Jaderné elektrárny. Tomáš Vysloužil. Fakulta výrobních technologií a managementu Univerzita Jana Evangelisty Purkyně Ústí nad Labem

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Jaderné elektrárny. Tomáš Vysloužil. Fakulta výrobních technologií a managementu Univerzita Jana Evangelisty Purkyně Ústí nad Labem"

Transkript

1 Jaderné elektrárny Tomáš Vysloužil Fakulta výrobních technologií a managementu Univerzita Jana Evangelisty Purkyně Ústí nad Labem Sokolov, Registrační číslo: CZ.1.07/2.3.00/ Název projektu: Věda pro život, život pro vědu

2 Jaderné elektrárny Jaderná elektrárna slouží k přeměně vazebné energie atomů na energii elektrickou. Energii je možné získat: fúzí lehkých jader atomů štěpením těžkých jader atomů

3 Závislost vazebné energie jádra připadající na jeden nukleon ɛ j. Nejstabilnější prvky jsou s největší hodnotou ɛ j. Rozdíly v hodnotách ɛ j nestabilních prvků v jádře umožňují uvolňování jaderné energie - lehká jádra mají tendenci k syntéze a těžká jádra ke štěpení. [1]

4 Jaderné elektrárny Na jakém principu pracují jaderné elektrárny? fúze jader atomů? štěpení jader atomů

5 Uvolněná energie Jednotka uvolněné energie je elektronvolt (značka ev). Jeden elektronvolt odpovídá kinetické energii, kterou získá elektron urychlený ve vakuu napětím jednoho voltu. Používá se běžně k měření malých množství energie zejména v částicové fyzice, fyzikální chemii apod. Je to jednotka technicky výhodná vzhledem k běžným metodám měření energie částic. 1 ev = 1, (35) J

6 Jaderná fúze na Slunci Nejjednodušší reakcí jaderné fúze je spojování dvou jader vodíku na jádro deuteria: 1 1H H 2 1 H + e + + ν Je výchozí reakcí cyklu, v němž vzniká helium a sluneční záření. K získávání energie na Zemi však není vhodná, protože probíhá velmi pomalu a s malou pravděpodobností - v časovém měřítku miliard let. To je důvodem, proč Slunce září pomalu a dlouhodobě.

7 Jaderná fúze K získávání energie z jaderné fúze se předpokládá využití reakce mezi jádry deuteria 2 1 H a tritia 3 1H za vzniku částice α a neutronu 2 1H H 4 2 He n MeV Obrázek: Fúze deuteria a tritia [2]

8 Jaderná fúze Tato reakce může probíhat dvěma způsoby: H H 3 2 He n MeV 2 1H H 3 1 H H MeV H - vodík, jádro obsahuje jen proton H - deuterium, jádro vodíku obsahující jeden proton a jeden neutron, označuje se D 3 1H - tritium, jádro vodíku obsahující jeden proton a dva neutrony, označuje se T

9 Jaderná fúze Ekologicky zajímavé jsou tzv. čisté reakce, při nichž nevznikají neutrony ani záření γ, jako např.: 1 1H B 3 4 2He MeV 3 2He He 4 2 He H MeV 2 1H H 4 2 He n MeV 2 1H He 4 2 He H MeV 6 3Li H 4 2 He He MeV 6 3Li H 3 2 He He MeV 7 3Li H 4 2 He He H MeV 7 3Li H 4 2 He He MeV

10 TOKAMAK Aby se jádra mohla přiblížit na dosah jaderných vazeb, je třeba jim dodat energii o velikosti řádově MeV, čehož lze dosáhnout zahřátím plazmatu na teplotu vyšší než 10 6 K. Pro výzkum jaderné fúze se používá TOKAMAK (toroidalnaja kamera s magnitnymi katuškami - toroidní komora v magnetických cívkách). V tokamaku je plazma ohříváno v nádobě prstencového (toroidního) tvaru na sto milionů Kelvinů. Byl navržen ruskými fyziky Igorem Jevgeněvičem Tammem a Andrejem Sacharovem.

11 TOKAMAK Obrázek: Základní princip tokamaku tokamak tvoří sekundární závit obřího transformátoru [3]

12 Tokamaky v ČR V Ústavu fyziky plazmatu: tokamak CASTOR (Czech Academy of Sciences TORus) [4]. Vyroben byl v roce 1959 a pracoval v SSSR, od roku 2009 slouží pro výukové účely FJFI ČVUT pod názvem GOLEM. od 2009 tokamak COMPASS (COMPact ASSembly), který byl zkonstruován v 80. letech ve výzkumném centru v Culhamu v Anglii jako flexibilní tokamak především pro studium fyziky v plazmatu s kruhovým a tzv. D průřezem citecompass.

13 Tokamak ITER Ve francouzském městě Cadarache se staví tokamak ITER (International Thermonuclear Experimental Reactor - Mezinárodní termonukleární experimentální reaktor), který by měl jako první vyrobit více energie, než jí spotřebuje na udržení plazmatu. Nebude dodávat elektrickou energii do sítě. Vyrobené teplo bude mařeno v chladících věžích.

14 Tokamaky JET a ASDEX V současné době jsou v Evropě v provozu pouze dva tokamaky, které mají magnetickou konfiguraci podobnou tokamaku ITER a pracují v režimu se zlepšeným udržením plazmatu. tokamak JET (Joint European Torus), Oxford, Velká Británie, produkoval 65% dodávané energie tokamak ASDEX-U, Institut fur Plasmaphysik, Garching, Německo Tokamaky JET a ASDEX jsou největší experimentální zařízení tohoto typu na světě.

15 Obrázek: Srovnání velikostí evropských tokamaků

16 JET ITER poloměr m objem m energetický poměr výkon MW Obrázek: Srovnání tokamaků JET a ITER [5]

17 Obrázek: Tokamak ITER [5]

18 Štěpení jader Energeticky využitelná energie jader atomů je zatím pouze štěpením jader atomů těžkých jader. V jaderných elektrárnách se používá štěpení jader těžkých kovů (uranu U, plutonia Pu, thoria Th). Ostřelováním těžkých jader neutrony 1 0n dojde ke štěpení atomu na dva atomy a uvolnění dalších neutronů a uvolnění energie. Štěpením U vznikne průměrně 2.5 neutronů a štěpením Pu vznikne průměrně 3.02 neutronů.

19 Jaderný reaktor Štěpení jader probíhá v jaderných reaktorech. Rozdělení reaktorů podle druhu neutronů: tepelné reaktory - ke štěpení se používá zpomalených (tepelných) neutronů rychlé reaktory - ke štěpení se používá nezpomalených (rychlých) neutronů

20 Jaderný reaktor Rozdělení reaktorů podle použitého chladiva - reaktory chlazené: plynem (CO 2, helium, vodní pára, vzduch) kapalinou (H 2 O, D 2 O, organické látky) tekutými kovy (sodík, NaK), tekutými solemi (UF 4 )

21 Jaderné reaktory Štěpení uranu je možné vyjádřit rovnicí U n A B X + C D Y n MeV, kde A B X a C DY znamenají štěpné produkty vzniklé rozštěpením jádra uranu. Nejčastěji vznikají dva nestejné odštěpky v hmotnostním poměru 2 : 3. Příklady štěpení U: U n Rb Cs n U n Ba Kr n U n Rb Cs n

22 Obrázek: Procentuální výtěžek štěpení jader v závislosti na hmotnostním čísle A. [6] U, U a Pu

23 Rychlé a tepelné neutrony Štěpná reakce U rychlými neutrony vzniklými při štěpné reakci je velmi malá. Pravděpodobnost jaderné reakce je velká pro tepelné, tj. pro pomalejší neutrony. Neutrony se zpomalují interakcí s jinými jádry atomů, kterým říkáme moderátory. Nejúčinnější moderátory jsou jádra lehkých prvků (vodíku, deuteria, berilia a uhlíku).

24 Moderátory Moderátory pro zpomalení neutronů: grafit už se nepoužívá u nově stavěných elektráren( byl např. v 1. reaktoru v Obninsku, v Černobylu) D 2 O těžká voda, je možné použít přírodní (neobohacený) uran, drahý moderátor( ve vodě obsažena 1 : 5000) H 2 O nutné mírné obohacení uranu H 2 O, D 2 O při havarijním přehřátí reaktoru snižují hustotu a přestávají tím dobře moderovat, rychlé neutrony se pohltí 238 U a reakce se zastaví - kladná zpětná vazba vodních reaktorů. Grafit i při rozžhavení reaktoru stále dobře moderuje neutrony.

25 Multiplikační koeficient Multiplikační koeficient k udává poměr neutronů ke štěpení: k = počet štěpících neutronů v nové generaci počet štěpících neutronů v předcházející generaci Podle velikosti multiplikačního koeficientu rozlišujeme tři základní stavy reaktoru: k = 1 kritický stav reaktoru, počet štěpících neutronů se nemění k < 1 podkritický stav reaktoru, počet štěpících neutronů klesá k > 1 nadkritický stav reaktoru, počet štěpících neutronů se zvětšuje

26 Reaktivita reaktoru Počet neutronů se snižuje zasouváním regulačních tyčí a zvyšováním množství kyseliny borité v chladivu. Pokud jsou v multiplikačním koeficientu zohledněny skutečné podmínky reálného reaktoru, nazýváme jej "efektivní multiplikační koeficient"a značíme jej k ef. V praxi častěji popisujeme stavy reaktoru pomocí "reaktivity reaktoru"ρ, která je definována vztahem: ρ = k ef 1 k ef Hodnota reaktivity reaktoru: ρ = 0 kritický stav reaktoru ρ < 0 podkritický stav reaktoru ρ > 0 nadkritický stav reaktoru

27 První řízená řetězová štěpná reakce USA 2. prosince 1942 reaktoru CP-1 v podzemí stadionu Chicagské univerzity reaktor postavil Enrico Fermi

28 První řízená řetězová štěpná reakce USA 2. prosince 1942 reaktoru CP-1 v podzemí stadionu Chicagské univerzity reaktor postavil Enrico Fermi

29 První řízená řetězová štěpná reakce Obrázek: První řízená řetězová štěpná reakce [7]

30 První jaderná elektrárna připojená k síti Obninsk, SSSR připojení k síti od roku 1959 ukončena produkce elektřiny a byl používán jako výzkumný provoz ukončen 29. dubna 2002 tepelný výkon 30 MWt elektrický výkon 6 MWe, vlastní spotřeba 1 MWe vodou chlazený a grafitem moderovaný 151 kanálů, z toho 23 pro regulační tyče

31 Typy jaderných reaktorů V jaderných elektrárnách ve světě pracovalo v roce jaderných reaktorů několika různých typů. Jejich celkový instalovaný výkon je více než MWe.

32 Jaderný reaktor PWR, VVER Pressurized light-water moderated and cooled Reactor Vodo-Vodjanoj Energetičeskij Reaktor nejrozšířenější typ, asi 57% všech jaderných reaktorů palivo - obohacený UO 2 nebo PuO 2 ve tvaru válečků uspořádaných do palivových tyčí aktivní zóna - palivové tyče poskládané do souborů, v reaktoru - ocelová tlaková nádoba, tlak 15.7 MPa chladivo - H 2 O, která se po ohřátí (na 325 C) vede do parogenerátoru, kde předá teplo vodě sekundárního okruhu moderátor - H 2 O účinnost elektrárny 32.7 %

33 Jaderný reaktor PWR, VVER Obrázek: Reaktor VVER [8]

34 Jaderný reaktor BWR Boiling Water Reactor druhý nejrozšířenější typ palivo - obohacený UO 2 nebo PuO 2 ve tvaru válečků uspořádaných do palivových tyčí aktivní zóna - palivové tyče poskládané do souborů, v reaktoru - ocelová tlaková nádoba, tlak 7 MPa chladivo - H 2 O, v aktivní zóně vzniká pára (286 C), která se po oddělení vlhkosti vede na turbínu - jednookruhová elektrárna moderátor - H 2 O účinnost elektrárny 33.3 %

35 Jaderný reaktor BWR Obrázek: Reaktor BWR [8]

36 Těžkovodní reaktor CANDU - PHWR vyvinut v Kanadě, exportován do Indie, Pákistánu, Argentiny, Koreje a Rumunska palivo - přírodní uran ve formě oxidu uraničitého aktivní zóna - umístěna v nádobě ve tvaru ležícího válce, která má v sobě vodorovné průduchy pro tlakové trubky chladivo - D 2 O, která se po ohřátí (na 305 C) vede do parogenerátoru, kde předá teplo vodě sekundárního okruhu moderátor - D 2 O, moderační schopnost se snižuje se zvyšující se teplotou účinnost elektrárny 30.1 %

37 Těžkovodní reaktor CANDU - PHWR Obrázek: Reaktor CANDU [8]

38 Jaderný reaktor MAGNOX, GCR anglicky magnesium oxid = Magnox Velká Británie a Japonsko palivo - přírodní kovový uran ve formě tyčí pokrytých oxidem magnezia aktivní zóna - skládá se z grafitových bloků (moderátor), kterými prochází několik tisíc kanálů, do každého se umíst uje několik palivových tyčí, je uzavřena v kulové ocelové nádobě s betonovým stíněním výměna paliva - kontinuální za provozu chladivo - CO 2, který se po ohřátí (na 400 C) vede do parogenerátoru, kde předá teplo vodě sekundárního okruhu moderátor - grafit účinnost elektrárny 28.5 %

39 Jaderný reaktor MAGNOX, GCR Obrázek: Reaktor MAGNOX [8]

40 Jaderný reaktor AGR Advanced Gas Cooled, Graphite Moderated Reactor Velká Británie - 14 reaktorů Velká Británie palivo - uran obohacený izotopem 235 U ve formě UO 2, pokrytí nerez ocelí max. teplota paliva 1500 C chladivo - CO 2, který se po ohřátí (na 650 C) vede do parogenerátoru, kde předá teplo vodě sekundárního okruhu moderátor - grafit účinnost elektrárny 42 %

41 Jaderný reaktor AGR Obrázek: Reaktor AGR [8]

42 Jaderný reaktor RBMK používá se výhradně na území bývalého SSSR, další se nestaví první jaderná elektrárna v Obninsku reaktor v Černobylu palivo - přírodní nebo mírně obohacený uran ve formě UO 2 aktivní zóna - palivové tyče jsou uloženy v kanálech, kudy proudí chladivo, tlak 6.9 MPa chladivo - H 2 O, v tlakových kanálech vzniká pára (284 C), která po oddělení vlhkosti pohání turbínu, elektrárna je jednookruhová moderátor - grafit, obklopuje kanály účinnost elektrárny 31.3 %

43 Jaderný reaktor RBMK Obrázek: Reaktor RBMK [8]

44 Jaderný reaktor HTGR High Temperature Gas Cooled Reactor vysokoteplotní reaktory jsou zatím vyvinuty pouze experimentálně v Německu, USA a Velké Británii palivo - vysoce obohacený uran ve formě malých kuliček UO 2 (průměr asi 0.5 mm). Kuličky povlékané třemi vrstvami karbidu křemíku a uhlíku jsou rozptýleny v koulích grafitu, velkých asi jako tenisový míček. Grafit slouží jako pevná, tepelně odolná schránka uranu i vznikajících radioaktivních zbytků i jako moderátor. Palivo se volně sype do aktivní zóny, na dně je postupně odebíráno. chladivo - He proháněné skrze aktivní zónu účinnost elektrárny 40 %

45 Jaderný reaktor HTGR Obrázek: Reaktor HTGR [8]

46 Jaderný reaktor FBR rychlý množivý reaktor FBR, v Rusku v Bělojarsku BN , BN pracoval ve Francii (Superphénix) a Velké Británii v USA, Německu a Japonsku - demonstrační palivo - plutonium ve směsi oxidu PuO 2 a UO 2, BN obohacení na % 235 U. Vyprodukuje více nového plutoniového paliva, než kolik ho sám spálí. aktivní zóna - svazky palivových tyčí jsou obklopeny plodivým pláštěm z ochuzeného uranu, tlak 0.25 MPa chladivo - sodík - dva okruhy, který ze sekundárního okruhu (620 C) proudí do parogenerátoru, kde ve třetím okruhu ohřívá vodu na páru bez moderátoru, řízená štěpná reakce v něm probíhá působením nezpomalených, rychlých neutronů účinnost elektrárny 42 %

47 Jaderný reaktor FBR Obrázek: Reaktor FBR [8]

48 Vývoj štěpných reaktorů Reaktory IV. generace - šest nových typů reaktorů, čtyři jsou rychlé a dva jsou klasické: Gas-Cooled Fast Reactor (GFR) - rychlý reaktor chlazený plynem Lead-Cooled Fast Reactor (LFR) - rychlý reaktor chlazený olovem Molten Salt Reactor (MSR) - reaktor chlazený roztavenou solí Sodium-Cooled Fast Reactor (SFR) - rychlý reaktor chlazený sodíkem Supercritical-Water Reactor (SCWR) - reaktor chlazený vodou s nadkritickým cyklem Very-High-Temperature Reactor (VHTR) - reaktor s velmi vysokými teplotami

49 Jaderné elektrárny v ČR V České republice jsou provozovány dvě jaderné elektrárny s šesti reaktory: Dukovany MWe Temelín MWe a 1060 MWe Roční výroba je v každé elektrárně asi 15 TWh a roční využití je přes 80 %.

50 Obrázek: Schéma jaderné elektrárny [9]

51 Jaderná elektrárna Dukovany je první provozovanou jadernou elektrárnou v České republice. V Jaderné elektrárně Dukovany jsou instalovány čtyři tlakovodní reaktory (PWR). Projektové označení těchto reaktorů je VVER 440 typ V 213. Uvedení do provozu:

52 Jaderná elektrárna Dukovany Na projektu, výrobě zařízení a výstavbě elektrárny se podílely následující subjekty: Podklady projektu: firma LOTEP (bývalý SSSR) Prováděcí projekt: Energoprojekt Praha Generální dodavatel stavby: Průmyslové stavby Brno Generální dodavatel technologie: Škoda Praha Konstrukce, výroba, dodávka rozhodujících zařízení: Reaktory: Škoda Plzeň Parogenerátory: Vítkovice Turbogenerátory: Škoda Plzeň

53 Jaderná elektrárna Dukovany Původní instalované parametry každého reaktoru: tepelný výkon 1375 MW elektrický výkon 440 MWe Od roku 2012 jsou na všech reaktorech využity projektové rezervy (zvýšení výkonu reaktoru o 5 %) a vyměněny turbíny: tepelný výkon 1444 MW elektrický výkon 510 MWe Dva hlavní výrobní bloky. V každém jsou dva reaktory. Na jeden reaktor jsou dvě 255 MW turbostrojí s jedním jednoproudým vysokotlakým a dvěma dvouproudými nízkotlakými stupni turbíny.

54 Jaderná elektrárna Dukovany V areálu jaderné elektrárny Dukovany jsou kromě čtyř reaktorových bloků další dvě jaderná zařízení: sklad použitého jaderného paliva, ve kterém je použité palivo skladováno v transportně-skladovacích kontejnerech CASTOR 440/84. úložiště nízko a středně radioaktivních odpadů (z EDU, ETE a ÚJV Řež), které je ve vlastnictví státu.

55 Jaderná elektrárna Temelín V Jaderné elektrárně Temelín jsou instalovány dva tlakovodní reaktory (PWR). Projektové označení těchto reaktorů je VVER Uvedení do provozu: Instalované parametry každého reaktoru: tepelný výkon 3000 MW elektrický výkon 1000 MWe Po výměně vysokotlaké části turbíny byl elektrický výkon 1020 MWe

56 Jaderná elektrárna Temelín V roce 2013 bylo provedeno zvýšení tepelného výkonu obou reaktorů na 104% (elektrický výkon 1060 MWe). Po výměně nízkotlaké turbíny (čtyřstupňové za pětistupňové) bude výkon 1090 MWe: blok 1 - výměna byla provedena v roce 2014 blok 2 - výměna bude provedena v roce 2015 Na jeden reaktor je jedno turbostrojí s jedním jednoproudým vysokotlakým a třemi dvouproudými nízkotlakými stupni turbíny.

57 Části jaderné elektrárny primární okruh sekundární okruh terciální okruh

58 Obrázek: Schéma jaderné elektrárny [9]

59 Primární okruh reaktor parogenerátory hlavní cirkulační čerpadla cirkulační potrubí primárního okruhu kompenzátor objemu

60 Jaderný reaktor slouží k udržování řízené štěpné řetězové reakce a umožňuje plynule odvádět tepelnou energii uvolňovanou při štěpení ocelová tlaková nádoba opatřená odnímatelným víkem uvnitř je nachází aktivní zóna, v níž je uspořádáno jaderné palivo a regulační orgány pro řízení a kontrolu štěpné reakce.

61 Jaderný reaktor oběhové (hlavní cirkulační) čerpadlo kompenzátor objemu - kompenzace objemových změn, regulace tlaku parogenerátor - horizontální výparníkový výměník, předává své teplo vodě sekundárního okruhu potrubí primárního okruhu -průměr 500 milimetrů a síla stěny 32 mm

62 Jaderný reaktor - Temelín výška 11 m průměr 4.5 m navržena na tlak 17.6 MPa při teplotě 350 provozní tlak je 15.7 MPa při teplotách nízkolegovaná chrom - nikl - molybden - vanadová ocel

63 Sekundární okruh Přeměňuje tepelnou energii páry v mechanickou energii rotoru parní turbíny. Základními zařízeními tohoto okruhu jsou: turbína a generátor kondenzátor - tlak MPa, teplota 30 C kondenzátní čerpadla odplyňovací nádrž napájecí čerpadla regenerační ohříváky - ohřev kondenzátu

64 Terciální okruh Ochlazuje vodu sekundárního okruhu v kondenzátoru a vytváří tak co největší turbínou využitelný podtlak, aby účinnost turbíny byla co nejvyšší. Čím nižší je teplota chladící vody v terciálním okruhu, tím vyšší je podtlak v kondenzátoru. Základními zařízeními tohoto okruhu jsou: chladící věže oběhová čerpadla potrubí a kanály chladící vody

65 Chladící věže Chladící věž ve tvaru rotačního hyperboloidu. Ve spodní části věže je kruhový bazén, v němž se ochlazená voda shromažd uje a oběhovými čerpadly chladící vody je dopravována zpět do kondenzátoru turbín. U elektráren postavených u moře nebo u velkých řek se nestaví chladící věže.

66 Jaderné palivo Izotopu uranu 235 v čerstvém palivu jsou asi 4%. Protože přírodní uran obsahuje pouze 0.7% uranu 235 U, musí dojít před výrobou palivových tablet k takzvanému obohacení uranu. Provozem dochází štěpením ke snižování obsahu 235 U. V obou našich JE se používalo palivo, které bylo projektováno na tříleté použití v reaktoru (takzvanou tříletou palivovou kampaň). V současné době se v JE Dukovany používá palivo projektované na pětiletou palivovou kampaň. V JE Temelín je kampaň čtyřletá. Část paliva (pětina v EDU, čtvrtina v ETE) se vymění každých 12 měsíců.

67 Použité jaderné palivo Kazety s použitým jaderným palivem, které se vyjímají z reaktoru vypadají stejně jako kazety s čerstvým palivem. Jsou nepoškozené a čisté. Významný rozdíl je však v radioaktivitě látek, které obsahují. Během provozu roste téměř z nuly postupně tak, jak narůstá množství produktů štěpení v jaderném palivu. Rozštěpením jednoho atomu U 235 vzniknou dva nestabilní atomy různých prvků, které se dále přeměňují. Po vyjmutí paliva z reaktoru dochází k jaderným přeměnám štěpných produktů a k uvolňování gama záření, neutronů a tepla, které musí být odváděno.

68 Mezisklad použitého paliva - Dukovany Vnější průměr kontejneru CASTOR je 2.66 m a výška 4.2 m. Hmotnost prázdného kontejneru je 93.7 tun, naplněného 112 tun. Pro uložení 84 použitých palivových souborů. Obrázek: Mezisklad použitého jaderného paliva - Dukovany, 1995, 60 kontejnerů [10], Dukovany nový mezisklad, 2006, 133 kontejnerů [11]

69 Mezisklad použitého paliva - Temelín Výška kontejneru je 5.5 m a průměr 2.3 m. Prázdný váží 100 tun a plný 115 tun. Pro uložení 19 použitých palivových souborů. Obrázek: Mezisklad použitého jaderného paliva Temelín, 2010, 152 kontejnerů [12]

70 Manipulace s použitým palivem 1 - kontejment, 2 - reaktorová nádoba, 3 - bazén použitého paliva, 4 - zavážecí stroj, 5 - budova skladu použitého paliva, 6 - kontejner na použité palivo Obrázek: Schéma manipulace s použitým palivem [13]

71 Kontejner CASTOR Obrázek: Schéma kontejneru CASTOR [13]

72 JE Dukovany a Temelín

73 JE Dukovany

74 JE Dukovany

75 JE Temelín

76 JE Temelín

77 Podíl jaderné energie na výrobě elektřiny Která země má největší podíl JE na výrobě elektrické energie?

78 Podíl jaderné energie na výrobě elektřiny Obrázek: Podíl jaderné energie na výrobě elektřiny [14]

79 Podíl jaderné energie na výrobě elektřiny Obrázek: Podíl jaderné energie na výrobě elektřiny [14]

80 Podíl jaderné energie na výrobě elektřiny [15] ZEMĚ REAKTORY V REAKTORY PLÁNOVANÉ NÁVRH SPOTŘEBA VÝROBA V JE PROVOZU VE VÝSTAVBĚ REAKTORY REAKTORŮ URANU /1 2015/1 2015/1 2015/ TWh % e No. MWe net No. MWe MWe MWe No. No. gross gross gross tonnes U Argentina 5,7 4, Armenia 2,2 29, Bangladesh 0,0 0, Belarus 0,0 0, Belgium 40,6 52, Brazil 13,8 2, Bulgaria 13,3 30, Canada 94,3 16, Chile 0,0 0, China 104,8 2, ČR 29,0 35, Egypt 0,0 0, Finland 22,7 33, France 405,9 73, Germany 92,1 15, Hungary 14,5 50, India 30,0 3,

81 Podíl jaderné energie na výrobě elektřiny [15] ZEMĚ REAKTORY V PROVOZU REAKTORY VE VÝSTAVBĚ VÝROBA V JE /1 2015/1 TWh % e No. MWe net No. MWe gross PLÁNOVANÉ REAKTORY NÁVRH REAKTORŮ SPOTŘEBA URANU /1 2015/1 No. MWe MWe No. gross gross tonnes U Indonesia 0,0 0, Iran 3,9 1, Israel 0,0 0, Italy 0,0 0, Japan 13,9 1, Jordan 0,0 0, Kazakhstan 0,0 0, Korea DPR (N) 0,0 0, Korea RO (S) 132,5 27, Lithuania 0,0 0, Malaysia 0,0 0, Mexico 11,4 4, Netherlands 2,7 2, Pakistan 4,4 4, Poland 0,0 0, Romania 10,7 19, Russia 161,8 17,

82 Podíl jaderné energie na výrobě elektřiny [15] ZEMĚ REAKTORY V PROVOZU REAKTORY VE VÝSTAVBĚ VÝROBA V JE /1 2015/1 TWh % e No. MWe net No. MWe gross PLÁNOVANÉ REAKTORY NÁVRH REAKTORŮ SPOTŘEBA URANU /1 2015/1 No. MWe MWe No. gross gross tonnes U Saudi Arabia 0,0 0, Slovakia 14,6 51, Slovenia 5,0 33, South Africa 13,6 5, Spain 54,3 19, Sweden 63,7 42, Switzerland 25,0 36, Taiwan 39,8 19, Thailand 0,0 0, Turkey 0,0 0, Ukraine 78,2 43, UAE 0,0 0, UK 64,1 18, USA 790,2 19, Vietnam 0,0 0, WORLD** 2 358,

83 Přírodní reaktor V roce 1972 byl v uranovém dole v Oklo v Gabonu objeven přírodní štěpný reaktor. V této oblasti bylo nalezeno šestnáct reaktorů, které pracovaly asi před 1.7 miliardami let a jejich průměrný výkon byl 100 kw a pracoval asi 150 tisíc let. K objevu došlo při zjištění koncentrace 235 U %, která je nižší než koncentrace kdekoliv na světě, která je %. Následně odebrané vzorky obsahovaly dokonce jen 0.3 % 235 U. Tento nízký obsah je zapříčiněn spotřebováním 235 U v přírodním reaktoru.

84 Přírodní reaktor Poločas rozpadu 235 U je 0.7 miliard let a poločas rozpadu 238 U je 4.5 miliard let. To je důvod, že koncentrace 235 U v přírodním uranu klesá. Před 1.7 miliardami let byla koncentrace 235 U asi 3 %, což postačovalo se spuštění jaderné reakce jako v našich tlakovodních reaktorech s nízko obohaceným uranem moderovaných vodou. Zřejmě byl moderován vodou. Nefungoval kontinuálně, ale jako gejzír. Byl v chodu zhruba půl hodiny a poté 2.5 hodiny chladnul. Tento koloběh se opakoval do ukončení jaderné reakce kvůli nízkému zastoupení 235 U a tvorbě reaktorových jedů.

85 Stupnice INES pro jaderné havárie V roce 1991 byla Mezinárodní agenturou pro atomovou energii (MAAE) zavedena stupnice INES (The International Nuclear Event Scale - Mezinárodní stupnice jaderných událostí). - odchylky nemají žádný bezpečnostní význam - nehody - 1, 2, 3 - neohrožující okolí a vně lokality elektrárny nevyžadující žádná mimořádná opatření - havárie - 4, 5, 6, 7 - vyžadující v důsledku většího úniku radioaktivity do okolí opatření, obsažená v přijatých havarijních plánech

86 Stupnice INES pro jaderné havárie Každá účastnická země je povinná v přesně stanoveném termínu informovat koordinační centrum MAAE o každé nehodě a havárii. Absolutní většina hlášených událostí je pod stupněm 3. Události, které vůbec nesouvisejí s bezpečností se označují jako události mimo stupnici. Obrázek: Stupnice INES [16]

87 Havárie v JE INES 4 - JE A-1 v Jaslovských Bohunicích INES 5 - JE Windscale (Anglie) a JE Three Mile Island (USA) INES 7 - Černobyl (Ukrajina, dříve SSSR) dubna 1986, Fukušima (Japonsko) - březen 2011

88 Havárie v JE Černobyl Bloky JE Černobyl [15]: , uzavřen v roce , uzavřen po požáru strojovny v roce , uzavřen v roce , havárie výstavba zastavena v roce výstavba zastavena v roce 1988

89 Havárie v JE Fukušima Při zemětřesení byly automaticky odstaveny provozované reaktory 1, 2 a 3. Na reaktorech 4, 5 a 6 probíhala odstávka. O hodinu později dorazila k elektrárně čtrnáctimetrová vlna. Byl poškozen systém chlazení a zničeny nádrže paliva pro dieselgenerátory. Došlo k odhalení paliva a k produkci vodíku, který byl odpouštěn kvůli vysokému tlaku. V horní části budovy reaktoru došlo k výbuchu vodíku. Z elektrárny unikla radiace.

90 Výroba a provozované bloky JE v Japonsku [15] rok výroba [TWh] z JE [%] počet reaktorů výkon [MW] Probíhá proces schvalování spuštění reaktorů.

91 Výroba a provozované bloky JE v Německu [15] rok výroba [TWh] z JE [%] počet reaktorů výkon [MW]

92 [1] [2] [3] [4] [5] https://www.euro-fusion.org/2014/01/comparison-of-jetand-iter/ [6] [7] how_the_first_chain_reaction_changed_science/ [8] encyklopedie-energetiky/03/typy_2.html [9]

93 [10] [11] [12] [13] [14] [15] [16]

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se

Více

Jaderné reaktory a jak to vlastně vše funguje

Jaderné reaktory a jak to vlastně vše funguje Jaderné reaktory a jak to vlastně vše funguje Lenka Heraltová Katedra jaderných reaktorů Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze 1 Výroba energie v České republice Typy zdrojů elektrické energie

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

Jaderná elektrárna. Osnova předmětu. Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení

Jaderná elektrárna. Osnova předmětu. Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení Osnova předmětu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) Úvod Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení Ostatní tepelné elektrárny Kombinovaná výroba elektřiny a tepla

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

Decommissioning. Marie Dufková

Decommissioning. Marie Dufková Decommissioning Marie Dufková Stěhování tlakové nádoby do elektrárny Civaux Veze se nová. Ale: Jak bezpečně a levně zlikvidovat takto veliký výrobek po použití? 2 Vyřazování jaderných zařízení z provozu

Více

JE+ZJE Přednáška 1. Jak stará je jaderná energetika?

JE+ZJE Přednáška 1. Jak stará je jaderná energetika? JE+ZJE Přednáška 1 Jak stará je jaderná energetika? Experimental Breeder Reactor 1. kritický stav 24. srpna 1951. 20. prosince poprvé vyrobena elektřina z jaderné energie. Příští den využita pro osvětlení

Více

Energetické zdroje budoucnosti

Energetické zdroje budoucnosti Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava

Více

Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost

Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Otázky k zamyšlení: K čemu člověk potřebuje energii, jak a kde ji pro své potřeby vytváří? Nedostatek energie; kdy, jak

Více

Svět t energie. Dana Drábová Státní úřad pro jadernou bezpečnost Praha

Svět t energie. Dana Drábová Státní úřad pro jadernou bezpečnost Praha Svět t energie Dana Drábová Státní úřad pro jadernou bezpečnost Praha To je náš svět. A jiný nemáme... Několik čísel: V současné době žije na Zemi více než 6,3 miliard obyvatel s průměrným ročním přírůstkem

Více

Jaderné reaktory IV. generace

Jaderné reaktory IV. generace ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta Elektrotechnická Diplomová práce Jaderné reaktory IV. generace Vesecký Robert Leden 2006 Anotace Práce se zabývá nejnovějšími poznatky ve vývoji současných

Více

Zastavit se a změnit svět. Vize, rizika a příleţitosti energetiky

Zastavit se a změnit svět. Vize, rizika a příleţitosti energetiky Zastavit se a změnit svět Vize, rizika a příleţitosti energetiky Aleš John NRI Řeţ 18. 10. 2010 1 Fosilní, obnovitelné, jaderné,????, zdroje 100 W/hlavu??? W/hlavu 1800 W/hlavu 18. 10. 2010 2 O čem bude

Více

ENCYKLOPEDIE ENERGETIKY JADERNÁ ENERGIE

ENCYKLOPEDIE ENERGETIKY JADERNÁ ENERGIE ENCYKLOPEDIE ENERGETIKY JADERNÁ ENERGIE ENCYKLOPEDIE ENERGETIKY JADERNÁ ENERGIE OBSAH 3 OBSAH Tajemství atomů Pavel Augusta 7 Energie bez kouře Michael Sovadina, Marie Dufková 17 Trezor na tisíc let

Více

PRINCIP TERMOJADERNÉ FÚZE

PRINCIP TERMOJADERNÉ FÚZE PRINCIP TERMOJADERNÉ FÚZE Jaderná fúze je jaderná reakce, při které se spojením jader atomů lehkých prvků vytvoří nové, těžší jádro jiného prvku. NEUTRON DEUTERIUM ENERGIE HELIUM TRITIUM Deuterium (těžký

Více

ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze

ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze ZDROJE A PŘEMĚNY ENERGIE JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze Formy energie Energie rozdělení podle působící síly omechanická energie Kinetická (Pohybová) Potenciální

Více

příloha 2 Stav plnění bezpečnostních doporučení MAAE

příloha 2 Stav plnění bezpečnostních doporučení MAAE příloha 2 Stav plnění bezpečnostních doporučení MAAE Stav řešení bezpečnostních nálezů JE s VVER-440/213 v JE Dukovany Označ. Název bezpečnostních nálezů Kat. Stav G VŠEOBECNÉ PROBLÉMY G01 Klasifikace

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Jaderná fúze. Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J 2000 Q ročně (malá hustota) Σ 1850 1950 - Σ 1950 2050 -

Jaderná fúze. Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J 2000 Q ročně (malá hustota) Σ 1850 1950 - Σ 1950 2050 - Jaderná fúze Problém energie Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J Slunce zem Světová spotřeba energie 2000 Q ročně (malá hustota) Zásoby uhlí ~100 Q, zásoby ropy do 1850 0.004 Q/rok

Více

Svět a poptávka po energii

Svět a poptávka po energii Svět a poptávka po energii Lidé potřebují více energie a potřebují čistší energii Celosvětová spotřeba energie poroste, a to hlavně ze dvou příčin: Přibývá lidí, a některé chudé země bohatnou. Příklady

Více

MIR-1200. Modernized International Reactor. Projekt nejen pro energetiku.

MIR-1200. Modernized International Reactor. Projekt nejen pro energetiku. MIR-1200 Modernized International Reactor Projekt nejen pro energetiku. Milan Kohout, člen představenstva a obchodní ředitel ŠKODA JS a.s. IVD ČR a jeden z největších jaderných tendrů ve světě Praha, 22.

Více

IBM Univerzita pro obchodní partnery

IBM Univerzita pro obchodní partnery IBM Univerzita pro obchodní partnery Olomouc (12.6.2013), Praha (20.6.2013) Financování HW, SW a služeb od IBM Global Financing (IGF) Jaromír Šorf Americas» Argentina» Bolivia» Brazil» Canada» Chile» Colombia»

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_D.2.12 Integrovaná střední škola

Více

Využití separačního parogenerátoru v čistých technologiích

Využití separačního parogenerátoru v čistých technologiích Využití separačního parogenerátoru v čistých technologiích Ing. Jan Koloničný, Ph.D., Ing. David Kupka Abstrakt Při spalování uhlovodíkových paliv v bezemisních parních cyklech, tzv. čistých technologiích,

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

Elektřina a magnetizmus rozvod elektrické energie

Elektřina a magnetizmus rozvod elektrické energie DUM Základy přírodních věd DUM III/2-T3-19 Téma: rozvod elektrické energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus rozvod

Více

11.3. 2011, ostrov Honšú Situace na jaderných elektrárnách v regionu postiženém silným zemětřesením následovaným vlnou tsunami

11.3. 2011, ostrov Honšú Situace na jaderných elektrárnách v regionu postiženém silným zemětřesením následovaným vlnou tsunami 11.3. 2011, ostrov Honšú Situace na jaderných elektrárnách v regionu postiženém silným zemětřesením následovaným vlnou tsunami Vznik a vývoj havárie na jaderné elektrárně Fukushima Dai-ichi Silné zemětřesení

Více

Vliv zdrojů elektrické energie na životní prostředí

Vliv zdrojů elektrické energie na životní prostředí Klimatické změny odpovědnost generací Hotel Dorint Praha Don Giovanni 11.4.2007 Vliv zdrojů elektrické energie na životní prostředí Tomáš Sýkora ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Více

Přirozené a antropogenní riziko radioaktivního ozáření

Přirozené a antropogenní riziko radioaktivního ozáření Přirozené a antropogenní riziko radioaktivního ozáření m rem antropogenní, civilizační faktory přirozené faktory za rok 2000 m nad mořem ---------- 1000 m ---------- 500 m televize jaderné elektrárny ozáření

Více

23.4 2004 ŠKODA JS a.s. prodána OMZ 13.7.2004 Převedeno 100% akcií ŠKODA JS na OMZ

23.4 2004 ŠKODA JS a.s. prodána OMZ 13.7.2004 Převedeno 100% akcií ŠKODA JS na OMZ ŠKODA JS v r.2005 1 ŠKODA HOLDING a.s. Struktura společnosti 23.4 2004 ŠKODA JS a.s. prodána OMZ 13.7.2004 Převedeno 100% akcií ŠKODA JS na OMZ Jedna z největších ruských strojírenských společností Tržby

Více

Projekt MIR.1200. Dostavba 3 a 4 bloku JE Temelín. Konference VVER 2010 Experience and Perspectives 1.-3.11.2010, Praha,

Projekt MIR.1200. Dostavba 3 a 4 bloku JE Temelín. Konference VVER 2010 Experience and Perspectives 1.-3.11.2010, Praha, Projekt MIR.1200 Dostavba 3 a 4 bloku JE Temelín Konference VVER 2010 Experience and Perspectives 1.-3.11.2010, Praha, KONSORCIUM MIR.1200 Dne 14.10.2009 založeno mezinárodní česko-ruské sdružení - Konsorcium

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Bedřich Heřmanský Vliv jaderných elektráren na životní prostředí Pokroky matematiky, fyziky a astronomie, Vol. 25 (1980), No. 6, 324--333 Persistent URL: http://dml.cz/dmlcz/138193

Více

Tepelné čerpadlo Excellence pro komfortní a úsporný dům

Tepelné čerpadlo Excellence pro komfortní a úsporný dům Tepelné čerpadlo Excellence pro komfortní a úsporný dům V současné době, kdy se staví domy s čím dál lepšími tepelně izolačními vlastnostmi, těsnými stavebními výplněmi (okna, dveře) a vnějším pláštěm,

Více

Atomová Energie (autor : Matyáš Kosík) 1.Úvod.

Atomová Energie (autor : Matyáš Kosík) 1.Úvod. Atomová Energie (autor : Matyáš Kosík) Obsah : Úvod CO je RADIOAKTIVITA??? Využití radioaktivity a radioaktivních prvkú Historie jaderného výzkumu a výzkumu radioaktivity Princip jaderných reakcí + Princip

Více

Jedinou skutečnou alternativou pro lidstvo je atom

Jedinou skutečnou alternativou pro lidstvo je atom Jedinou skutečnou alternativou pro lidstvo je atom Pro název článku jsem použil poměrně odvážné tvrzení, ale jsem přesvědčen o jeho pravdivosti. Slovy klasika: Můžeme o tom diskutovat, můžeme o tom vést

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Seminář IBM - partnerský program a nabídka pro MSPs

Seminář IBM - partnerský program a nabídka pro MSPs Seminář IBM - partnerský program a nabídka pro MSPs 23. září 2013 Sky bar Cloud9, hotel Hilton Praha 1 Program 9:00 9:30 Příchod účastníků a registrace 9:30 9:40 Úvodní slovo Petr Havlík, General Business

Více

Quo vadis jaderná energetika

Quo vadis jaderná energetika Quo vadis jaderná energetika Aleš John ÚJV Řež SES 2010 Bratislava 22. 24. 9. 30.9.2010 1 O čem bude řeč Co hýbe energetickým světem Co se chystá Nejsou nějaká rizika? 30.9.2010 2 Co hýbe energetickým

Více

Technické údaje SI 75TER+

Technické údaje SI 75TER+ Technické údaje SI 75TER+ Informace o zařízení SI 75TER+ Provedení - Zdroj tepla Solanky - Provedení Univerzální konstrukce reverzibilní - Regulace WPM 2007 integrovaný - Místo instalace Indoor - Výkonnostní

Více

Zdroje energie. Leonardo da Vinci Projekt. Udržitelný rozvoj v průmyslových prádelnách. Kapitola 1. Modul 5 Energie v prádelnách.

Zdroje energie. Leonardo da Vinci Projekt. Udržitelný rozvoj v průmyslových prádelnách. Kapitola 1. Modul 5 Energie v prádelnách. Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 1 Zdroje energie Dodavatel energie Modul 5 Energie v prádelnách Kapitola 1 Zdroje energie 1 Obsah

Více

Obchodní nabídka. Poskytování IPtelefonních

Obchodní nabídka. Poskytování IPtelefonních Obchodní nabídka Poskytování IPtelefonních služeb Nabízíme Vám využití výhodných telekomunikačních služeb společnosti NeoTel.cz, která Vám pomůže snížit náklady na telefonní hovory v kanceláři i doma.

Více

Úložiště jaderného odpadu

Úložiště jaderného odpadu Technická univerzita v Liberci Strojní fakulta Katedra energetických zařízení Úložiště jaderného odpadu Ing. František Lemfeld přednáška pro předměty Jaderná energetika, Termodynamika a sdílení tepla Tato

Více

Digitální učební materiál

Digitální učební materiál Evidenční číslo materiálu: 503 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 21. 3. 2012 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:

Více

TEPELNÉ ČERPADLO THERMA V VZDUCH / VODA

TEPELNÉ ČERPADLO THERMA V VZDUCH / VODA TEPELNÉ ČERPADLO THERMA V VZDUCH / VODA Řešení pro nový dům i rekonstrukci Výrobky řady THERMA V byly navrženy s ohledem na potřeby při rekonstrukcích (zrušení nebo výměna kotle) i výstavbách nových domů.

Více

Hmotnosti protonu a neutronu jsou srovnatelné. Hmotnost protonu (resp. neutronu) je mnohonásobně větší (1840 x) než je hmotnost elektronu.

Hmotnosti protonu a neutronu jsou srovnatelné. Hmotnost protonu (resp. neutronu) je mnohonásobně větší (1840 x) než je hmotnost elektronu. Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Projekt MIR.1200 a aktuální požadavky na bezpečnost jaderných elektráren

Projekt MIR.1200 a aktuální požadavky na bezpečnost jaderných elektráren Projekt MIR.1200 a aktuální požadavky na bezpečnost jaderných elektráren Seminář Temelínský den 10. ledna 2012, ČVUT Praha Prezentuje Ing. Jan Zdebor, CSc. - technický ředitel ŠKODA JS a.s. Prezentace

Více

TEPELNÁ ČERPADLA VZUCH - VODA

TEPELNÁ ČERPADLA VZUCH - VODA TEPELNÁ ČERPDL VZUCH - VOD www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Principem každého tepelného čerpadla vzduch - voda je přenos tepla z venkovního

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové

Více

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH Teplárenské dny 2015 Hradec Králové J. Hyžík STEO, Praha, E.I.C. spol. s r.o., Praha, EIC AG, Baden (CH), TU v Liberci,

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

Tisková konference, Praha, Hotel Palace, 19. 3. 2008 Ivo Kouklík, Vladimír Schmalz

Tisková konference, Praha, Hotel Palace, 19. 3. 2008 Ivo Kouklík, Vladimír Schmalz SKUPINA ČEZ A JADERNÁ ENERGETIKA V ZAHRANIČÍ Tisková konference, Praha, Hotel Palace, 19. 3. 2008 Ivo Kouklík, Vladimír Schmalz OBSAH PREZENTACE Stručný souhrn o jaderné energetice Využití jaderné energetiky

Více

Jaderná vazebná energie

Jaderná vazebná energie Termojaderná fúze Jaderná vazebná energie Celkovou energii potřebnou k roztrhání jádra až na jednotlivé protony a neutrony můžeme vypočítat ze vztahu. Q = mc, kde hmotnostní úbytek m = Zm p + Nmn m j.

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

TEPELNÁ ČERPADLA VZUCH - VODA

TEPELNÁ ČERPADLA VZUCH - VODA TEPELNÁ ČERPADLA VZUCH - VODA www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Omezení emisí CO 2 Spotřeba energie Životní prostředí Principem každého

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:

Více

... 10) K čemu se tyto tyče používají?... 11) Zakresli do obrázku (uveden níže) kontejnment. 12) Vyjmenuj tři vlastnosti kontejnmentu.

... 10) K čemu se tyto tyče používají?... 11) Zakresli do obrázku (uveden níže) kontejnment. 12) Vyjmenuj tři vlastnosti kontejnmentu. Exkurze pro 1. ročníky Elektrárna a meteorologická stanice Temelín Termíny konání: 3. září 2014 6. A 4. září 2014 2. B 5. září 2014 2. C Označení jednotlivých tříd odpovídá školnímu roku 2014/2015. Cíle

Více

M Ý T Y A F A K T A. Jaderná energetika. o jaderné energetice

M Ý T Y A F A K T A. Jaderná energetika. o jaderné energetice M Ý T Y A F A K T A o jaderné energetice Zpracoval a předkládá: Odborná sekce Energetika při Okresní hospodářské komoře v Mostě ve spolupráci s Ústavem jaderného výzkumu Řež a.s. Českou nukleární společností

Více

Petr Muzikář

Petr Muzikář <muzikar.petr@volny.cz> Přehled jaderné fyziky Petr Muzikář 1 Ú vod Někteří z vas, milí čtenáři, se ještě s jadernou fyzikou ve škole nesetkali, protože bývá vykladána až někdy v posledních ročnících.

Více

Exkurze do elektrárny Dětmarovice

Exkurze do elektrárny Dětmarovice Základní škola Kolín IV., Prokopa Velikého 633, 280 02 Kolín 2 Exkurze do elektrárny Dětmarovice 5. - 7.10.2011 Podzimní setkání členů Klubu světa energie Mgr. Milan Kašpar a Mgr. Oldřich Keltner Zpracoval:

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Nabídka ŠKODA JS pro slovenskou jadernou energetiku

Nabídka ŠKODA JS pro slovenskou jadernou energetiku Nabídka ŠKODA JS pro slovenskou jadernou energetiku Mezinárodní konference CAN SLOVAKIA SECURE ENERGY SUPPLY AND SUSTAINABLE DEVELOPMENT WITHOUT NUCLEAR? 5.- 6.května 2004 Bratislava 1 Struktura společnosti

Více

MALÉ MODULÁRNÍ JADERNÉ REAKTORY SVOČ FST 2012. Bc. Václav Sláma Zahradní 861, 386 01 Strakonice Česká republika

MALÉ MODULÁRNÍ JADERNÉ REAKTORY SVOČ FST 2012. Bc. Václav Sláma Zahradní 861, 386 01 Strakonice Česká republika MALÉ MODULÁRNÍ JADERNÉ REAKTORY SVOČ FST 2012 Bc. Václav Sláma Zahradní 861, 386 01 Strakonice Česká republika ABSTRAKT Práce se zabývá analýzou současného stavu výzkumu a vývoje malých modulárních jaderných

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

ENERGETICKÉ ZDROJE PRO 21. STOLETÍ

ENERGETICKÉ ZDROJE PRO 21. STOLETÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ENERGETICKÉ ZDROJE PRO 21. STOLETÍ

Více

Moderní kotelní zařízení

Moderní kotelní zařízení Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Moderní kotelní zařízení Text byl vypracován s podporou projektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Kotle Úvod do problematiky Základní způsoby získávání energie Spalováním

Více

10.3.2015 konference Energetické úspory jako příležitost k růstu Institut pro veřejnou diskusi Petr Štulc, ČEZ, a.s.

10.3.2015 konference Energetické úspory jako příležitost k růstu Institut pro veřejnou diskusi Petr Štulc, ČEZ, a.s. Potenciál úspor a zvyšování účinnosti v energetice v kontextu nových technologií 10.3.2015 konference Energetické úspory jako příležitost k růstu Institut pro veřejnou diskusi Petr Štulc, ČEZ, a.s. 0 Energetické

Více

Nový jaderný blok v Čechách

Nový jaderný blok v Čechách Strojírenství Ostrava 2011 Česká republika- země špičkových jaderných technologií Nový jaderný blok v Čechách Těšení, příleţitosti, rizika Aleš John UJV Řeţ 22.4.2011 1 O čem bude řeč Poznámky ke slovu

Více

TEPELNÁ ČERPADLA VZDUCH - VODA

TEPELNÁ ČERPADLA VZDUCH - VODA TEPELNÁ ČERPADLA VZDUCH - VODA Inverter TEPELNÁ ČERPADLA VZDUCH - VODA Budoucnost patří ekologickému a ekonomickému vytápění ekologicky šetrná technologie Okolní vzuch Ventilátor Rotační kompresor Topná

Více

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM.

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Ondřej Grover 3. minikonference projektu Cesta k vědě, 11.1.2011 Osnova prezentace 1 Motivace Jaderná fúze Jak udržet plazma Měření

Více

Fe AKU TV 300 400 600 750 850 1000 1200 1350 1650 2000

Fe AKU TV 300 400 600 750 850 1000 1200 1350 1650 2000 Odvzdušnění nádrže Výstup TUV (teplé užitkové vody) Plastový kryt TUV z oceli 1.4404 Ochranný vnější obal Vstup topné vody do nádrže Teploměr 0-120 C Ocelová nádrž Max. provozní tlak: 0,6MPa Propojovací

Více

Představení globálních služeb Fujitsu Jiří Charbuský

Představení globálních služeb Fujitsu Jiří Charbuský Představení globálních služeb Fujitsu Jiří Charbuský Představení globálních služeb Fujitsu Jiří Charbuský Head of Maintenance Fujitsu Technology Solutions Fujitsu jako globální IT společnost Založena:

Více

OBYVATELSTVO. G. Petříková, 2006

OBYVATELSTVO. G. Petříková, 2006 OBYVATELSTVO G. Petříková, 2006 Vývoj počtu obyvatel 1830 1930 1960 1975 1987 1999 1 miliarda 2 miliardy 3 miliardy 4 miliardy 5 miliard 6 miliard za 100 let za 30 let za 15 let za 12 let za 12 let Prostudujte

Více

Profil společnosti. www.pilsensteel.cz

Profil společnosti. www.pilsensteel.cz Profil společnosti www.pilsensteel.cz Vážení obchodní partneři, Již od dob Emila Škody ctíme kvalitu, tradici, stabilitu, dynamiku a odpovědnost. Proto jsme dosáhli a stále dosahujeme úspěchu v celosvětovém

Více

Odvod tepla a vývin tepla vyhořelého jaderného paliva v úložištích

Odvod tepla a vývin tepla vyhořelého jaderného paliva v úložištích MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA Katedra fyziky Odvod tepla a vývin tepla vyhořelého jaderného paliva v úložištích Diplomová práce Brno 2011 Vedoucí práce: RNDr. Jindřiška Svobodová, Ph.D. Vypracoval:

Více

HOŘÁKY A TOPNÉ SYSTÉMY

HOŘÁKY A TOPNÉ SYSTÉMY Ústav využití plynu Brno, s.r.o. Radlas 7 602 00 Brno Česká republika KATALOG HOŘÁKY A TOPNÉ SYSTÉMY Kontaktní osoby Ing. Pavel Pakosta Ing. Zdeněk Kalousek Tel.: +420 545 321 219, 545 244 898 Ústav využití

Více

Produkty a zákaznické služby

Produkty a zákaznické služby Produkty a zákaznické služby Dodavatel zařízení a služeb pro energetiku naši lidé / kvalitní produkty / chytrá řešení / vyspělé technologie Doosan Škoda Power součást společnosti Doosan Doosan Škoda Power

Více

Srovnání nákladů jaderných a uhelných elektráren. Nuclear and Coal-fired Power Station Cost Comparison

Srovnání nákladů jaderných a uhelných elektráren. Nuclear and Coal-fired Power Station Cost Comparison ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra ekonomiky, manažerství a humanitních věd Srovnání nákladů jaderných a uhelných elektráren Nuclear and Coal-fired Power Station Cost

Více

Požadavky tepelných čerpadel

Požadavky tepelných čerpadel Požadavky tepelných čerpadel na přípravu, pravu, návrh, projekt a stavební dokumentaci seminář ASPIRE v Rožnově pod Radhoštěm Ing. Tomáš Straka, Ph.D. 0 2000 4000 6000 8000 10000 12000 14000 1973 1979

Více

Přírodní radioaktivita

Přírodní radioaktivita Přírodní radioaktivita Náš celý svět, naše Země, je přirozeně radioaktivní, a to po celou dobu od svého vzniku. V přírodě můžeme najít několik tisíc radionuklidů, tj. prvků, které se samovolně rozpadají

Více

REMKO ARCTIC-WP INVERTOROVÁ TEPELNÁ ČERPADLA

REMKO ARCTIC-WP INVERTOROVÁ TEPELNÁ ČERPADLA REMKO ARCTIC-WP INVERTOROVÁ TEPELNÁ ČERPADLA Řešení s tepelnými čerpadly pro jednoduchou nástěnnou montáž Série RVT-ARCTIC 1-2014 Kvalita se systémem REMKO DODAVATEL SYSTÉMŮ ORIENTOVANÝ NA ZÁKAZNÍKY PO

Více

Užití mikrovlnné techniky v termojaderné fúzi. A. Křivská 1,2. Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika

Užití mikrovlnné techniky v termojaderné fúzi. A. Křivská 1,2. Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika Užití mikrovlnné techniky v termojaderné fúzi A. Křivská 1,2 1 Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika 2 České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra telekomunikační

Více

INOVAČNÍ ŘEŠENÍ VYTÁPĚNÍ DOMÁCNOSTÍ. Vzduch-voda

INOVAČNÍ ŘEŠENÍ VYTÁPĚNÍ DOMÁCNOSTÍ. Vzduch-voda INOVAČNÍ ŘEŠENÍ VYTÁPĚNÍ DOMÁCNOSTÍ Vzduch-voda je ekonomický a čistý systém ohřevu vody pomocí tepelného čerpadla TOPENÍ TEPLÁ VODA xxxxxxxxxxxxxxxxx je efektivní systém ohřevu vody založený na technologii

Více

Energetické využití odpadů. Ing. Michal Jirman

Energetické využití odpadů. Ing. Michal Jirman Energetické využití odpadů Ing. Michal Jirman KOGENERAČNÍ BLOKY A SPALOVÁNÍ ODPADŮ Propojení problematiky odpadů, ekologie a energetiky Pozitivní dopady na zlepšení životního prostředí Efektivní výroba

Více

PROJEKT SUSEN, UDRŽITELNÁ ENERGETIKA. Marek Mikloš Centrum výzkumu Řež, s.r.o., Hlavní 130, 250 68 Řež marek.miklos@cvrez.cz

PROJEKT SUSEN, UDRŽITELNÁ ENERGETIKA. Marek Mikloš Centrum výzkumu Řež, s.r.o., Hlavní 130, 250 68 Řež marek.miklos@cvrez.cz PROJEKT SUSEN, UDRŽITELNÁ ENERGETIKA Marek Mikloš Centrum výzkumu Řež, s.r.o., Hlavní 130, 250 68 Řež marek.miklos@cvrez.cz ABSTRAKT Centrum výzkumu Řež, s.r.o., dceřiná společnost ÚJV Řež, a.s., společně

Více

Jak se vyvíjejí hvězdy?

Jak se vyvíjejí hvězdy? Jak se vyvíjejí hvězdy? tlak a teplota normální plyny degenerované plyny osud Slunce fáze červeného obra oblast horizontálního ramena oblast asymptotického ramena obrů planetární mlhovina bílý trpaslík

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

TRONIC CONTROL. Nad Safinou I č.p.449 252 42 Vestec u Prahy tel./fax: 266 710 254-5 602 250 629 e-mail: info@tronic.cz http//www.tronic.

TRONIC CONTROL. Nad Safinou I č.p.449 252 42 Vestec u Prahy tel./fax: 266 710 254-5 602 250 629 e-mail: info@tronic.cz http//www.tronic. TRONIC CONTROL Nad Safinou I č.p.449 252 42 Vestec u Prahy tel./fax: 266 710 254-5 602 250 629 e-mail: info@tronic.cz http//www.tronic.cz Firemní program Výrobní oblast vývoj a výroba řídicích systémů

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Švédská tepelná čerpadla

Švédská tepelná čerpadla Přehled sortimentu a ceník 2009 / 3 www.cerpadla-ivt.cz 10 let záruka 5 let celé tepelné čerpadlo 10 let kompresor Švédská tepelná čerpadla C země / voda C je nejprodávanějším kompaktním tepelným čerpadlem

Více