazourek Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve Faktorizace čísel pomocí řetězových zlomků Tento text se zabývá algoritmem CFRAC (continued fractions algorithm) pro rozkládání velkých čísel (typicky součinů dvou velkých prvočísel). Nebudeme se zde zabývat

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Matematické symboly a značky

Matematické symboly a značky Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Modulární aritmetika, Malá Fermatova věta.

Modulární aritmetika, Malá Fermatova věta. Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl 4. přednáška 11MAG pondělí 3. listopadu 2014 verze: 2014-11-10 10:42 Obsah 1 Dělitelnost 1 1.1 Největší společný dělitel................................

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

Hlubší věty o počítání modulo

Hlubší věty o počítání modulo Hlubší věty o počítání modulo Jiří Velebil: X01DML 3. prosince 2007: Hlubší věty o počítání modulo 1/17 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL

Více

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy Úvod do matematiky Mgr. Radek Horenský, Ph.D. Důkazy Matematika a matematické chápání jako takové je založeno na logické výstavbě. Základními stavebními prvky jsou definice, věty a důkazy. Definice zavádějí

Více

Prvočísla, dělitelnost

Prvočísla, dělitelnost Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAG pondělí 3. listopadu 2013 verze: 2014-11-03 11:28 Obsah přednášky

Více

Testování prvočíselnosti

Testování prvočíselnosti Dokumentace zápočtového programu z Programování II (NPRG031) Testování prvočíselnosti David Pěgřímek http://davpe.net Úvodem V různých oborech (například v kryptografii) je potřeba zjistit, zda je číslo

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech

Více

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3. Asymetrické šifry Pavla Henzlová FJFI ČVUT v Praze 28.3.2011 Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.2011 1 / 16 Obsah 1 Asymetrická kryptografie 2 Diskrétní logaritmus 3 Baby step -

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více