PRINCIP TERMOJADERNÉ FÚZE

Rozměr: px
Začít zobrazení ze stránky:

Download "PRINCIP TERMOJADERNÉ FÚZE"

Transkript

1 PRINCIP TERMOJADERNÉ FÚZE

2 Jaderná fúze je jaderná reakce, při které se spojením jader atomů lehkých prvků vytvoří nové, těžší jádro jiného prvku. NEUTRON DEUTERIUM ENERGIE HELIUM TRITIUM

3 Deuterium (těžký vodík), je obsaženo v malém množství i v obyčejné vodě. Jeho množství ve vodě našeho Máchova jezera by postačilo krýt současnou úroveň spotřeby veškeré energie v našem státě po dobu zhruba 100 let. dybychom zvážili obě jádra před reakcí pak zvážili produkty reakce, istili bychom váhový úbytek hmoty m. ato chybějící hmota se podle ámého Einsteinova vzorce E = m. c 2 roměnila v energii. zhledem k tomu, že rychlost světla c je velké číslo ( kms -1 ), e se snadno přesvědčit, že roční spotřeba primární energie Česk publiky (kolem 50 milionu t oe, 1t oe -ropný ekvivalent = 11,63MWh) y byla pokryta přeměnou 20 kg hmoty.

4 Základním problémem při syntéze dvou atomových jader je jejich vzájemné odpuzování vyvolané kladným nábojem obou jader. Při pohybu jader proti sobě s dostatečnou energií je lze přiblížit natolik, že jaderné síly s malým dosahem ( ~10-15 m ), které zabraňují rozpadu jádra, překonají coulombické odpudivé síly a umožní reakci syntézy.

5 Na překonání této coulombovské bariéry ze využít energii například z chaotického tepelného pohybu. Pak mluvíme o tzv. termojaderné fúzi, při níž zahříváme termojaderné palivo na takovou teplotu, aby kinetická energie tepelného pohybu jader stačila na překonání potenciální bariéry. Tento způsob Tato energie zažehnutí představuje fúzní reakce několik desítek se jeví kev, zatím jako jediný vážný čemuž kandidát odpovídá na zdroj teplota využitelné řádově 10 8 fúzní K. energie. Při teplotách stovek miliónů Kelvinů už hmota existuje jen ve stavu plně ionizovaného plynu, tj. ve směsi holých atomových jader a volných elektronů neboli plazmatu.

6 Nyní se ještě vraťme k fyzikální interpretaci zisku energie sloučením lehkých jader. Energetická bilance tohoto typu jaderných reakcí je dána rozdílem vazbové energie na nukleon pro různá jádra. Pro některá důležitá jádra je tato energie vyčíslena v následující tabulce:

7 Fúzní reakce se ziskem energie Jaderná reakce Energ. zisk [MeV] Jaderná reakce Energ. zisk [MeV] p + p D + e + + ν 0,42 T + T He + n + n 11,30 p + D 3 He+ 5,50 6 Li + n 3 H + 4 He 4,80 p + n D+ 2,26 6 Li + p 3 He + 4 He 4,00 D + D 3 He + n 3,27 6 Li + D 4 He + 4 He 22,40 D + D p + T 4,03 7 Li + p 4 He + 4 He 17,30 D + T 4 He + n 17,60 7 Li + p 8 Be+ 17,20 D + 3 He 4 He + p 18,35 7 Li + D 4 He + 5 He 14,20 T + p 4 He + 19,70 7 Li + D 8 Be + n 15,00 T + p 4 He + 17,60 11 B + p 3 4 He 8,70

8 Z hlediska současného výzkumu se největší pozornost věnuje syntéze jader deuteria a tritia ( D + T ), neboť je nejméně náročná, pokud jde o ohřev a udržení plazmatu. Právě tato reakce je pro svoji relativně nejsnadnější uskutečnitelnost považována za jediný reálný proces pro termonukleární reaktory první generace a téměř všechny úvahy o těchto systémech vycházejí z jejího využití. Teprve v dalších následných generacích fúzních zařízení se eventuálně předpokládá využití reakcí na bázi D+D nebo 11 B+H, tedy procesů v mnoha směrech nesporně výhodnějších.

9 Palivem pro reakci D + T jsou izotopy vodíku: deuterium D (tzv. těžký vodík) a tritium T (tzv. supertěžký vodík). Tritium je izotop radioaktivní a vzhledem ke krátkému poločasu rozpadu ( T1/2 = 12,262 roků ), se v přírodě volně téměř nevyskytuje.

10 Deuterium se bude získávat separací z vody, v níž tvoří frakci ~3,3 10-5, zatímco tritium bude možno získat z lithia pomocnou jadernou reakcí pri zachycování neutronů v plášti termojaderného reaktoru: 6 Li + n à 4 He + T + 4,6 MeV nebo 7 Li + n à 4 He + T + n - 2,47 MeV ( poměr výskytu izotopů 6 Li : 7 Li je 7,5 : 92,5 ) Lithium se v dostatečné míře vyskytuje v zemské kůře, ~ %, a je také obsaženo v mořské vodě, ~170 mg.l -1.

11 Lawsonovo kriterium Při teplotách řádově stovek milionů stupňů jsou atomy plně ionizovány, mluvíme tedy o plazmatu. Částice v plazmatu ztrácejí svoji energii především brzdným zářením a transportem energie na stěny nádoby, v níž plazma vytváříme a držíme. Specifická vazbová energie jako funkce nukleonového čísla : Izotop 2 H 3 H 3 He 4 He 6 Li 7 Li 56 Fe 235 U Energie [MeV] 1,11 2,83 2,57 7,07 5,33 5,60 8,79 7,59 Z energetické bilance procesu plyne podmínka pro udržení fúzní reakce, tzv. Lawsonovo kriterium, tj. součin hustoty plazmatu, jeho teploty a doby udržení energie musí být větší než určitá kritická hodnota.

12 Nejdůležitější syntézy, které mohou mít praktický význam a jejich porovnání s jinými reakcemi: D + D à 3 He (0,82 MeV) + n (2,45 MeV) Ohřev plazmatu minimálně na : 35 kev Energetický výtěžek: 27 kwh*g -1 D + D à T (1,01 MeV) + p (3,02 MeV) Ohřev plazmatu minimálně na: 35 kev Energetický výtěžek: 22 kwh*g -1 D + 3 He à 4 He (3,5 MeV) + p (14,67 MeV) Ohřev plazmatu minimálně na: 30 kev Energetický výtěžek: 94 kwh*g -1 D + T à 4 He (3,5 MeV) + n (14,1 MeV) Ohřev plazmatu minimálně na: 4 kev Energetický výtěžek: 98 kwh*g Štěpení uranu 235 U Energetický výtěžek: 24,000 kwh*g -1 Hoření vodíku 2H 2 + O 2 à 2H 2 O Energetický výtěžek: 0,0044 kwh*g -1

13 ZAŘÍZENÍ PRO TERMOJADERNOU FÚZI První pokusy o zažehnutí termojaderné fúze v pozemských podmínkách spadají do poloviny třicátých let minulého století, kdy E. Rutheford a J. Douglas dosáhli na urychlovači energie, potřebné k uskutečnění první reakce syntézy jader deuteria za vzniku izotopu helia a neutronu (1934).

14 Mohlo by se tedy zdát, že tento relativně jednoduchý experiment vyřešil problém fúze. Urychlovač se však nedá použít jako zdroj energie pro fúzní reakci, neboť je-li svazek deuteronů namířen například na terčík z pevného tritia nebo deuteria, většina energie se ztratí ionizací, ohřátím terčíku a elastickými srážkami. Rovněž srážející se svazky nelze vytvořit tak husté, aby získaná energie z termojaderné reakce byla větší než energie potřebná pro urychlování.

15 O deset let později vědci pracující na štěpení atomových jader po konstrukci prvních atomových bomb s uranem a plutoniem vyvinuli i termojadernou bombu vodíkovou. Tedy bombu pracující v konečném důsledku na neřízené termojaderné syntéze. První byl E. Teller v USA, o něco později I. V. Kurčatov v SSSR.

16 Ostrov Elugelab odpařen... Těmito slovy zahájilo lidstvo využití jaderné syntézy. Toto miniaturní Slunce po svém výbuchu zanechalo kráter, který by pojmul několik komplexů budov Pentagonu, na hloubku by se v něm pohodlně schovala Empire State Building. První vodíková bomba Mike měla ekvivalent 10,4 Mtun TNT ( 10,4 milionů tun tritolu!) Jednalo se o kanistr o délce 22 stop (6.7 m) a o průměru 5 stop (1.5 m) naplněný tekutým vodíkem. Vše bylo obaleno atomovými rozbuškami. 31. října termojaderná syntéza

17 Video: První H-bomba : MIKE 10,4 Mtun Pozorováno ze vzdálenosti 40 mil.

18 POROVNÁNÍ CHEMICKÉ A JADERNÉ ENERGIE CHEOPSOVA PYRAMIDA DNEŠNÍ ROZMĚRY: základna 230,4 m x 230,4 m a výška 138 m. OBJEM: 230,4 x 230,4 x 138 / 3 = m 3. BUŠNINA TNT(TRITOL) MÁ HUSTOTU: 1,654 t/m 3 HEOPSOVA PYRAMIDA POSTAVENÁ Z TNT BY MĚLA HMOTNOST: x 1,654 = t = 4 Mt PRVNÍ FÚZNÍ JADERNÁ BOMBA (USA, 1952) MĚLA CHEMICKÝ EKVIVALENT: 10,4 Mt TNT tzn. 2,6 CHEOPSOVÝCH PYRAMID ZTRITOLU

19 Pro mírové a praktické účely však bylo nutno energii uvolňovat pozvolna a plynule. Protože neexistuje materiál, z něhož by bylo možno vyrobit nádobu na odolávající styku s horkým plazmatem, vznikla myšlenka využít přítomnost elektricky nabitých částic a pokusit se udržet a tepelně izolovat horké plazma magnetickým polem. Nezávisle na sobě, pochopitelně ze strategických důvodů i v tajnosti, pracovaly týmy v SSSR, USA a v Anglii.

20 Zde si připomeňme jména J. Tamma, A. D. Sacharova, program ústící v koncepci tokamaku L. A. Arcimoviče a teoretika M. A. Leontoviče, R. F. Posta z Kalifornské univerzity, který rozvíjel metodu magnetických pastí, L. Spitzera, který navrhl r koncepci stelarátoru, a A. S. Bishopa, koordinátora amerického programu řízené termojaderné syntézy s krycím názvem Sherwood. V Harwellu v Anglii pracoval mladý fyzik australského původu P. Thoneman, který stál u zrodu zařízení s prstencovým výbojem ZETA. Od konference v Harwellu r se výzkumy odtajnily a rozvinul se široký mezinárodní výzkumný program.

21 Dnes můžeme realisticky konstatovat, že jaderná fúze je perspektivní energetický zdroj, jehož praktické využití se ale očekává někdy kolem r Předmětem současného výzkumu jsou dvě zásadně odlišné koncepce, obvykle označované jako magnetické udržení a inerciální udržení.

22 Magnetické udržení spočívá v takové konfiguraci magnetického pole, aby většina nabitých částic sledovala vhodně zakřivené magnetické siločáry, a tak nepřicházela do styku se stěnami komory, v níž se plazma vytváří. Ohřev pak musí pokračovat tak dlouho, dokud tepelný pohyb částic nedosáhne oblasti již takové rychlosti, ve které srážky vyvolávají fúzi. Mezi zástupce této koncepce patří tokamaky, stelarátory, theta a Z-pince, kompresní linery, zrcadlové nádoby, torzatrony...

23 U inerciálního udržení je základem extrémně rychlý ohřev fúzního paliva, vedoucí ke vzniku fúzních reakcí uvolňujících energii dříve, než síly působící na atomové a subatomové částice rozptýlí reagující hmotu. Fúzní energie se vytvoří v nepatrném zlomku sekundy (~2 ns), než tableta exploduje. K využití této metody jako energetického zdroje je zapotřebí nepřetržitá řada takových aktů v krátkých intervalech. Toho by se dosahovalo pomocí laseru, nebo také svazky těžkých či lehkých iontů. Doposud však natolik výkonné lasery nebyly zkonstruovány. U koncepce, která se předpokládá pro aplikaci k výrobě energie, se drobná tableta zmrazeného vodíku spustí do komory, v niž je prudce zasažena pulzem energie laseru, fokusované na tabletu z několika směrů. Tímto rychlým ohřevem povrchu vznikne implozní rázová vlna, která vyvolá ohřev a zhutnění středu tablety až do dosažení podmínek termonukleární syntézy.

24 FÚZNÍ REAKTOR - TOKAMAK a STELARÁTOR Koncepce tokamaku se zrodila koncem padesátých let v tehdejším Sovětském svazu a u jeho zrodu stál L. A. Arcimovič.

25 Je to v podstatě transformátor, jehož sekundární cívka má jeden závit ve tvaru toroidní trubice. Plazma z deuteria a tritia se nachází uvnitř toroidního dutého vyvakuovaného prstence. Elektrický proud primárního obvodu transformátoru indukuje elektromotorické napětí v sekundárním obvodu. V plynu D+T v toroidní trubici vznikne výboj, plyn se ionizuje a indukovaný proud jej zahřívá na vysokou teplotu. Magnetické pole tohoto proudu udrží vzniklé plazma v ose toroidu, takže se nedotýká stěn komory. Díky magnetickému poli se tepelné zatížení stěn sníží na technologicky zvládnutelnou hodnotu, a tak se předpokládá chlazení stěn na teploty C.

26 Rozměry reaktoru a jeho výkon závisí obyčejně na vlastnostech materiálů, které tvoři plášť reaktoru, nikoli na vlastnostech plazmatu. Předpokládá se, že elektrický výkon těchto reaktorů by byl 2-3 GW.

27 Další podrobnosti např.: Právě ve způsobu vytváření magnetického pole se liší tokamak a stelarátor. Zatímco tokamak si stabilizující účinky na plazma vytváří mohutným elektrickým proudem (magnetickým polem) indukovaným v plazmatu na principu transformátoru, stelarátor si vystačí pouze s vnějšími cívkami složitých tvarů. Stelarátor tedy, na rozdíl od pulzního režimu v tokamaku, může udržovat plazma libovolně dlouho.

28 kázky složitosti tvarů cívek

29 Tokamak pracuje v pulzním režimu. Do vyčerpané prstencové vakuové nádoby se napustí pracovní plyn s hustotou částic m -3. Proudem tisíců až milionů amperů se plyn zahřeje do teplot odpovídající energii 1-2 kev. K dosažení potřebné teploty ( okolo 10 kev ) je potřeba použít doplňkový ohřev: např. ohřev absorpcí elektromagnetické iontové cyklotronové vlny, ionty, ohřev cyklotronní elektronovou rezonancí, vstřikováním neutrálního svazku také pro dodání paliva, ohřev parametrickými vlnami - využitím intenzivních mikrovlnných nebo infračervených laserových svazků.

30 Mělo by se totiž vyrábět a pak provozovat něco, o tu zatím nikdy nebylo. Supravodiče nebývalých rozměrů a množství a s tím spojená kryogenika, nesmírně mechanicky a epelně namáhané součásti o hmotnosti tisíců tun, použití materiálů v nikde se doposud vyskytujících extremních podmínkách, bezpečné tritiové hospodářství atd.

31

32

33

34

35

36

37

38

39

40 Video: Mírové využití fúzní energie

41 Na největším světovém tokamaku JET ( Joint European Torus, Culham, Evropská unie ) bylo v r uvolněno po krátkou dobu 16 MW termojaderného výkonu. Na základě úspěchů projektu JET byl naplánován další krok supravodivé zařízení ITER ( International Thermonuclear Experimental Reactor, EU, Japonsko, Rusko a možná i USA ).

42

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19 Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10

Více

vysokoteplotního plazmatu na tokamaku GOLEM

vysokoteplotního plazmatu na tokamaku GOLEM Měření základních parametů vysokoteplotního plazmatu na tokamaku GOLEM J. Krbec 1 1 České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská U3V Fyzika přátelsky / Aplikované přírodní

Více

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) JET 11) ITER

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) JET 11) ITER Term ojaderná fúze V rámci projektu Fyzikou a chemií k technice vytvořil prezentaci za GKS Marek Kovář (kovar.ma@seznam.cz). Modifikace a šíření dokumentu podléhá licenci GNU (www.gnu.org). 1) Nový zdroj

Více

Jaderná fúze. Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J 2000 Q ročně (malá hustota) Σ 1850 1950 - Σ 1950 2050 -

Jaderná fúze. Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J 2000 Q ročně (malá hustota) Σ 1850 1950 - Σ 1950 2050 - Jaderná fúze Problém energie Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J Slunce zem Světová spotřeba energie 2000 Q ročně (malá hustota) Zásoby uhlí ~100 Q, zásoby ropy do 1850 0.004 Q/rok

Více

Termonukleární fúze Autoři: Matěj Oliva, Valeriyj Šlovikov, Matouš Verner Datum: Místo: Temešvár Jarní škola mladých autorů

Termonukleární fúze Autoři: Matěj Oliva, Valeriyj Šlovikov, Matouš Verner Datum: Místo: Temešvár Jarní škola mladých autorů Termonukleární fúze Autoři: Matěj Oliva, Valeriyj Šlovikov, Matouš Verner Datum: 2015-03-26 Místo: Temešvár Jarní škola mladých autorů E-mail: Matej.Oliva@gybot.cz, valera15@seznam.cz, verner.m.cz@gmail.com

Více

4.4.9 Energie z jader

4.4.9 Energie z jader 4.4.9 Energie z jader Předpoklady: 040408 Graf závislosti vazebné energie na počtu nukleonů v jádře (čím větší je vazebná energie, tím pevněji jsou nukleony chyceny v jádře, tím menší mají energii a tím

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník

Více

Svět a poptávka po energii

Svět a poptávka po energii Svět a poptávka po energii Lidé potřebují více energie a potřebují čistší energii Celosvětová spotřeba energie poroste, a to hlavně ze dvou příčin: Přibývá lidí, a některé chudé země bohatnou. Příklady

Více

4.4.6 Jádro atomu. Předpoklady: Pomůcky:

4.4.6 Jádro atomu. Předpoklady: Pomůcky: 4.4.6 Jádro atomu Předpoklady: 040404 Pomůcky: Jádro je stotisíckrát menší než vlastní atom (víme z Rutherfordova experimentu), soustřeďuje téměř celou hmotnost atomu). Skládá se z: protonů: kladné částice,

Více

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení. JADERNÁ ENERGIE Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.. Jaderná syntéza (termonukleární reakce): Je děj, při němž složením dvou lehkých jader

Více

Rozměr a složení atomových jader

Rozměr a složení atomových jader Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10

Více

Urychlovače částic principy standardních urychlovačů částic

Urychlovače částic principy standardních urychlovačů částic Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Chemické složení vesmíru

Chemické složení vesmíru Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Chemické složení vesmíru Jak sledujeme chemické složení ve vesmíru? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně,

Více

VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA

VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA Fyzika atomového jádra Stavba atomového jádra Protonové číslo Periodická soustava prvků Nukleonové číslo Neutron Jaderné síly Úkoly zápis Stavba atomového

Více

29. Atomové jádro a jaderné reakce

29. Atomové jádro a jaderné reakce 9. tomové jádro a jaderné reakce tomové jádro je složeno z nukleonů, což jsou protony (p + ) a neutrony (n o ). Průměry atomových jader jsou řádově -5 m. Poznámka: Poloměr atomového jádra je dán vztahem:

Více

Jaderná vazebná energie

Jaderná vazebná energie Termojaderná fúze Jaderná vazebná energie Celkovou energii potřebnou k roztrhání jádra až na jednotlivé protony a neutrony můžeme vypočítat ze vztahu. Q = mc, kde hmotnostní úbytek m = Zm p + Nmn m j.

Více

ENERGIE a její přeměny

ENERGIE a její přeměny Ing. Radim Janalík, CSc. VŠB TU Ostrava katedra energetiky Využití energetických zdrojů ENERGIE a její přeměny ENERGIE : co to vlastně je? Fyzikové ze 17.století definovali energii jako schopnost konat

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení

Více

Užití mikrovlnné techniky v termojaderné fúzi. A. Křivská 1,2. Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika

Užití mikrovlnné techniky v termojaderné fúzi. A. Křivská 1,2. Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika Užití mikrovlnné techniky v termojaderné fúzi A. Křivská 1,2 1 Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika 2 České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra telekomunikační

Více

Výroba a přenos el. energie

Výroba a přenos el. energie Výroba a přenos el. energie Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II Vítězslav Stýskala únor 2007 Průmyslová výroba elektrické energie Elektrárny a zdroje Uhelné Jaderné Sluneční

Více

Možné přístupy k realizaci termojaderné syntézy

Možné přístupy k realizaci termojaderné syntézy České vysoké učení technické v Praze Fakulta elektrotechnická Katedra fyziky Možné přístupy k realizaci termojaderné syntézy, rezack@fel.cvut.cz Katedra fyziky FEL ČVUT v Praze 6. října 2016 Exkurze Gymnázium

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

Plazmové metody. Co je to plazma? Jak se uplatňuj. ují plazmové metody v technice?

Plazmové metody. Co je to plazma? Jak se uplatňuj. ují plazmové metody v technice? Plazmové metody Co je to plazma? Jak se uplatňuj ují plazmové metody v technice? Co je to plazma? Plazma je látkové skupenství hmoty, ČTVRTÉ skupenství a vykazuje určité specifické vlastnosti. (správně

Více

FYZIKA ATOMOVÉHO JÁDRA

FYZIKA ATOMOVÉHO JÁDRA FYZIKA ATOMOVÉHO JÁDRA Je to nejstarší obor fyziky Stručně jaderná nebo nukleární fyzika Zabývá se strukturou jader, jadernými ději a jejich využití v praxi JÁDRO ATOMU Tvoří centrální část atomu o poloměru

Více

Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost

Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Otázky k zamyšlení: K čemu člověk potřebuje energii, jak a kde ji pro své potřeby vytváří? Nedostatek energie; kdy, jak

Více

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:

Více

Vítězslav Stýskala TÉMA 2. Oddíl 3. Elektrické stroje

Vítězslav Stýskala TÉMA 2. Oddíl 3. Elektrické stroje Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala TÉMA 2 Oddíl 3 Elektrické stroje jsou zařízení, která přeměňují jeden druh energie na jiný, nebo mění její velikost (parametry),

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

rezonanční neutrony (0,5-1 kev) (pojem rezonanční souvisí s výskytem rezonančních maxim) A Z

rezonanční neutrony (0,5-1 kev) (pojem rezonanční souvisí s výskytem rezonančních maxim) A Z 7. REAKCE NEUTRONŮ velmi časté reakce s vysokými výtěžky pro neutron neexistuje potenciálová bariéra terčového jádra pravděpodobnost záchytu neutronu je tím větší, čím je neutron pomalejší (déle se zdržuje

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Stanislav Valenta. Jaderná fúze a její využití v energetice

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Stanislav Valenta. Jaderná fúze a její využití v energetice Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Stanislav Valenta Jaderná fúze a její využití v energetice Ústav částicové a jaderné fyziky Vedoucí bakalářské práce: Mgr. Milan

Více

ŘÍZENÁ TERMOJADERNÁ SYNTÉZA

ŘÍZENÁ TERMOJADERNÁ SYNTÉZA ŘÍZENÁ TERMOJADERNÁ SYNTÉZA pro každého SKUPINA ČEZ ŘÍZENÁ TERMOJADERNÁ SYNTÉZA pro každého Milan Řípa Vladimír Weinzettl Jan Mlynář František Žáček Ústav fyziky plazmatu Akademie věd České republiky

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE)

ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE) ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE) Tadeáš Simon, Dominik Němec, David Čížek Štěpení jader informace jádro atomu- rozštěpí se, vzniklé části se rozletí velkými rychlostmi ->kinetická energie (energie pohybu)-

Více

Jaderná fúze budoucnost energetiky

Jaderná fúze budoucnost energetiky Jaderná fúze budoucnost energetiky Slavomír Entler ABSTRAKT: Jaderná fúze může být vnímána jako svatý grál, jehož nalezení spasí lidstvo před energetickým hladem. V podstatě je to pravda, protože jaderná

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Petr Muzikář <muzikar.petr@volny.cz>

Petr Muzikář <muzikar.petr@volny.cz> Přehled jaderné fyziky Petr Muzikář 1 Ú vod Někteří z vas, milí čtenáři, se ještě s jadernou fyzikou ve škole nesetkali, protože bývá vykladána až někdy v posledních ročnících.

Více

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

ÚVOD DO JADERNÉ FYZIKY ATOMOVÉ JÁDRO

ÚVOD DO JADERNÉ FYZIKY ATOMOVÉ JÁDRO ÚVOD DO JADERNÉ FYZIKY EXPERIMENTÁLNÍ ZÁKLAD rozptyl (pružný i nepružný) různých částic na atomových jádrech (neutrony, protony, elektrony, pozitrony, fotony, α-částice, ) radioaktivní rozpady některých

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním

Více

2. Atomové jádro a jeho stabilita

2. Atomové jádro a jeho stabilita 2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron

Více

Jaderná fyzika. Zápisy do sešitu

Jaderná fyzika. Zápisy do sešitu Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu

Více

Budoucnost energetiky: jaderná fúze

Budoucnost energetiky: jaderná fúze Strategie AV21 Špičkový výzkum ve veřejném zájmu Slavomír Entler, Ondřej Ficker, Josef Havlíček, Jan Horáček, Martin Hron, Jan Mlynář, Radomír Pánek, Milan Řípa, Jan StÖckel, Jozef Varju, Vladimír Weinzettl

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

Fúzní horská dráha Experiment: Zkuste s kamarádem fúzovat jádra (zmagnetizovaná kuličková

Fúzní horská dráha Experiment: Zkuste s kamarádem fúzovat jádra (zmagnetizovaná kuličková Točna Točnu roztočte a položte na ní míček. Pozorujte, jak bude míček opisovat malé kroužky. Nyní lehce plochu nakloňte a dívejte se, kterým směrem se bude míček pohybovat. Jakým směrem jste si myslili,

Více

Vítězslav Stýskala TÉMA 2. Oddíl 3. Elektrické stroje

Vítězslav Stýskala TÉMA 2. Oddíl 3. Elektrické stroje Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala TÉMA 2 Oddíl 3 Elektrické stroje jsou zařízení, která přeměňují jeden druh energie na jiný, nebo mění její velikost (parametry),

Více

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip: Účel IONTOVÉ ZDROJE vyrobit svazek částic vytvarovat ho a dopravit do urychlovací komory předurychlit ho (10 kev) Požadavky intenzita svazku malá emitance svazku trvanlivost zdroje stabilita zdroje minimální

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems)

Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems) Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems) Miniprojekt, v rámci Fyzikálního týdne na Fakultě Jaderné a Fyzikálně inženýrské ČVUT Řešitelé: David Brychta - Gymnasium Otokara

Více

Úvod do moderní fyziky. lekce 5 energie z jádra

Úvod do moderní fyziky. lekce 5 energie z jádra Úvod do moderní fyziky lekce 5 energie z jádra elektrony vs. nukleony elektron vázán v atomu coulombovskou silou energie k odtržení pouze několik ev nukleon vázán v jádře silnou jadernou silou energie

Více

CZ.1.07/1.1.30/01.0038

CZ.1.07/1.1.30/01.0038 Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,

Více

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost

Více

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se

Více

Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 16.3.2009,vyhotovila Mgr. Alena Jirčáková Atom atom (z řeckého átomos nedělitelný)

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1. Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem

Více

Systémy pro jadernou energetiku

Systémy pro jadernou energetiku Systémy pro jadernou energetiku Systems for Nuclear Power Industry Jaderná energie představuje nejefektivnější a nejsilnější známý energetický zdroj. Přitom jde o nízkoemisní zdroj, který umožňuje účinně

Více

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění Na www.studijni-svet.cz zaslal(a): Kikusska94 2. ATOM HISTORIE NÁZORŮ NA STAVBU ATOMU - Leukippos (490 420 př. n. l.) - Demokritos (460 340 př. n. l.) - látka je tvořená atomy, které se dále nedělí (atomos

Více

Fyzika. 8. ročník. LÁTKY A TĚLESA měřené veličiny. značky a jednotky fyzikálních veličin

Fyzika. 8. ročník. LÁTKY A TĚLESA měřené veličiny. značky a jednotky fyzikálních veličin list 1 / 7 F časová dotace: 2 hod / týden Fyzika 8. ročník (F 9 1 01.1) F 9 1 01.1 (F 9 1 01.3) prakticky změří vhodně vybranými měřidly fyzikální veličiny a určí jejich změny elektrické napětí prakticky

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie František Žáček; Jan Stöckel Současný stav a perspektivy řízeného termojaderného slučování v tokamacích Pokroky matematiky, fyziky a astronomie, Vol. 38 (1993),

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM.

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Ondřej Grover 3. minikonference projektu Cesta k vědě, 11.1.2011 Osnova prezentace 1 Motivace Jaderná fúze Jak udržet plazma Měření

Více

Spoutání slunce. kolem nás výzvy a otázky

Spoutání slunce. kolem nás výzvy a otázky Spoutání slunce věda 50 kolem nás výzvy a otázky Tokamak COMPASS Tokamak COMPASS (z anglického Compact Assembly) je hlavním experimentálním zařízením Ústavu fyziky Plazmatu AV ČR. Původně byl zkonstruován

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ BAKALÁŘSKÁ PRÁCE Studium počáteční fáze výboje v tokamacích Autor: Jakub Veverka Vedoucí: RNDr. Jan Stöckel, CSc. Praha 2014

Více

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

ATOMOVÁ FYZIKA JADERNÁ FYZIKA

ATOMOVÁ FYZIKA JADERNÁ FYZIKA ATOMOVÁ FYZIKA JADERNÁ FYZIKA 12. JADERNÁ FYZIKA, STAVBA A VLASTNOSTI ATOMOVÉHO JÁDRA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. JADERNÁ FYZIKA zabývá strukturou a přeměnami atomového jádra.

Více

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů.

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. JADERNÁ ENERGIE Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. HISTORIE Profesor pařížské univerzity Sorbonny Antoine

Více

Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99,

Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, 326 00 V rámci projektu: Inovace odborného vzdělávání na středních školách zaměřené na využívání energetických zdrojů pro 21. století něco jako kuličku První

Více

Perspektivní využití termojaderné syntézy pro zásobování elektrickou energií

Perspektivní využití termojaderné syntézy pro zásobování elektrickou energií Česke vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektroenergetiky Program: Elektrotechnika, energetika a management Obor: Aplikovaná elektrotechnika Perspektivní využití termojaderné

Více

8.STAVBA ATOMU ELEKTRONOVÝ OBAL

8.STAVBA ATOMU ELEKTRONOVÝ OBAL 8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole

Více

Základy elektrotechniky - úvod

Základy elektrotechniky - úvod Elektrotechnika se zabývá výrobou, rozvodem a spotřebou elektrické energie včetně zařízení k těmto účelům používaným, dále sdělovacími a informačními technologiemi. Elektrotechnika je úzce spjata s matematikou

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Otázka : před vstupem do reakce se to udělá jak, aby se atom s desítkami elektronů v obalu jich zbavil, tedy abychom my mu elektrony vzali.?

Otázka : před vstupem do reakce se to udělá jak, aby se atom s desítkami elektronů v obalu jich zbavil, tedy abychom my mu elektrony vzali.? Vážený Josefe, níže vpisuji odpovědi. Vážený příteli Jaroslave Nyní bych rád diskutoval jaderné reakce. V praxi lidí ( že by i v přírodě? ) se při takovém pokusu musí vzít atom nějakého prvku. Pak se ten

Více

Základy magnetohydrodynamiky. aneb MHD v jedné přednášce?! To si snad děláte legraci!

Základy magnetohydrodynamiky. aneb MHD v jedné přednášce?! To si snad děláte legraci! Základy magnetohydrodynamiky aneb MHD v jedné přednášce?! To si snad děláte legraci! Osnova Magnetohydrodynamika Maxwellovy rovnice Aplikace pinče, MHD generátory, geofyzika, astrofyzika... Magnetohydrodynamika

Více

Radioaktivita,radioaktivní rozpad

Radioaktivita,radioaktivní rozpad Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních

Více

J i h l a v a Základy ekologie

J i h l a v a Základy ekologie S třední škola stavební J i h l a v a Základy ekologie 14. Energie klasické zdroje Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský

Více

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143 Zpracovala: RNDr. Libuše Bartková Teorie Kosmologie - věda zabývající se vznikem a vývojem vesmírem. Vznik vesmírů je vysvětlován v bájích každé starobylé

Více

ÚVOD DO JADERNÉ FYZIKY ATOMOVÉ JÁDRO

ÚVOD DO JADERNÉ FYZIKY ATOMOVÉ JÁDRO ÚVOD DO JADERNÉ FYZIKY EXPERIMENTÁLNÍ ZÁKLAD rozptyl (pružný i nepružný) různých částic na atomových jádrech (neutrony, protony, elektrony, pozitrony, fotony, α-částice, ) radioaktivní rozpady některých

Více

Je jaderná fúzní energie obnovitelný zdroj energie? Ing. Slavomír Entler

Je jaderná fúzní energie obnovitelný zdroj energie? Ing. Slavomír Entler Je jaderná fúzní energie obnovitelný zdroj energie? Ing. Slavomír Entler Podle úředního rozhodnutí fúzní energie není obnovitelný zdroj. Tímto rozhodnutím je pominuta základní fyzikální realita a stav

Více

Energie,výkon, příkon účinnost, práce. V trojfázové soustavě

Energie,výkon, příkon účinnost, práce. V trojfázové soustavě Energie,výkon, příkon účinnost, práce V trojfázové soustavě Energie nevzniká ani se neztrácí, jen se mění z jedné na druhou Energie je nejdůležitější vlastnost hmoty a záření Jednotlivé druhy energie:

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů

Více

Chemie pro KS Anorganická a analytická část

Chemie pro KS Anorganická a analytická část Chemie pro KS Anorganická a analytická část Ing. Matyáš Orsák, Ph.D. ORSAK@AF.CZU.CZ Program přednášek. přednáška a) atom, jádro, obal, elektron, radioaktivita b) názvosloví anorg. sloučenin včetně koordinačních

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

Jaderná elektrárna. Martin Šturc

Jaderná elektrárna. Martin Šturc Jaderná elektrárna Martin Šturc Princip funkce Štěpení jader Štěpení jader Štěpení těžkých se nejsnáze vyvolá neutronem. Přestože štěpení jader je vždy exotermická reakce, musí mít dopadající neutron určitou

Více