Stabilita atomového jádra. Radioaktivita

Rozměr: px
Začít zobrazení ze stránky:

Download "Stabilita atomového jádra. Radioaktivita"

Transkript

1 Stbilit tomového jádr Rdioktivit Proton Kldný náboj kg Stbilní Atomové jádro Protony & Neutrony Neutron Bez náboje kg Dlouhodobě stbilní jen v jádře

2 Struktur jádr A Z N A nukleonové číslo Z protonové číslo N neutronové číslo A Z X Nuklid tom o určitých číslech Z & N Isotopy nuklidy prvku s různým počtem neutronů Nestbilní isotopy se nzývjí rdioktivní Izotopy Atomy, jejichž jádr mjí stejný počet protonů ( jádr jednoho prvku), odlišují se všk počtem neutronů Velmi podobné fyzikální chemické vlstnosti (kromě rdioktivních), neboť chemické vlstnosti závisejí n struktuře tomového oblu, tj. počtu elektronů, který je roven počtu protonů, tj. totožný pro izotopy Rozdílná hmotnost jádr rozdílná hustot chemických látek s různými izotopy možnost seprce izotopů Rdioktivit odlišných izotopů je výrzně odlišná! Příkldy H H D H T lehký vodík (obyčejný) těžký vodík (deuterium) supertěžký vodík (tritium)- rdioktivní

3 Izobry Atomy, jejichž jádr mjí stejný počet nukleonů, le odlišují se počtem protonů ( jádr odlišných prvků) Přibližně stejná hmotnost jádr Odlišné chemické vlstnosti (jádr odlišných prvků) Přechod mezi sousedními izobry zprostředkovává rozpd β (β -, β ) Příkldy 60 8 Ni 60 7 Co 8 U 8 9 9Np 8 U 8 9 9Pu Izomery Atomy (jádr) o stejném protonovém i neutronovém čísle, které se všk liší energetickým stvem jádr Obdobně jko elektrony tomového oblu mohou obszovt různé energetické hldiny, mohou i protony neutrony obszovt různé jderné energetické hldiny Přechod mezi izomery (z ecitovného stvu do nižšího nebo přímo nejnižšího zákldního stvu) zprostředkovává rozpd γ, tj. vyslání vysokoenergetického fotonu Příkld 99 Tc 99 Tc m ( 99 Tc * ) metstbilní (ecitovné) technecium

4 Jádro: Stbilit vs. poměr N/Z Je známo 000 různých nuklidů, z nichž pouze 66 je stbilních! prvky se Z > 8 nejsou stbilní! Stbilitu vykzuji jádr s N Z, pro vyšší Z pk spíše N > Z. (el.-stt. repulze protonů) Neutronové číslo N Line Linie of stbility Stbility Poslední stble stbilní element prvek Z 8 (Bi) N Z 50 Protonové číslo Z 00 Interkce v jádře Elektrosttická - působí mezi souhlsně nbitými protony odpudivá Silná jderná - působí mezi všemi nukleony, přitžlivá, nejsilnější známá síl - krátký dosh (jen v rámci jádr, tj. c. 0-5 m) - projevují nsycenost (působí jen n určitý počet nukleonů v okolí)

5 Slupkový model Modely jádr podobně jko elektrony obszují energetické hldiny- slupky (orbitly), tk i v jádře eistují energetické hldiny pro protony neutrony. Jádro je stbilní, pokud jsou obszeny nejnižší slupky. Kpkový model Jádro je jko kpk vody. Síly uvnitř kpky musí být v rovnováze s vnějšími silmi. Hmotnost tomu Proton neutron mjí téměř shodnou hmotnost, která je 80 krát větší než hmotnost elektronů Hmotnost jádr je dán počtem nukleonů mtom Zmp Nmn Zme m p, kg mj Zmp Nmn m n, kg ( Z N) m Am m e 9,.0 - kg p p Uvedené vzthy jsou velice přibližné, protože nezohledňuje změnu hmotnosti jádr působením vzebné jderné energie v důsledku silných jderných interkcí- tzv. hmotnostní deficit

6 Hmotnostní deficit (defekt) m Při vytvoření jádr ze Z protonů N neutronů se uvolní vzebná energie E J, tj. sníží se energie vzniklého jádr výsledné jádro je lehčí než součet hmotností nukleonů Snížení je úměrné uvolněné vzebné energii stbilní jádr jsou výrzněji lehčí, než součet hmotností nukleonů m Zm Nm m EJ m c Atomová hmotnostní jednotk definován jko / hmotnosti tomu izotopu C m u, kg J p (m u..n A ) M( C) n Hmotnostní deficit (defekt) m neutron proton deuterium hmotnost hmotnost Při rekci se ztrtil hmot- přeměn n vzebnou energii jádr deuteri. Při rekci se uvolní energie, MeV ve formě záření zvýšené kinetické energie deuteri ( teplo)

7 Hmotnostní deficit (defekt) m Jk velká je jderná vzebná energie v tomu izotopu C? Hmotnost tomu C je podle definice přesně rovn m u m(jádro) m u 6.m e m J Zm m Zm m 6m m 6.,676.0 m,65.0 p p p E mc,86.0,60.0 Nm Nm 6m (m kg, n n n 8 m m 7 J 6me) 6., (.0 ) ev 9,7 MeV u. 8 7., J,86.0 J 7 6.9,09.0 7,7 MeV / nukleon (viz dále) kg Energie, která se uvolní, když protony neutrony vytvoří jádro tomu. Odpovídá hmotnostnímu úbytku jádr E mc vyjdřuje se v jednotkách MeV nebo J/mol Vzebná energie vzebná energie jádr C: E,86.0,86.0 E, ,0.0 8,95.0 ev 9,7 MeV J / mol 8,95TJ / mol

8 Vzebná energie / nukleon ( MeV) A Bi Nukleonové číslo A Vzebná energie n jeden nukleon doshuje mim při A 56. (Fe) nejstbilnější jádro Je možné získt energii: ) srážkou dvou lehkých jder: (termo)jderná fúze b) rozpdem těžkého jádr (A~00) n dvě lehčí jádr (A~60): štěpná rekce Štěpná rekce po nárzu pomlého neutronu (E<0, ev) se tom urnu rozštěpí n dvě menší jádr, uvolní se energie (c. 00 MeV) kromě toho tké ž neutrony. Možná štěpení: 5 9 n U B Kr n B 6 Kr L 5 Br 0 n 0 n 0 Vzniklé neutrony mohou ktivovt dlší jádr urnu dochází k řetězové štěpné rekci (k tomu nutné jisté minimální množství štěpného mterilu (kritická hmotnost)).

9 Štěpná rekce Jderné elektrárny: jderná rekce je řízen pomocí řídících tyčí, které jsou vyrobeny z mteriálu, který dobře bsorbuje neutrony (B, Cd) plný výkon střední výkon zástv rektoru Moderátor slouží ke zpomlování neutronů, používá se lehká (H O) nebo těžká (D O) vod Termojderná fúze eoenergetická jderná syntéz velká el.-stt. repulze mezi jádry nutnost vysoké teploty (min. 0 6 K) hvězdy, vodíková bomb, řízená termojderná fúze pouze ve stdiu eperimentů npř.: H H H p,0mev H H He 0 n 7,6MeV TOKAMAK:

10 Termojderná fúze n hvězdách Mtemtická vložk: eponenciální logritmické funkce

11 Eponenciální funkce - vlstnosti f ( ) f ( ) Logritmická funkce Logritmem o zákldu nzveme funkci inverzní k znčíme ji: f ( ) log y log y f ( ) logritmus čísl o zákldu je tkové číslo y, pro které pltí v : V přírodních vědách mjí význm pouze logritmy se zákldy: 0 (dekdický log) f ( ) log 0 log e (,78) (přirozený logritmus) f ( ) loge ln > 0,

12 Eponenciální logritmická funkce, > y f ( ) Logritmus je inverzní funkce k funkci eponenciální jejich grfy jsou symetrické podle osy.. kvdrntu > : funkce není omezená funkce je rostoucí f ( ) log funkce je prostá nemá lokální etrémy vždy prochází bodem [,0] Pozn.: e > ; 0 > Eponenciální logritmická funkce, < y Logritmus je inverzní funkce k funkci eponenciální jejich grfy jsou symetrické podle osy.. kvdrntu f ( ) < : funkce není omezená ( > 0) funkce je klesjící funkce je prostá nemá lokální etrémy f ( ) log vždy prochází bodem [,0]

13 Vlstnosti eponentů logritmů : ( ) ( b) b b b log log ( ) log log log log log log n r r log log n log b log log b ln ( e ) log0 log e 0 () log( 0 ) 0 Příkldy logritmů: ln ( ) log0 log 0 log(0.0 ) log(0 ) log(0 ) 5 log ln ( ) log0. ( 0,) log( 0 ) ln( ).ln( ) ln log 0

14 Eponenciální logritmické rovnice Vyřešte rovnici Součty nelze zlogritmovt mocniny mjí různé zákldy. Je třeb rovnici nejprve nějk uprvit: log log 0 log 0,7 log 0,75 Logritmická stupnice f ( ) je v nekonečnu

15 Logritmická stupnice Dekdická stupnice T smá dt v dekdické stupnici mlé píky vůbec nejsou vidět! Logritmická stupnice

16 Rychlost rozpdu jder Kromě typu částic, které jsou emitovány při rozpdu jder se tké zjímáme o to jká je rychlost rozpdu dného nuklidu. Nemůžeme předpovědět, kdy se určité jádro rozpdne, le pouze prvděpodobnost jeho rozpdu v určitém čse! Máme-li větší množství rdioktivní látky, po dném čse se rozpdne množství látky, které můžeme předem vypočítt. Některá rdioktivní jádr mjí velice vysokou rychlost rozpdu, ztímco jiná mohou mít velice nízkou rychlost rozpdu. Ke kvntifikci rychlosti rozpdu jder se používjí veličiny: Poločs rozpdu Přeměnová konstnt Střední dob život jádr Poločs rozpdu Poločs rozpdu (T / ) je čs, z který se rozpdne polovin všech jder rdioktivního mteriálu. Příkld: předpokládejme 0,000 tomů rdioktivního látky. Jestliže je poločs rozpdu T / hodin, kolik tomů rdioktivní látky bude zbývt po: Čs hodin ( T / )? počet nerozp. tomů % nerozp. tomů 0,000 (50%) hodin ( T / )? hodin ( T / )? 5,000 (5%),500 (.5%)

17 Zákon rdioktivní přeměny Počet jder N, která se při jderných přeměnách rozpdnou v čse ve velice krátké čse t: N -λ.n. t N N 0.e -λt N 0 počáteční počet částic N počet nerozpdlých částic v čse t λ přeměnová konst. částice (reltivní úbytek částic z s) n(t)/n λt Vzth mezi přeměnovou konstntou λ poločsem rozpdu T / : V čse T / pltí: N N 0 e λ. t e λ. T / - ln - λ.t / λ ln / T / 0,69/T /

18 Aktivit rdioktivního zářiče Aktivit rdioktivního zářiče je dán počtem přeměněných jder z jednotku čsu: A N / t λ.n. t / t λ.n Jednotk ktivity: becquerel (Bq)- odpovídá jedné přeměně z s. Aktivit zářiče se mění s čsem: A A 0.e -λ.t A 0. Aktivit zářiče n počátku Aktivit látky Jká je ktivit g rádi 6 R o poločsu rozpdu 600 roků? ln mn A() t λ n() t A 0 λn0 λ N0 T M rok,6.0 7 s A A 0 ln mn T M,7.0 0 A s 0, ,6.0, g.6,0.0 mol s 6 gmol. Bq Ci

19 Střední dob život τ Střední dob život volného neutronu je.7 minuty {τ (neutron).7 min.} τ /λ.*t / N / N 0 e -t/τ Čs (doby život) 0τ τ τ τ τ 5τ Čs (min) Podíl nerozpdlých neutronů podíl Frction nerozpdlých Survived jder počet středních Lifetimes dob život Po Po uplynutí -5-5 dob život jsou jsou už už téměř všechny částice rozpdlé! Střední dob život Kždá částice má svou chrkteristickou střední dobu život- velké rozdíly: U má střední dobu život si si6 biliónů (60 9 )) let! --některé subtomární částice mjí střední doby život menší než s s!! Mámeli soubor nestbilních částic, nemůžeme říci, která částice se se kdy konkrétně rozpdne Proces rozpdu se se chová sttisticky. Můžeme pouze předpovědět: ) ) střední dobu život rdioktivní látky nebo ) ) prvděpodobnost rozpdu dné konkrétní částice.

20 Typy záření Alf Největší částice Pohlceno kůží, interně smrtelné Dolet ve vzduchu: cm Bet Pohlceno hliníkovou fólií Dolet ve vzduchu: m Gm Pohlceno pouze dosttečně silnou vrstvou olov či betonu Rdioktivní rozpd α Emitování jádr héli z jádr těžkého tomu (A >50) jeho trnsmutce přeměn n jiný prvek A Z X D A Z He 6-88R 86Rn He 08-8Bi 8Tl He Rn 86 6 R 88 Částice α He Dceřinné jádro Vzniklý těžký nion má Z elektronů Z- protonů náboj - Z zákon zchování energie hybnosti je jednoznčně určen energie částice α i dceřinného jádr. Díky vysoké hmotnosti částice α dochází ke zpětnému rázu, jádro získává dosttečnou energii k ionizci

21 Rdioktivní rozpd α Dolet R / / R konst. E k, [ konst.] m MeV Jádro Poločs rozpdu α v s E k v MeV 8 Po, ,776 8 Po R Am 0,5 5,.0 0,8.0 7, 5,68 5,5 Dceřinné jádro má přesně určenou energii! Rdioktivní rozpd β - Podsttou rozpdu β - je přeměn neutronu n proton, elektron elektronové ntineutrino 0 n p 0 e - - ν e Částice β (β - ) Poločs rozpdu volného neutronu je 5 minut Hmotnost neutronu je vyšší než hmotnost protonu elektronu může docházet k smovolnému rozpdu K β - rozpdu dochází při reltivním ndbytku neutronů (vzhledem k počtu protonů) v jádře - e A X A Z X 0 - Z e - ν C e N 0 e ν e (Anti)neutrin jsou téměř nedetekovtelná

22 Rdioktivní rozpd β - Energetické spektrum β elektronů je spojité on nulové hodnoty ž po mimální Tříčásticový rozpd Zákon zchování energie hybnosti Mimální energie vyzářených elektronů: 0,0 MeV u triti H, MeV u boru 5B Nejtěžší izotop podléhjící β - rozpdu α rozpd Es, konkurencí Rdioktivní rozpd β Podsttou rozpdu β je přeměn protonu n neutron, pozitron elektronové neutrino 0 ( p ) ( 0n) e ν e Částice β e Hmotnost protonu je vyšší než hmotnost neutronu nemůže docházet k smovolnému rozpdu volného protonu, le může k této přeměně docházet pouze v jádře tomu K β rozpdu dochází při reltivním ndbytku protonů (vzhledem k počtu neutronů) v jádře Všechny β rdionuklidy jsou umělé (využití: npř. PET) A Z X X e ν C ν A 0 0 Z e 6 5 e B e

23 Částice ntičástice Ke kždé částici eistuje ntičástice (někdy je identická s částicí), která má stejnou hmotnost, le opčné hodnoty elektrického náboje dlších nábojů čísel Proton p, ntiproton p - Elektron e -, pozitron e Elektronové neutrino ν e, elektronové ntineutrinoν e (obojí elektricky neutrální) Při srážce částice s ntičásticí dochází k nihilci, částice ntičástice zniknou uvolněná energie se vyzáří ve formě dvou fotonů γ letících opčnými směry e - e γ m c 0,5 MeV Využito v PET (pozitronová emisní tomogrfie) E γ e Pozitronová emisní tomogrfie (PET) e se prkticky ihned po emisi s jádr srzí s e - nihilce- vznik dvou γ fotonů o přesně stejné energii (5 kev), které se šíří přesně opčným směrem výhod: přesná detekce v klinické pri nejčstěji využívná -fluoro--deoy-dglukóz (8FDG)- znčení pomocí 8 F

24 PET mozková ktivit: při poslechu při čtení Rdioktivní rozpd β - záchyt K Zchycení elektronu z první slupky oblu (slupk K) jádrem následná jderná rekce A Z X 0 - A -e Z X ν e Přeměn tomu, změn protonového čísl jko při rozpdu β Br -e Se ν e

25 Rdioktivní záření γ Vzniká v jádře tomů při změně energetického stvu jádr následek emise či bsorbce částice Nedochází ke změně hmoty jádr Vlnová délk λ < 00 pm Energie 00 kev ž 0 MeV Silně ionizující Fotoelektrický jev (dominntní do 0,5 MeV) Comptonův rozptyl (dominntní 0,5 5 MeV) Tvorb elektron pozitronových párů (e -, e ) Opčný proces k nihilci páru částice ntičástice Pouze u fotonů s energií větší než m e c MeV Pouze z účsti interkce s dlší částicí (tomem) γ e - e Vnitřní konverze záření γ γ foton emitovný jádrem vyrzí elektron z vnitřní vrstvy tomového oblu Těžký tom vysoké protonové číslo velká elektrosttická energie vnitřních elektronů Vyržený elektron s velkou energií je schopen ionizovt prostředí- Augerův elektron Přeskok elektronu z vyšší vrstvy n uvolněné místo vnitřní vrstvy vznik RTG záření γzářič může být zdrojem sekundárního záření β RTG záření

26 Zákony zchování Jderné rekce A A A A Z X Y X Y Z Z Z Počtu nukleonů A A A A Elektrického náboje Z Z Z Z Protonové číslo se nezchovává, pokud dochází k přeměně mezi protonem neutronem, jink no Zchovává se pseudoprotonové číslo, které vychází z náboje elementárních částic zchování náboje Energie 7 He 7N 8O H Hybnosti 7 α 7 N 8O p Momentu hybnosti N( α,p) 7 O 7 8 Přirozená rdioktivit Rdice je všudypřítomná. Mnoho nerostů, zvláště žul, obshuje mlé množství urnu, jehož rozpdem vzniká rdioktivní plyn rdon. Slunce dlší vesmírné objekty jsou zdroji rdice, jež částečně projde tmosférou ž n zemský povrch. Umělá rdioktivit Rdioktivní zdroje se používjí npř. ve zdrvotnictví Jderné zbrně, jderná zřízení

27 Rdionuklidy přírodní rdionuklidy -primární - druhotné - kosmogenní umělé rdionuklidy Primární rdionuklidy (původní, fosilní) vznikly při kosmické nukleogenezi termonukleárními rekcemi v nitrech hvězd, které pk vybuchly obohtily zárodečný oblk, z něhož vzniklo nše Slunce sluneční soustv. Součástí Země se tk stly při formování Sluneční soustvy před cc -5 milirdmi let. Do dnešní doby se ovšem zchovly pouze ty rdionuklidy, které mjí velmi dlouhý poločs rozpdu. Nejrozšířenějším primárním rdionuklidem je drslík 0 K, dlším přírodním primárním rdionuklidem je thorium Th. Nejvýznmnějšími přírodními rdionuklidy tohoto primárního původu v zemské kůře jsou všk urn 8 U urn 5 U

28 Druhotné rdionuklidy - rozpdové produkty primárních rdionuklidů. - přírodní rdionuklidy Th, 8 U 5 U se rozpdjí n jádr, která jsou tké rdioktivní, stejně jko jejich dlší dlší rozpdové produkty. Přírodní rdionuklidy tvoří rozpdové řdy.. neptuniová řd je odvozen uměle od připrveného trnsurnového prvku plutoni): Urnov ová řd: 8 Aktiniová řd : 5 8 9U Pb 5 9U Pb Thoriov ová řd : 90Th 08 8Pb (Neptuniová řd : 9Pu 09 8Pb Pb) 8 U 06 Pb β záření α záření

29 Kosmogenní rdionuklidy - přírodní rdionuklidy, které průběžně vznikjí jdernými rekcemi při průchodu vysokoenergetického kosmického záření zemskou tmosférou. Npř.: uhlík C (rdiokrbonová metod určování stáří rcheologických předmětů) tritium H (vyráběn i uměle pro potřeby lékřství biologie) Některé nuklidy: více možných rdioktivních přeměn 7 Al 0γ 0 7 Al* 6 Mg 5 Mg p 0n p N He

30 Poždvky n vlstnosti rdionuklidů dle využití: Stbilní eterní zářič Poždujeme čsově neproměnnou, konstntní ktivitu (pouze přibližně, s čsem klesá)- npř. Leksselův Gm nůž Látky s dlouhým poločsem rozpdu Interní zářič Použití pro znčení chemických látek pro stopování (trcing), rdioimmunossy (RIA), pozitronovou emisní tomogrfii (PET), jednofotonovou emisní výpočetní tomogrfii (SPECT) Krátký poločs rozpdu (rychlé odbourání) Dosttečná rdioktivit pro dignostiku vs. co nejnižší dávk pro orgnismus Výrob umělých rdionuklidů

31 Využití rdionuklidů Znčení sloučenin- studium jejich biochemických přeměn, distribuce trnsportu v živých orgnismech Zdroje záření - rdioterpie (ozářování nádorů), resturátorství (proti červotočům). 60 Co (T / 5,6 let, zdroj záření β - zejmén γ. Rdiochemická nlýz- bsolutní měření rdioktivity nebo specifické rdioktivity. Npř. určení stáří orgnických mteriálů ( C dtovcí metod). Anlytická (bio)chemie: zřeďovcí, derivční, sturční, ktivční nlýz Rdionuklidy v nlytické biochemii zřeďovcí nlýz: známé množství rdiokt. nlogu sloučeniny, kterou chceme stnovit. Po ustnovení rovnováhy izolci se vypočítá koncentrce n zákldě poklesu rdioktivity derivční nlýz: rekce látky A s přebytkem znčené látky B*. Poté odstrnění přebytku látky B*. Rdioktivit AB* je úměrná množství látky A přítomnému n počátku. Npř.: imunochemie (interkce ntigenu s protilátkou) sturční nlýz: K látce A se přidá její rdioktivní nlog A* mlé množství látky B. Po ustvení rovnováhy se přebytek látky A odstrní změří se rdioktivit. Obě formy látky A soutěží o vzebná míst látky B, tkže poměr AB/ A*B je úměrný stnovovnému množství neznčené látky A Npř.: rdioimunoesej (stnovení hormonů, toinů, pesticidů, vitmínů). ktivční nlýz: Anlyzovný vzorek se v jderném rektoru vyství proudu neutronů, které část tomů přemění n jejich rdioktivní izotopy. Anlýz následného rdiokt. záření

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

Prvek, nuklid, izotop, izobar

Prvek, nuklid, izotop, izobar Prvek, nuklid, izotop, izobar A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Frederick Soddy (1877-1956) NP za chemii 1921 Prvek = soubor

Více

Potenciometrie. Elektrodový děj je oxidačně-redukční reakce umožňující přenos náboje mezi fázemi. Např.:

Potenciometrie. Elektrodový děj je oxidačně-redukční reakce umožňující přenos náboje mezi fázemi. Např.: Potenciometrie Poločlánek (elektrod) je heterogenní elektrochemický systém tvořeny lespoň dvěm fázemi. Jedn fáze je vodičem první třídy vede proud prostřednictvím elektronů. Druhá fáze je vodičem druhé

Více

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

Jaderné reakce a radioaktivita

Jaderné reakce a radioaktivita Střední průmyslová škola Hranice - - Jaderné reakce a radioaktivita Radioaktivita Je vlastností atomových jader, která se samovolně přeměňují na jiná a vyzařují při tom pronikavé neviditelné záření. Jádra

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_379 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:

Více

Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace:

Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace: Radiační patofyziologie Radiační poškození vzniká účinkem ionizujícího záření. Co se týká jeho původu, ionizující záření vzniká: při radioaktivním rozpadu prvků, přichází z kosmického prostoru, je produkováno

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Jaderná fyzika. Zápisy do sešitu

Jaderná fyzika. Zápisy do sešitu Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Základy elektrotechniky - úvod

Základy elektrotechniky - úvod Elektrotechnika se zabývá výrobou, rozvodem a spotřebou elektrické energie včetně zařízení k těmto účelům používaným, dále sdělovacími a informačními technologiemi. Elektrotechnika je úzce spjata s matematikou

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA

VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA Fyzika atomového jádra Stavba atomového jádra Protonové číslo Periodická soustava prvků Nukleonové číslo Neutron Jaderné síly Úkoly zápis Stavba atomového

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Základní pojmy: Číselné obory a vztahy mezi nimi Zákony pro počítání s číselnými množinami

Základní pojmy: Číselné obory a vztahy mezi nimi Zákony pro počítání s číselnými množinami / Zákldní pojmy: Číselné obory vzthy mezi nimi ČÍSELNÉ MNOŽINY Zákony pro počítání s číselnými množinmi. Přirozená čísl vyjdřují počet prvků množiny N. Celá čísl změn počtu prvků dné množiny, přírůstky

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

RADIOAKTIVITA RADIOAKTIVITA

RADIOAKTIVITA RADIOAKTIVITA Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 2012 Název zpracovaného celku: RADIOAKTIVITA Přirozená radioaktivita: RADIOAKTIVITA Atomová jádra některých nuklidů (zejména těžká

Více

skripta MZB1.doc 8.9.2011 1/81

skripta MZB1.doc 8.9.2011 1/81 skript MZB.doc 8.9. /8 skript MZB.doc 8.9. /8 Osh Osh... Zlomk... Dělitelnost v množině přirozených čísel... Trojčlenk... 9 Výrz s mocninmi s celočíselným eponentem ()... Výrz s mocninmi s rcionálním eponentem...

Více

Rentgenová strukturní analýza

Rentgenová strukturní analýza Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

36 RADIOAKTIVITA. Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita

36 RADIOAKTIVITA. Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita 433 36 RADIOAKTIVITA Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita Radioaktivita je jev, při kterém se jádra jednoho prvku samovolně mění na jádra jiného prvku emisí částic alfa, neutronů,

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy, Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

1. Látkové soustavy, složení soustav

1. Látkové soustavy, složení soustav , složení soustav 1 , složení soustav 1. Základní pojmy 1.1 Hmota 1.2 Látky 1.3 Pole 1.4 Soustava 1.5 Fáze a fázové přeměny 1.6 Stavové veličiny 1.7 Složka 2. Hmotnost a látkové množství 3. Složení látkových

Více

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN pevné látky jsou chrkterizovány omezeným pohybem zákldních stvebních částic (tomů, iontů, molekul) kolem rovnovážných poloh PEVNÉ LÁTKY krystlické morfní KRYSTAL pevné

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

CZ.1.07/1.1.30/01.0038

CZ.1.07/1.1.30/01.0038 Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,

Více

JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH

JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH TECHNICKÁ FYZIKA IV Účinky a druhy záření Vypracoval: Vladimír Pátý Ročník: 2 Datum: 26.5.2003 Skupina: MVT Účinky a druhy záření 1. Druhy

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Měření rozlišovací schopnosti optických soustav

Měření rozlišovací schopnosti optických soustav F Měření rozlišovcí schopnosti optických soustv Úkoly :. Měření rozlišovcí schopnosti fotogrfických objektivů v závislosti n clonovém čísle. Měření hloubky ostrosti fotogrfických objektivů v závislosti

Více

Záření kolem nás. Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze

Záření kolem nás. Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze Záření kolem nás Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze Elektromagnetické záření q Pohybující se elektrický náboj vyzařuje elektromagnetické záření q Vlastnosti záření

Více

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý ATOM Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 25. 7. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci se seznámí se

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

Měření přirozené radioaktivity na Vyšehradě

Měření přirozené radioaktivity na Vyšehradě Měření přirozené radioaktivity na Vyšehradě P. Guhlová Gymnázium Na Vítězné pláni Praha M. Slavík Gymnázium Jana Masaryka Jihlava mellkori@seznam.cz R. Žlebčík Gymnázium Christiána Dopplera V. Arťušenko

Více

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9.

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Školní rok 0/03, 03/04 Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Počet hodin pro kapitolu Úvod

Více

Patofyziologie radiačního poškození Jednotky, měření, vznik záření Bezprostřední biologické účinky Účinky na organizmus: - nestochastické - stochastické Ionizující záření Radiační poškození vzniká účinkem

Více

PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora

PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora Kdo se bojí radiace? Stanislav Kočvara *, VF, a.s. Černá Hora PRO VAŠE POUČENÍ ÚVOD Od počátků lidského rodu platí, že máme strach především z neznámého. Lidé měli v minulosti strach z ohně, blesku, zatmění

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu

Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu Jaderná energie Atom Všechny věci kolem nás se skládají z atomů. Atom obsahuje jádro (tvořené protony a neutrony) a obal tvořený elektrony. Protony a elektrony jsou částice elektricky nabité, neutron je

Více

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 OCHRANA PŘED ZÁŘENÍM Přednáška pro stáže studentů MU, podzimní semestr 2010-09-08 Ing. Oldřich Ott Osnova přednášky Druhy ionizačního záření,

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

Stereochemie. Přednáška č. 3

Stereochemie. Přednáška č. 3 Stereochemie Přednášk č. 3 Nomenkltur sloučenin obshujících centrum chirlity jednoduchou osu symetrie Typ molekuly prvek symetrie bcd žádný bc σ bb 2 + σ b 3 +3σ 4 3 + 3 2 + 6σ Molekuly typu bb b b b b

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143 Zpracovala: RNDr. Libuše Bartková Teorie Kosmologie - věda zabývající se vznikem a vývojem vesmírem. Vznik vesmírů je vysvětlován v bájích každé starobylé

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

Značí se A r Určí se z periodické tabulky. Jednotkou je 1/12 hmotnosti atomu uhlíku. A r (H) = 1 A r (O) = 16

Značí se A r Určí se z periodické tabulky. Jednotkou je 1/12 hmotnosti atomu uhlíku. A r (H) = 1 A r (O) = 16 CHEMICKÉ VÝPOČTY Značí se A r Určí se z periodické tabulky. Jednotkou je 1/12 hmotnosti atomu uhlíku. A r (H) = 1 A r (O) = 16 12 6 C Značí se M r Vypočítá se jako součet relativních atomových hmotností

Více

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu 5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu Cíle úlohy: Cílem této úlohy je seznámení se s lineárním absorpčním koeficientem a jeho závislostí na tlaku vzduchu a použitých stínících

Více

RADIUM - 223 - fyzikální vlastnosti a radiobiologické účinky -

RADIUM - 223 - fyzikální vlastnosti a radiobiologické účinky - RADIUM - 223 - fyzikální vlastnosti a radiobiologické účinky - Radium důležitý radioaktivní prvek Radium 226 Ra a 223 Ra Radiobiologické účinky a využití v nukleární medicíně Ullmann V., Koláček M., Pekárek

Více

Jana Nováková Proč jet do CERNu? MFF UK

Jana Nováková Proč jet do CERNu? MFF UK Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není

Více

Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů. e-learningový kurz

Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů. e-learningový kurz Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů e-learningový kurz Tento e-learningový kurz byl vypracován v rámci projektu Efektivní přenos poznatků v rámci energetického

Více

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ) Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření

Více

Stanovení disociační konstanty acidobazického indikátoru

Stanovení disociační konstanty acidobazického indikátoru Stnovení disociční konstnty cidobzického indikátoru Teorie: cidobzické indikátory se chovjí buď jko slbé kyseliny nebo slbé báze disociují ve vodných roztocích omezeně. Kvntittivní mírou disocice je hodnot

Více

STEJNOSMĚRNÉ STROJE. Určeno pro posluchače bakalářských studijních programů. 1. Úvod

STEJNOSMĚRNÉ STROJE. Určeno pro posluchače bakalářských studijních programů. 1. Úvod 1. Úvod Stejnosměrné stroje jsou historicky nejstršími elektrickými stroji nejprve se používly jko generátory pro výrobu stejnosměrného proudu. V řdě technických plikcí byly tyto V součsné době se stejnosměrné

Více

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS STEJNOSĚRNÉ STROJE Určeno pro posluchče bklářských studijních progrmů FS 1. Úvod 2. Konstrukční uspořádání 3. Princip činnosti stejnosměrného stroje 4. Rozdělení stejnosměrných strojů 5. Provozní vlstnosti

Více

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace Jiří Petržel zpětná vzb, stbilit oscilce zpětná vzb, stbilit oscilce zpětnou vzbou (ZV) přivádíme záměrněčást výstupního signálu zpět n vstup ZV zásdně ovlivňuje prkticky všechny vlstnosti dného zpojení

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Chemie Třída: tercie Očekávané výstupy Uvede příklady chemického děje a čím se zabývá chemie Rozliší tělesa a látky Rozpozná na příkladech fyzikální

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

Ch - Stavba atomu, chemická vazba

Ch - Stavba atomu, chemická vazba Ch - Stavba atomu, chemická vazba Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

CHEMICKY ČISTÁ LÁTKA A SMĚS

CHEMICKY ČISTÁ LÁTKA A SMĚS CHEMICKY ČISTÁ LÁTKA A SMĚS Látka = forma hmoty, která se skládá z velkého množství základních stavebních částic: atomů, iontů a... Látky se liší podle druhu částic, ze kterých se skládají. Druh částic

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více