Šroubovice a šroubové plochy

Rozměr: px
Začít zobrazení ze stránky:

Download "Šroubovice a šroubové plochy"

Transkript

1 Šroubovice a šroubové plochy Mgr. Jan Šafařík Konzultace č. 2 přednášková skupina P-BK1VS1 učebna Z240

2 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt VUT v Brně: Deskriptivní geometrie, verze 4.0 pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Soubor CD-ROMů Deskriptivní geometrie, Fakulta stavební VUT v Brně, ISBN Bulantová, Jana - Prudilová, Květoslava - Roušar, Josef - Šafařík, Jan - Zrůstová, Lucie: Sbírka zkouškových příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Fakulta stavební VUT v Brně, Bulantová, Jana - Hon, Pavel - Prudilová, Květoslava - Puchýřová, Jana - Roušar, Josef - Roušarová, Veronika - Slaběňáková, Jana - Šafařík, Jan - Šafářová, Hana, Zrůstová, Lucie: Deskriptivní geometrie pro I. ročník kombinovaného studia, Fakulta stavební VUT v Brně, Bulantová, Jana - Prudilová, Květoslava - Puchýřová, Jana - Roušar, Josef - Roušarová, Veronika - Slaběňáková, Jana - Šafařík, Jan - Šafářová, Hana, Zrůstová, Lucie: Sbírka řešených příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Fakulta stavební VUT v Brně, Puchýřová, Jana: Cvičení z deskriptivní geometrie, Část B, Akademické nakladatelství CERM, s.r.o., Fakulta stavební VUT, Brno Doporučená literatura: Holáň, Štěpán - Holáňová, Libuše: Cvičení z deskriptivní geometrie III. - Plochy stavebně technické praxe, Fakulta stavební VUT, Brno Moll, Ivo - Prudilová, Květoslava - Puchýřová, Jana - Slaběňáková, Jana - Roušar, Josef - Slatinský, Emil - Slepička, Petr - Šafářová, Hana - Šafařík, Jan - Šmídová, Veronika - Švec, Miloslav - Tomečková, Jana: Deskriptivní geometrie, verze pro I. ročník Stavební fakulty Vysokého učení technického v Brně, FAST VUT Brno,

3 Osnova Prostorová křivka Šroubovice Tečna šroubovice Oskulační rovina šroubovice 3

4 Základní pojmy z teorie křivek a ploch Deskriptivní geometrie pro kombinované studium BA03 Rovinná křivka Analytická y e x y x 2, Algebraická xy y x 0, x y 1 Transcendentní y cos x, y ln x Empirická graf teploty 4

5 Základní pojmy z teorie křivek a ploch Deskriptivní geometrie pro kombinované studium BA03 Plocha Analytická z xy x xz yz 2 3 ln, 2 0 Algebraická x z 2xy xz 0, x y z 1 Transcendentní 2 z cos x y Empirická topografické plochy 5

6 Základní pojmy z teorie křivek a ploch Deskriptivní geometrie pro kombinované studium BA03 Ptrostorová křivka Analytická Algebraická Pronik dvou algebraických válcovývh ploch x x y 1 z1 0 Transcendentní Pronik dvou nealgebraických válcových ploch 2 2 x y 1 x cos z Empirická topografická čára 6

7 Základní pojmy z teorie křivek a ploch Stupeň křivky / plochy Tečna Oskulační kružnice Normála Regulární bod Silgulární bod Inflexní bod Bod vratu 1. druhu Bod vratu 2. druhu Uzlový bod 7

8 Základní pojmy z teorie křivek a ploch Deskriptivní geometrie pro kombinované studium BA03 Tečná rovina plochy Tečná rovina prostorové křivky Oskulační rovina prostorové křivky Hlavní normála křivky Frenetův trojhran prostorové křivky Řídící kuželová plocha prostorové křivky Přímková plocha Tvořící přímka Torzální přímka Rozvinutelné plochy Nerozvinutelné (zborcené) plochy 8

9 Šroubový pohyb Šroubový pohyb vzniká složením z rovnoměrného otáčení (rotace) kolem dané osy o a rovnoměrného posunutí (translace) ve směru osy o. Zadání šroubového pohybu : -přímkou o osou šroubového pohybu -výškou závitu (resp. redukovanou výškou ) -směrem otáčení -směrem translačního pohybu 9

10 Šroubovice 10

11 Šroubovice 11

12 Šroubová plocha Šroubová plocha vzniká šroubovým pohybem dané křivky k (rovinné nebo prostorové), která sama o sobě není trajektorií daného šroubového pohybu. Křivka k se nazývá řídicí křivkou a osa o se nazývá osou šroubového pohybu. Na šroubové ploše jsou dvě soustavy tvořicích křivek 1. soustavu tvoří křivky, které dostaneme šroubováním křivky k. 2. soustavu tvoří šroubovice bodů křivky k. Všechny šroubovice mají stejnou osu a výšku závitu. 12

13 Základní terminologie Meridián plochy - řez šroubové plochy rovinou procházející osou o. Normální řez (příčný profil) - řez šroubové plochy rovinou kolmou na osu o. Řídicí křivku k lze nahradit meridiánem nebo normálním řezem. Neprotíná-li řídicí křivka k osu šroubovice, bod křivky k, který má nejmenší vzdálenost od osy, vytváří hrdelní šroubovici. Bod řídicí křivky k, který má největší vzdálenost od osy, vytváří rovníkovou šroubovici. 13

14 Dělení přímkových šroubových ploch Uzavřené šroubové plochy řídicí křivka k protíná osu šroubového pohybu. Otevřené šroubové plochy řídicí křivka k neprotíná osu šroubového pohybu. Přímá šroubová přímková plocha řídicí přímka je kolmá na osu šroubového pohybu. Šikmá (kosá) šroubová přímková plocha řídicí přímka není kolmá na osu šroubového pohybu. 14

15 Dělení přímkových šroubových ploch uzavřená šroubová plocha otevřená šroubová plocha pravoúhlá 15

16 Dělení přímkových šroubových ploch uzavřená šroubová plocha otevřená šroubová plocha kosoúhlá 16

17 Šroubové plochy užívané ve stavební praxi Přímkové šroubové plochy - vzniknou šroubovým pohybem přímky (úsečky), která není rovnoběžná s osou šroubového pohybu. Cyklické šroubové plochy - vzniknou šroubovým pohybem kružnice. Deskriptivní geometrie pro kombinované studium BA03 17

18 Užití šroubových ploch ve stavební praxi

19 Lednice - Minaret 19

20 Kostel svatého Mořice, Olomouc 20

21 Státní hrad Bouzov 21

22 22

23 23

24 Turning Torso Základní údaje: Architekt: Santiago Calatrava (Španělsko) Začátek stavby: červen 2001 Slavnostní otevření: Počet pater: 57 (+3 podzemní patra) Výška -190 m (nejvyšší obytná budova ve Skandinávii) Počet výtahů: 5 Maximální vychýlení (při tzv. 100letých bouřích): 30cm Podlahová plocha: 27,000 m² (15,000 m² bytové prostory) Počet jednotek: 140 (byty, kanceláře, vyhlídkové prostory) tloušťka zdí 2m v přízemí, 40cm ve špičce Využití: ve třech nejnižších krychlích kanceláře nejvyšší patro exkluzivní konferenční místnost pro mezinárodní setkání ostatní patra luxusní apartmány 24

25 Turning Torso 25

26 Turning Torso 26

27 Fordham Spire - návrh Architekt : Santiago Calatrava Mrakodrap Fordham Spire bude stát v Chicagu. Výška 610 m,115 pater Jádro budovy bude tvořit nosná konstrukce. Na tu budou upevňována jednotlivá patra. Každé patro bude oproti předchozímu natočeno asi o 2 a celkové zkroucení bude 270. Tak vznikne zkroucená a přitom pevná budova. Zkroucený tvar má také výhodu v nižší citlivosti na poryvy větru, protože mu klade menší odpor. Technologii zkroucené stavby si Calatrava vyzkoušel na budově Turning Torso ve švédkém Malmö. Stavba by měla být dokončena v roce

28 Fordham Spire - návrh 28

29 Fordham Spire - návrh 29

30 Tobogán 30

31 dále viz Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt VUT v Brně: Deskriptivní geometrie, verze 4.0 pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Soubor CD-ROMů Deskriptivní geometrie, Fakulta stavební VUT v Brně, ISBN

32 Konec Děkuji za pozornost

Šroubové plochy. Mgr. Jan Šafařík. Konzultace č. 3. přednášková skupina P-BK1VS1 učebna Z240

Šroubové plochy. Mgr. Jan Šafařík. Konzultace č. 3. přednášková skupina P-BK1VS1 učebna Z240 Šroubové plochy Mgr. Jan Šafařík Konzultace č. 3 přednášková skupina P-BK1VS1 učebna Z240 Šroubový pohyb Šroubový pohyb vzniká složením z rovnoměrného otáčení (rotace) kolem dané osy o a rovnoměrného posunutí

Více

Šroubovice a šroubové plochy

Šroubovice a šroubové plochy Šroubovice a šroubové plochy Mgr. Jan Šafařík Přednáška č. 10 11 přednášková skupina P-B1VS2 učebna Z240 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt

Více

BA03 Deskriptivní geometrie pro kombinované studium

BA03 Deskriptivní geometrie pro kombinované studium BA03 Deskriptivní geometrie pro kombinované studium RNDr. Jana Slaběňáková Mgr. Jan Šafařík přednášková skupina P-BK1VS1 učebna D185 letní semestr 2014-2015 Kontakt: Deskriptivní geometrie pro kombinované

Více

Smysl otáčení. Aplikace. Pravotočivá

Smysl otáčení. Aplikace. Pravotočivá Šroubovice Definice Šroubovice je křivka generovaná bodem A, který se otáčí kolem dané přímky o a zároveň se posouvá podél této přímky, oboje rovnoměrnou rychlostí. Pohyb bodu A šroubový pohyb Přímka o

Více

BA03 Deskriptivní geometrie

BA03 Deskriptivní geometrie BA03 Deskriptivní geometrie Mgr. Jan Šafařík přednášková skupina P-B1VS2 učebna Z240 letní semestr 2013-2014 Jan Šafařík: Úvod do předmětu deskriptivní geometrie Kontakt: Ústav matematiky a deskriptivní

Více

Klasické třídy ploch

Klasické třídy ploch Klasické třídy ploch Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Klasické třídy ploch klasické plochy jsou často generovány kinematicky, a to pohybem tvořicí křivky takto např. vznikají

Více

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ Abstrakt Příspěvek se zabývá historií výuky deskriptivní geometrie na Vysokém učení technickém.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného

Více

Lineární perspektiva

Lineární perspektiva Lineární perspektiva Mgr. Jan Šafařík Konzultace č. 4 přednášková skupina P-BK1VS1 učebna Z240 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt VUT v Brně:

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Přímkové šroubové plochy

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Přímkové šroubové plochy Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Přímkové šroubové plochy Vypracoval: Pavel Kačírek Třída: 8.M Školní rok: 2011/2012 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Deskriptivní geometrie BA03

Deskriptivní geometrie BA03 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie BA03 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 Určeno pro studenty studijních

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

s touto válcovou plochou. Tento případ nebudeme dále uvažovat.

s touto válcovou plochou. Tento případ nebudeme dále uvažovat. Šroubové plochy Šroubová plocha Φ(k) vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý, resp. pravotočivý je i plocha Φ levotočivá, resp. pravotočivá.

Více

Deskriptivní geometrie

Deskriptivní geometrie Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké

Více

Deskriptivní geometrie

Deskriptivní geometrie Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v prostoru Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace stejný přístup jako ve 2D shodné transformace (shodnosti,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A2. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A2. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vsoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A2 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2004 Obsah 1. Cvičení č.1 2 2. Cvičení č.2

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav

Více

Geometrie pro FST 2. Plzeň, 28. srpna 2013, verze 6.0

Geometrie pro FST 2. Plzeň, 28. srpna 2013, verze 6.0 Geometrie pro FST 2 Pomocný učební text František Ježek, Světlana Tomiczková Plzeň, 28. srpna 2013, verze 6.0 Předmluva Tento pomocný text vznikl pro potřeby předmětu Geometrie pro FST 2, který vyučujeme

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

pro obor Geodézie a kartografie

pro obor Geodézie a kartografie Vysoké učení technické v Brně Fakulta stavební pro obor Geodézie a kartografie BRNO 2006 Tento studijní materiál byl zpracován v rámci projektu Multimediální podpora studia matematiky a deskriptivní geometrie

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Modely zborcených ploch

Modely zborcených ploch Modely zborcených ploch Modely geometrických těles jsou vhodným názorným doplňkem pro zvyšování prostorové představivosti. U zborcených ploch, což jsou plochy přímkové, pak mohou být modely obzvláště jednouché.

Více

Geodézie a pozemková evidence

Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.2 - Kartografická zobrazení, souřadnicové soustavy Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Více

HVrchlík DVrchlík. Anuloid Hrana 3D síť

HVrchlík DVrchlík. Anuloid Hrana 3D síť TVORBA PLOCH Plochy mají oproti 3D drátovým modelům velkou výhodu, pro snadnější vizualizaci modelů můžeme skrýt zadní plochy a vytvořit stínované obrázky. Plochy dále umožňují vytvoření neobvyklých tvarů.

Více

Analytická geometrie v prostoru

Analytická geometrie v prostoru Analytická geometrie v prostoru Jméno autora: Ivana Dvořáková VY_32_INOVACE_MAT_182 Období vytvoření: listopad 2012 Ročník: 4. ročník střední odborné školy Tematická oblast: Matematické vzdělávání Předmět:

Více

Tematický plán Matematika pro 4. ročník

Tematický plán Matematika pro 4. ročník Tematický plán Matematika pro 4. ročník Vyučující: Klára Dolanová Hodinová dotace: 4 hodiny týdně Školní rok: 2015/2016 ZÁŘÍ 1. a UČ/str. 3 9 A: Opakování osvojené matematické operace, vlastnosti sčítání

Více

Cvičení 5 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ ODLITKU - OBROBKU

Cvičení 5 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ ODLITKU - OBROBKU Cvičení 5 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ ODLITKU - OBROBKU Cílem cvičení je vytvořit jednoduchý model obrobku z odlitku. Obrobek je odvozen z předem vytvořeného odlitku z předcházejícího cvičení.

Více

PŘEVODY S OZUBENÝMI KOLY

PŘEVODY S OZUBENÝMI KOLY PŘEVODY S OZUBENÝMI KOLY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

ŠROUBOVÉ A ZÁVITOVÉ SPOJE

ŠROUBOVÉ A ZÁVITOVÉ SPOJE ŠROUBOVÉ A ZÁVITOVÉ SPOJE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a

Více

DIPLOMOVÁ PRÁCE. Geometrie v architektuře Santiniho-Aichla

DIPLOMOVÁ PRÁCE. Geometrie v architektuře Santiniho-Aichla Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Růžena Štíchová Geometrie v architektuře Santiniho-Aichla Katedra didaktiky matematiky Vedoucí diplomové práce: PhDr. Alena Šarounová,

Více

Témata profilové maturitní zkoušky z předmětu Stavební konstrukce

Témata profilové maturitní zkoušky z předmětu Stavební konstrukce ta profilové maturitní zkoušky z předmětu Stavební konstrukce 1. Dimenzování dřevěných trámů na ohyb 2. Dimenzování dřevěných sloupů 3. Dimenzování ocelových sloupů 4. Dimenzování ocelových válcovaných

Více

Analytická geometrie v prostoru

Analytická geometrie v prostoru Analytická geometrie v prostoru Jméno autora: Ivana Dvořáková Období vytvoření: prosinec 2012 Ročník: 4. ročník střední odborné školy Tematická oblast: Matematické vzdělávání Předmět: Matematika 4. ročník

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Analytická

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.19 Strojní opracování dřeva Kapitola 2 Teorie

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_2_16 ŠVP Podnikání RVP 64-41-L/51

Více

Animované modely šroubových ploch

Animované modely šroubových ploch Animované modely šroubových ploch Jaroslav Bušek Abstrakt V příspěvku jsou prezentovány animované prostorové modely přímkových a cyklických šroubových ploch, které byly vytvořeny jako didaktické pomůcky

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Geometrie pro počítačovou grafiku - PGR020

Geometrie pro počítačovou grafiku - PGR020 Geometrie pro počítačovou grafiku - PGR020 Zbyněk Šír Matematický ústav UK Zbyněk Šír (MÚ UK) - Geometrie pro počítačovou grafiku - PGR020 1 / 18 O čem předmět bude Chceme podat teoretický základ nezbytný

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Mat2 - Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základních škol. Matematické semináře pro 9.

Mat2 - Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základních škol. Matematické semináře pro 9. škola: číslo projektu: název projektu: Základní škola Ivana Olbrachta, Semily CZ.1.07/1.4.00/21.0439 Inovace pro kvalitní výuku Název šablony: číslo šablony: 1 poř.č. označení oblast dle RVP okruh dle

Více

Sedlová plocha (hyperbolický paraboloid)

Sedlová plocha (hyperbolický paraboloid) Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického

Více

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením

Více

Deskriptivní geometrie II.

Deskriptivní geometrie II. Střední průmyslová škola elektrotechnická a Vyšší odborná škola Pardubice, Karla IV. 13 Deskriptivní geometrie II. Ing. Rudolf Rožec Pardubice 2001 Skripta jsou určena pro předmět deskriptivní geometrie

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE TECHNICKÁ DOKUMENTACE Jan Petřík 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Obsah přednášek 1. Úvod do problematiky tvorby technické dokumentace

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie VÝUKA DESKRIPTIVNÍ GEOMETRIE NA VYSOKÝCH ŠKOLÁCH V ČESKÉ REPUBLICE

Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie VÝUKA DESKRIPTIVNÍ GEOMETRIE NA VYSOKÝCH ŠKOLÁCH V ČESKÉ REPUBLICE Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie VÝUKA DESKRIPTIVNÍ GEOMETRIE NA VYSOKÝCH ŠKOLÁCH V ČESKÉ REPUBLICE Diplomová práce Vedoucí diplomové práce: RNDr. Miloslava

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Plochy zadané okrajovými křivkami

Plochy zadané okrajovými křivkami Plochy zadané okrajovými křivkami Lineární plát plocha je určena dvěma okrajovými křivkami, pokud by pro tyto křivky byly intervaly, v nichž leží hodnoty parametru, různé, provedeme lineární transformaci

Více

MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAIZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Učitelství 1. stupně ZŠ tématické plány předmětů matematika

Učitelství 1. stupně ZŠ tématické plány předmětů matematika Učitelství 1. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematika I aritmetika (KMD/MATE1) 2 Matematika 3 aritmetika s didaktikou (KMD/MATE3) 3 Matematika 5 geometrie (KMD/MATE5)

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU

SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro udržitelný rozvoj v sítí spolupracujících škol,

Více

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách.

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách. ŠROUBOVÉ PLOCHY 1. Základní úlohy na šroubových plochách. Šroubová plocha Φ vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý (pravotočivý je i

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

BRICSCAD V15. Objemové modelování

BRICSCAD V15. Objemové modelování BRICSCAD V15 Objemové modelování Protea spol. s r.o. Makovského 1339/16 236 00 Praha 6 - Řepy tel.: 235 316 232, 235 316 237 fax: 235 316 038 e-mail: obchod@protea.cz web: www.protea.cz Copyright Protea

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice

Více

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek MATEMATIKA ŘÍKLADY NA RCVIČENÍ arametrický ois křivek 1 Jedánakřivka k(t)=[t t+ ; t 3 3t], t R. Nakresletečástkřivk kro t 3 ;3.Naišterovnicetečenkřivkvbodech k( 1), k(1) a k(). Dosazením několika hodnot

Více

CZ.1.07/1.5.00/34.0527

CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Podstata frézování Zhotoveno ve školním roce: 2011/2012. Princip a podstata frézování. Geometrie břitu frézy

Podstata frézování Zhotoveno ve školním roce: 2011/2012. Princip a podstata frézování. Geometrie břitu frézy Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice POZEMNÍ STAVITELSTVÍ II Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

Předmět: Konstrukční cvičení - modelování součástí ve 3D. Téma 5: Další možnosti náčrtů a modelování

Předmět: Konstrukční cvičení - modelování součástí ve 3D. Téma 5: Další možnosti náčrtů a modelování Předmět: Konstrukční cvičení - modelování součástí ve 3D Téma 5: Další možnosti náčrtů a modelování Učební cíle Vytvářet obrysy tvarů v rovinách jiných, než základní rovině XY. Vytváření pracovních tvarů

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků Rozezná, pojmenuje, vymodeluje a popíše základní rovinné

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

. Opakovací kurs středoškolské matematiky podzim 2015

. Opakovací kurs středoškolské matematiky podzim 2015 . Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Státní zkouška aritmetika Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Teoretická aritmetika 1. Prvky výrokové logiky - výrok, skládání výroků, abeceda výrokové logiky, výrokové formule,

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

ANALYTICKÁ GEOMETRIE ELIPSY

ANALYTICKÁ GEOMETRIE ELIPSY Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ANALYTICKÁ

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

DYNAMIKA ROTAČNÍ POHYB

DYNAMIKA ROTAČNÍ POHYB DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)

Více