Evoluční algoritmy. Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Evoluční algoritmy. Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla)"

Transkript

1 Evoluční algoritmy Hollandovy genetické algoritmy (binární řetězce) Fogelovo evoluční programování (automaty) Kozovo genetické programování (stromy) Schwefelovy evoluční strategie (parametry funkcí) Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla)

2 Odkazy: Holland: Adaptation in natural and artificial systems, MIT Press, Goldberg: Genetic algorithms in Optimization, Search and Learning, Addison-Wesley, Koza: Genetic Programming, I-III, MIT Press, 1992, 1994, Mitchell: Introduction to GA, MIT Press, Hitch-hiker's guide to EC:

3 Obecný evoluční algoritmus Populace P(t) jedinců {x 1 (t),... x n (t)} Každý jedinec je zakódované řešení problému Každý jedinec má fitness (jak dobře řeší problém) Vytváření populace P(t+1): Výběr (selekce) Křížení apod Mutace apod

4 OEA pokr. Evolution program() { t=0; initialze P(t); evaluate P(t); while (! end) { } t++; select P(t) from P(t-1); alter P(t); evaluate P(t); }

5 Jednoduchý genetický algoritmus genetická reprezentace řešení vytvoření iniciální populace ohodnocovací/účelová/fitness funkce genetické operátory: výběr, křížení, mutace parametry GA: velikost populace, pravděpodobnosti operátorů

6 JGA pokr. Reprezentace: Binární řetězce Mutace: Náhodná změna bitu Křížení Jednobodové Selekce Ruletová

7 Schémata Schéma je slovo v abecedě 0, 1 a* (don't care) Schéma reprezentuje množinu řetězců Schéma s r * reprezentuje 2 r řetězců Řetězec délky m je reprezentován 2 m schématy Je 3m schémat délky m V populaci velikosti n je 2m až n.2 m schémat

8 Schémata pokr. Řád schématu S: o(s) Počet 0 a 1 (pevných pozic) Definující délka: d(s) Vzdálenost mezi první a poslední pevnou pozicí Fitness schématu: F(S) Průměrná fitness odpovídajících řetězců v populaci

9 Věta o schématech Krátká nadprůměrná s malým řádem schémata se v populaci během GA exponencielně množí. Hypotéza o stavebních blocích: GA hledá suboptimální řešení problému rekombinací krátkých, nadprůměrných s malým řádem schémat (building blocks). just as a child creates magnificent fortress through arrangement of simple blocks of wood, so does a GA seek near optimal performance...

10 Důkaz věty o schématech 1 Populace P(t), P(t+1),... n jedinců délky m Co se děje s konkrétním schématem S při: Selekci Křížení Mutaci C(S,t)... četnost schématu S v populaci P(t) (počet řetězců v reprezentovaných S v P(t)) Postupně odhadujeme C(S,t+1)

11 Důkaz věty o schématech 2: Selekce: Řetězec v má pravděpodobnost vybrání: p s (v)=f(v)/f(t), kde F(t) je suma F(u), u z P(t) Schéma S má pravděpodobnost vybrání: p s (S)=F(S)/F(t) Tedy: C(S,t+1) = C(S,t) n p s (S) Jinými slovy: C(S,t+1)=C(S,t) F(S)/F prum (t) F prum (t)=f(t)/n průměrná fitness v P(t)

12 Důkaz věty o schématech 3:... ještě selekce: Shrňme si to: C(S,t+1)=C(S,t) F(S)/F prum (t) Kdyby bylo schéma nadprůměrné o e%: F(S,t)=F prum (t) + e F prum (t), pro t=0,... C(S,t+1)=C(S,t) (1+e) C(S,t+1)=C(S,0) (1+e) t Četnost nadprůměrných schémat roste geometrickou řadou (v populacích (po selekci)).

13 Důkaz věty o schématech 4: Křížení: Pravděpodobnost, že schéma křížení (ne)přežije: p d (S) = d(s)/(m-1); p s (S) = 1 d(s)/(m-1) Křížení má pravděpodobnost pc: p s (S)>= 1 p c. d(s) / (m-1) Selekce a křížení dohromady: C(S,t+1) >= C(S,t). F(S)/F prum (t) [1- p c. d(s) / (m-1)]

14 Důkaz věty o schématech 5: Mutace: 1 bit (ne)přežije: p m ; 1 p m Schéma nepřežije (p m <<1): p s (S) = (1 p m ) o(s) = asi tak = 1 p m. o(s) Selekce, křížení a mutace dohromady: C(S,t+1)>=C(S,t).F(S)/F prum (t) [1-p c.d(s)/(m-1)-p m.o(s)] QED.

15 Význam VoS a HoSB Na zakódování záleží Na velikosti záleží Předčasná konvergence škodí Co GA nejde: (111*******) a (********11) jsou nadprůměrní Ale F(111*****11) << F(000*****00) Ideál je ( ); GA ho těžko najde Podmínka na výběr je divná

16 Implicitní paralelismus GA pracuje s n jedinci, ale implicitně vyvíjí (mnohem více) schémat: 2 m až n.2 m. Kolik schémat se v GA zpracuje efektivně: Holland (a další): (Za různých přepokladů, např., že n = 2 m, schémata zůstávají nadprůměrná,... ) Počet schémat, kterým se v GA dostává exponenciálního růstu, je úměrný n 3. Jediný příklad kombinatorické exploze na straně dobra.

17 Exploration vs. Exploitation Původní motivace: GA je adaptivní plán vyvažující při hledání řešení napětí mezi explorací (nacházení nových oblastí hledání) explorací (využití stávajících znalostí) Jen explorace: náhodné procházky, nevyžívá se předchozích znalostí Jen exploatace: uvíznutí v lokálních extrémech, rigidita

18 1-ruký bandita

19 2-ruký bandita Mám N mincí, stojím před dvourukým banditou (ruce vyplácejí se střední hodnotou m 1, m 2 a rozptylem s 1, s 2 ). N-n alokuji lepší ruce, n horší. Cíl: maximalizovat zisk / minimalizovat ztrátu. Analytické řešení: alokovat exponenciálně více pokusů pro právě vyhrávající ruku. N-n = O(exp(c n)); c závisí na m 1, m 2, s 1, s 2

20 ... a GA GA taky alokuje exponenciálně mnoho nadějným schématům Řeší tedy optimálně problém expl. vs. expl. Schémata spolu hrají mnohoruké bandity Výhra je počet pozic v populaci Je odhadnut hodnotou fintess schématu Nejdříve se myslelo: GA hraje 3 m rukého banditu, Všechny schémata jsou konkurenční ruce

21 Ale... Hraje se paralelně více her Schémata soutěží o konfliktní pevné pozice Schémata řádu k soutěží vždy o těch konkrétních k pevných pozic hrají spolu 2 k rukého banditu Takže vždy nejlepší z této hry dostane exp. mnoho míst v populaci A to ještě jen tehdy, když GA může v populaci správně odhadnout fitness schémat

22 Takže, blbá úloha pro GA je... = 2; pro x ~ 111*... * f(x) = 1; pro x ~ 0*...* = 0; jinak Pro schémata platí: F(1*...*) = ½ ; a F(0*...*) = 1 Jenže GA odhadnou F(1*...*) ~ 2, Protože 111*...* v populaci převáží GA zde nesampluje schémata nezávisle, takže neodhadne jejich skutečnou fitness.

23 Problémy V banditovi jsou ruce nezávislé, GA ale nesampluje schémata nezávisle Selekce nepracuje ideálně jako ve VoS, je dynamická. GA maximalizuje on-line performance, jsou velmi vhodné pro adaptivní případy. (Škoda je zastavovat ;-) (Paradoxně) se nejčastěji používají jen pro hledání nejlepšího řešení.

24 statická hypotéza o blocích Grafenstette, 91: Lidi předpokládají, že GA konverguje k řešením se skutečně nejlepší statickou průměrnou fitness; a ne k těm existujícím v populacích s nejlepší pozorovanou fitness. To pak lidi může zklamat: Kolaterální konvergence Velký rozptyl fitnees

25 Kolaterální konvergence Když už se někam začne konvergovat, nemusejí být schémata samplována stejnoměrně. Je-li např. schéma 111***...* dobré, převáží v populaci po pár generacích (skoro všechny řetězce tak začínají). Pak ale skoro všechny samply schématu ***000...* jsou i samply schématu *...*. Takže GA neodhadne F(***000*...*) správně.

26 Velký rozptyl fitness Má-li statická průměrná fitness schématu velký rozptyl, GA ji zase nemusí odhadnout dobře. Viz schéma 1*...* z našeho blbého příkladu. Rozptyl jeho fitness je velký, takže GA nejspíš bude konvergovat jen na těch částech prostoru, kde má fitness velkou hodnotu. To ale zatíží další samplování schématu chybou, takže se neodhadne správně jeho statická fitness.

27 Pokusy o jemnější analýzu GA Royal road fitness, IGA (idealizovaný GA) Mitchell, Forrest, Holland, Přesné matematické uchopení GA Pravděpodobnostní přístupy, Markovovské řetězce Vose, Liepins. Whitley, 90.léta Statistické (en-bloc) popisy Statistická mechanika Pruegel-Bennett, Shapiro, 94

28 IGA Udělat fitness, která by byla ideální pro GA: Krátká, kompaktní, dobrá schémata Snadná rekombinovatelnost Rozdělím schéma na s i, ty budu v řetězci hledat R(x) = Σ i o(s i ) δ i (x); kde δ i (x)=1 pro x~s i R1(x) pracovala s 8 bloky o 8 1kách R1( ) = 8; R1( ) = 64;

29 Pokusy s R1 Zdá se, že R1 je pro GA ideální, takže GA předhoní všechny hill-climbing techniky Random Mutation Hill Climbing: 1) Vyber S náhodně 2) Vytvoř S' změnou náhodnho bitu v S, 3) Je-li F(S')> F(S), S = S' 4) Goto 2 5) To vše, until S je dost dobrý

30 Výsledky s R1 GA porazily kdekoho RHMC porazil GA o faktor 10. Časová složitost RHMC se dá analyticky odvodit. Čas k nalezení K bloků N jedniček u RHMC je řádově ~ 2 K N ln N Ale GA takhle analyzovat nejde. Navržen IGA: teoretický nástroj, který splňuje statickou HoBB

31 IGA 1) V každém kroku zvol náhodně řetězec 2) Když najdeš v řetězci schéma, schovej si ho 3) Když najdeš v řetězci ještě neobjevené schéma, skřiž ho se schovaným, tak, aby schovaný měl všechny dosud objevená schémata Všechna schémata jsou samplována nezávisle Selekce je modelována schováním nadějného Křížení je modelováno ideálním křížení

32 IGA poráží RHMC Časová složitost RHMC: Čas k nalezení N bloků K jedniček u RHMC je řádově ~ 2 K N ln N Časová složitost IGA: Čas k nalezení N bloků K jedniček u RHMC je řádově ~ 2 K ln N O faktor N (počet bloků)

33 Teď ale vážně IGA neexistuje Nezávislé samply: velká populace, existence mutace Uchování dobrých schémat: Vlastnosti selekce (silná, pomalá) Rychlé křížení: prostě rychlé Zrychlení vůči hill-climbingu: N, počet potenciálních bloků musí mít smysl

34 Takže, kdy je GA dobrý? Slabé metody: nevyžadují nic speciálního od problému (náhodné procházky,...) GA většinou lepší než jiné slabé metody Hlavně v případech složitějšího prohledávacího prostoru, velkého prohledávacího prostoru Více maxim, šum, apod Není nutné najít globální maximum

35 A kdy ne? Už jsme viděli Hledá se 1 dobře skryté globální maximum U dobře prozkoumaných prohledávacích prostorů (obchodní cestující, apod.) jsou často velmi dobré heuristické algorimy využívající specifika problému (silné metody)

36 Kódování Binární Odjakživa Teoretické výsledky Holland: binární řetězce délky 100 jsou lepší než desítkové délky 30, protože mají víc schémat (2 100 >2 30 ). Ale často nepřirozené a neintuitivní pro daný problém.

37 A jiná kódování Víceznakové abecedy Floating point Úplně jiné: Stromy, Matice, Neuronové sítě Zvířátka

38 Genetické programování Programy ve formě stromů (LISP) Operace: Křížení, Mutace, Selekce: fitness dle řešené úlohy Strom: Terminály - vstupy Neterminály operace

39 Genetické programování Evoluce programů Reprezentace syntaktickými stromy S-expressions, LISP Křížení, Mutace, Procedury

40 GP 3 Škálovatelnost: ADF Generalizace (mimo tréninkovou množinu) Omezení růstu stromů Alternativy: Programy na kreslení elektrických obvodů Programy na kreslení antén,... Strojový kód

41 Alife T.S.Ray : Tierra Množící se programy ve strojovém kódu Modelování ekosystému: Zdroje: strojový čas, paměť Implicitní fitness (přežívání) Parazitismus, emergence chování život in silicio

42 Evoluce neuronových sítí Evoluce vah (alternativa k jiným učícím alg.) Montana, Davis 89: Síť zakódována jako vektor vah Floating point kódování vah Mutace: přičítání malého náhodného čísla Křížení: pro každý neuron vyberu náhodně 1 rodiče a beru váhy od tohoto rodiče Prý rychlejší než Back Prop

43 Evoluce vah 2 Schaffer, Whitley, Enselmann 94: QuickProp rychlejší než GA Neruda, 98: kanonický GA pro NS využívající redundance v prostoru parametrů (zmenšuje prostor prohledávání na 1/k! (k počet skrytých neuronů) GA lépe paralelizovatelné GA použitelné i tam, kde BP/QP selžou

44 Evoluce architektury sítí Přímé kódování (Miller,...): Topologie sítě: binární matice NxN Evolvuje se jako jedinec v GA Křížení: výměna řádek matice Fitness: chyba po učení BP nějakou dobu Gramatické kódování (Kitano, 90): Snaha o redukci prohledávacího prostoru Vyvíjí se gramatika pro vytvoření binární matice

45 Další možnosti Evoluce učícího pravidla: Klasická BP: w(t+1) = w(t) C de/dw Možnosti: druhé derivace, předchozí směr,... Kombinace BP a fuzzy kontroleru změny konstant na základě změny chyby,... Jeden krok BP jako speciální mutace

Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/

Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Genetické algoritmy Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Motivace z Darwinovy teorie evoluce Přírodní

Více

Evoluční algoritmy a umělý život

Evoluční algoritmy a umělý život Evoluční algoritmy a umělý život Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Olomouc, červen 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělý život Odkazy: Steven Levy: Artificial

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

Přírodou inspirované metody umělé inteligence

Přírodou inspirované metody umělé inteligence Přírodou inspirované metody umělé inteligence Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Nové Hrady, červenec 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělá inteligence 2 přístupy

Více

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky Biologicky inspirované výpočty Schématické rozdělení problematiky a výuky 1 Biologicky inspirované výpočty - struktura problematiky Evoluční systémy: evoluční algoritmy, evoluční hardware, víceúčelová

Více

Gramatická evoluce a softwarový projekt AGE

Gramatická evoluce a softwarový projekt AGE Gramatická evoluce a softwarový projekt AGE Adam Nohejl Matematicko-fyzikální fakulta Univerzita Karlova v Praze http://nohejl.name/ 4. 4. 2010 Poznámka: Prezentace založené na variantách těchto slajdů

Více

Grammar-based genetic programming

Grammar-based genetic programming Grammar-based genetic programming Obhajoba diplomové práce Adam Nohejl Vedoucí práce: RNDr. František Mráz, CSc. Katedra software a výuky informatiky, MFF UK Praha 2011 1 Úvod do problematiky: genetické

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Teorie (ještě teoretičtější)

Teorie (ještě teoretičtější) EVA II. Teorie (ještě teoretičtější) 'Přesné' modely GA 90.léta: Vose, Lepins, Nix, Whitley,... Snaha zachytit: jak přesně vypadají populace zobrazení přechodu k další populaci vlastnosti tohoto zobrazení

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Evoluční algoritmy I - poznámky

Evoluční algoritmy I - poznámky Evoluční algoritmy I - poznámky Martin Všetička Knihy Goldberg: Generic algorithms, 89 John Holland - Adaptation in natural and artifical algorithms, 75 a 91. Holland položil základy genetickým algoritmům,

Více

Geneticky vyvíjené strategie Egyptská hra SENET

Geneticky vyvíjené strategie Egyptská hra SENET Geneticky vyvíjené strategie Egyptská hra SENET Lukáš Rypáček, lukor@atrey.karlin.mff.cuni.cz Abstrakt V tomto dokumentu popíši jeden příklad použití genetických algoritmů pro počítačové hraní her. V tomto

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR EVOLUČNÍ NÁVRH A OPTIMALIZACE APLIKAČNĚ SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR Miloš Minařík DVI4, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení

Více

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu Masarykova univerzita Fakulta informatiky Evoluce pohybu IV109 Tomáš Kotula, 265 287 Brno, 2009 Úvod Pohyb je jedním ze základních projevů života. Zdá se tedy logické, že stejně jako ostatní vlastnosti

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Maturitní otázky z předmětu PROGRAMOVÁNÍ

Maturitní otázky z předmětu PROGRAMOVÁNÍ Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu PROGRAMOVÁNÍ 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu ověřování správnosti

Více

Varianty Monte Carlo Tree Search

Varianty Monte Carlo Tree Search Varianty Monte Carlo Tree Search tomas.kuca@matfyz.cz Herní algoritmy MFF UK Praha 2011 Témata O čem bude přednáška? Monte Carlo Tree Search od her podobných Go (bez Go) k vzdálenějším rozdíly a rozšíření

Více

1. Úvod do genetických algoritmů (GA)

1. Úvod do genetických algoritmů (GA) Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor

Více

Heuristické řešení problémů. Seminář APS Tomáš Müller 6. 7. 2002

Heuristické řešení problémů. Seminář APS Tomáš Müller 6. 7. 2002 Heuristické řešení problémů Seminář APS Tomáš Müller 6. 7. 00 Heuristické řešení problémů Popis několika základních metod lokální prohledávání branch and bound simulated annealing, TABU evoluční algoritmy

Více

OBSAH 1 Pøedmluva 19 2 Evoluèní algoritmy: nástin 25 2.1 Centrální dogma evoluèních výpoèetních technik... 26 2.2 Chcete vìdìt víc?... 29 3 Historická fakta trochu jinak 31 3.1 Pár zajímavých faktù...

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Genetické algoritmy a jejich praktické využití

Genetické algoritmy a jejich praktické využití Genetické algoritmy a jejich praktické využití Pavel Šturc PB016 Úvod do umělé inteligence 21.12.2012 Osnova Vznik a účel GA Princip fungování GA Praktické využití Budoucnost GA Vznik a účel GA Darwinova

Více

Úloha ve stavovém prostoru SP je , kde s 0 je počáteční stav C je množina požadovaných cílových stavů

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému

Více

Úvod do mobilní robotiky NAIL028

Úvod do mobilní robotiky NAIL028 md at robotika.cz http://robotika.cz/guide/umor08/cs 11. listopadu 2008 1 2 PID Sledování cesty Modely kolových vozidel (1/5) Diferenční řízení tank b Encoder Motor Centerpoint Motor Encoder Modely kolových

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

Znalostní technologie proč a jak?

Znalostní technologie proč a jak? Znalostní technologie proč a jak? Peter Mikulecký Kamila Olševičová Daniela Ponce Univerzita Hradec Králové Motivace 1993 vznik Fakulty řízení a informační technologie na Vysoké škole pedagogické v Hradci

Více

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat.

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. 1 SMĚROVÁNÍ (ROUTING) V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. Problém nastává u ostatních grafů: Kritéria dobrého směrování: a)

Více

Programování v C++ Úplnej úvod. Peta (maj@arcig.cz, SPR AG 2008-9)

Programování v C++ Úplnej úvod. Peta (maj@arcig.cz, SPR AG 2008-9) Programování v C++ Úplnej úvod Co se naučíte? tak samozřejmě C++, s důrazem na: dynamické datové struktury Objektově Orientované Programování STL (standardní knihovna šablon) vytváření vlastních šablon

Více

OBJEKTOVÁ KNIHOVNA EVOLUČNÍCH ALGORITMŮ

OBJEKTOVÁ KNIHOVNA EVOLUČNÍCH ALGORITMŮ OBJEKTOVÁ KNIHOVNA EVOLUČNÍCH ALGORITMŮ David Bražina, Hashim Habiballa, Viktor Pavliska Katedra informatiky a počítačů, PřF OU, 30. dubna 22, Ostrava 1 Ústav pro výzkum a aplikace fuzzy modelování, OU,

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41

Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ v Praze. Fakulta elektrotechnická Katedra měření

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ v Praze. Fakulta elektrotechnická Katedra měření ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ v Praze Fakulta elektrotechnická Katedra měření Separace signálů vibrací točivých strojů s využitím genetických algoritmů Diplomová práce 2010 Pavel KRPATA ČVUT Praha Abstrakt

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

ADAPTIVNÍ ALGORITMUS PRO ODHAD PARAMETRŮ NELINEÁRNÍCH REGRESNÍCH MODELŮ

ADAPTIVNÍ ALGORITMUS PRO ODHAD PARAMETRŮ NELINEÁRNÍCH REGRESNÍCH MODELŮ ADAPTIVNÍ ALGORITMUS PRO ODHAD PARAMETRŮ NELINEÁRNÍCH REGRESNÍCH MODELŮ Josef Tvrdík Katedra informatiky, Přírodovědecká fakulta, Ostravská univerzita, 30. dubna 22, 701 03 Ostrava e-mail: tvrdik@osu.cz

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Strojové učení Marta Vomlelová

Strojové učení Marta Vomlelová Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V

Více

OPS Paralelní systémy, seznam pojmů, klasifikace

OPS Paralelní systémy, seznam pojmů, klasifikace Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus

Více

Netradiční výklad tradičních témat

Netradiční výklad tradičních témat Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi

Více

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk Pavel Töpfer Katedra softwaru a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer

Více

Anotace. Středník II!! 7. 5. 2010 programování her.

Anotace. Středník II!! 7. 5. 2010 programování her. Anotace Středník II!! 7. 5. 2010 programování her. Teorie her Kombinatorická hra je hrou dvou hráčů. Stav hry je určen pozicí nějakých předmětů. Všechny zúčastněné předměty jsou viditelné. Jde o tzv. hru

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu: Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury

Více

Rozpoznávání captcha obrázků

Rozpoznávání captcha obrázků Rozpoznávání captcha obrázků Tomáš Pop tomas.pop@seznam.cz www.vanocnibesidka.wz.cz Lukáš Bajer bajeluk@matfyz.cz Idea - cíl Captcha bezpečnostní kód, který se opisuje má zabránit automatizovanému využití

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Základní myšlenka: snaha o zpracování dat paralelně. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem. Řešení: data

Více

Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010

Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010 Přednášky o výpočetní technice Hardware teoreticky Adam Dominec 2010 Rozvržení Historie Procesor Paměť Základní deska přednášky o výpočetní technice Počítací stroje Mechanické počítačky se rozvíjely už

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;

Více

České vysoké učení technické v Praze Fakulta elektrotechnická. Diplomová práce Přepínání metaheuristik. Aleš Kučík

České vysoké učení technické v Praze Fakulta elektrotechnická. Diplomová práce Přepínání metaheuristik. Aleš Kučík České vysoké učení technické v Praze Fakulta elektrotechnická Diplomová práce Přepínání metaheuristik Aleš Kučík Vedoucí práce: Ing. Jan Koutník, Ph.D. Studijní program: Elektrotechnika a informatika,

Více

Heuristiky UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY. Vypracovala:

Heuristiky UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY. Vypracovala: UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Heuristiky Vedoucí bakalářské práce: Mgr. Jaroslav Marek, Ph.D. Rok odevzdání:

Více

Operační systémy. Správa paměti (SP) Požadavky na SP. Spojování a zavedení programu. Spojování programu (linking) Zavádění programu (loading)

Operační systémy. Správa paměti (SP) Požadavky na SP. Spojování a zavedení programu. Spojování programu (linking) Zavádění programu (loading) Správa paměti (SP) Operační systémy Přednáška 7: Správa paměti I Memory Management Unit (MMU) hardware umístěný na CPU čipu např. překládá logické adresy na fyzické adresy, Memory Manager software, který

Více

(n, m) (n, p) (p, m) (n, m)

(n, m) (n, p) (p, m) (n, m) 48 Vícerozměrná kalibrace Podobně jako jednorozměrná kalibrace i vícerozměrná kalibrace se používá především v analytické chemii Bude vysvětlena na příkladu spektroskopie: cílem je popis závislosti mezi

Více

Počítačový model plazmatu. Vojtěch Hrubý listopad 2007

Počítačový model plazmatu. Vojtěch Hrubý listopad 2007 Počítačový model plazmatu Vojtěch Hrubý listopad 2007 Situace Zajímá nás, co se děje v okolí kovové sondy ponořené do plazmatu. Na válcovou sondu přivedeme napětí U Očekáváme, že se okolo sondy vytvoří

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ 1) PROGRAM, ZDROJOVÝ KÓD, PŘEKLAD PROGRAMU 3 2) HISTORIE TVORBY PROGRAMŮ 3 3) SYNTAXE A SÉMANTIKA 3 4) SPECIFIKACE

Více

12 Metody snižování barevného prostoru

12 Metody snižování barevného prostoru 12 Metody snižování barevného prostoru Studijní cíl Tento blok je věnován základním metodám pro snižování barevného rozsahu pro rastrové obrázky. Postupně zde jsou vysvětleny důvody k použití těchto algoritmů

Více

Budování automatických obchodních systémů

Budování automatických obchodních systémů Budování automatických obchodních systémů Building automated trading systems Radek Vostřez Abstrakt Účelem tvorby každého obchodního systému je konzistentní ziskovost za akceptovatelného rizika. Mechanický

Více

Extrakce a selekce příznaků

Extrakce a selekce příznaků Extrakce a selekce příznaků Based on slides Martina Bachlera martin.bachler@igi.tugraz.at, Makoto Miwa And paper Isabelle Guyon, André Elisseeff: An Introduction to variable and feature selection. JMLR,

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

Fakulta informačních technologií. Zbyšek Gajda

Fakulta informačních technologií. Zbyšek Gajda Vysoké učení technické v Brně Fakulta informačních technologií ROČNÍKOVÝ PROJEKT Zbyšek Gajda květen 2004 Abstrakt Předkládaná práce se zabývá evolučním uměním. K tomu jsou využity techniky genetického

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Algoritmy komprese dat

Algoritmy komprese dat Algoritmy komprese dat Slovníkové metody Phillip Walter Katz (1962-2000) 2.12.2015 NSWI072-10 Slovníkové metody komprese dat Idea opakující se fráze uloženy do slovníku výskyty fráze v textu ukazatel do

Více

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS GENEROVÁNÍ MATEMATICKÝCH

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova

Více

8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra

8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra 8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI,

Více

DETEKCE DISKREDIBILITY SENZORU U KOTLE NA BIOMASU OPTIMALIZAČNÍMI ALGORITMY

DETEKCE DISKREDIBILITY SENZORU U KOTLE NA BIOMASU OPTIMALIZAČNÍMI ALGORITMY DETEKCE DISKREDIBILITY SENZORU U KOTLE NA BIOMASU OPTIMALIZAČNÍMI ALGORITMY Ing. D. Klimánek *, Doc. Ing. B. Šulc, Csc. *, Ing. J. Hrdlička ** * Ústav řídicí a přístrojové techniky, FS ČVUT v Praze, Technická

Více

Optimalizační algoritmy inspirované chováním mravenců

Optimalizační algoritmy inspirované chováním mravenců Optimalizační algoritmy inspirované chováním mravenců Biologická analogie ACO metaheuristic Ant system a jeho modifikace Specifikace problémů Aplikace Motivace NP-hard problémy časová náročnost nalezení

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Efektivní provoz částečně zastíněných FV systémů s funkcí OptiTrac Global Peak

Efektivní provoz částečně zastíněných FV systémů s funkcí OptiTrac Global Peak Řízení zastínění Efektivní provoz částečně zastíněných FV systémů s funkcí OptiTrac Global Peak Obsah Ne vždy je možné předejít tomu, aby střešní vikýře, komíny nebo stromy vrhaly stín na FV systémy. Aby

Více

Analytické programování v C#

Analytické programování v C# Analytické programování v C# Analytic programming in C# Bc Eva Kaspříková Diplomová práce 2008 UTB ve Zlíně, Fakulta aplikované informatiky, 2008 4 ABSTRAKT Analytické programování je metoda, která generuje

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005 Rozpoznávání písmen Jiří Šejnoha Rudolf Kadlec (c) 2005 Osnova Motivace Popis problému Povaha dat Neuronová síť Architektura Výsledky Zhodnocení a závěr Popis problému Jedná se o praktický problém, kdy

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Kód výstupu:

Více

u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming

u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály

Více

AKCELERACE EVOLUCE PRAVIDEL CELULÁRNÍCH AUTOMATŮ NA GPU

AKCELERACE EVOLUCE PRAVIDEL CELULÁRNÍCH AUTOMATŮ NA GPU AKCELERACE EVOLUCE PRAVIDEL CELULÁRNÍCH AUTOMATŮ NA GPU Luděk Žaloudek Výpočetní technika a informatika, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení

Více

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS Roman Bisup, Anna Čermáová Anotace: Příspěve se zabývá prezentací principů učení jednoho onrétního typu neuronových sítí. Cílem práce

Více

2C06028-00-Tisk-ePROJEKTY

2C06028-00-Tisk-ePROJEKTY Stránka. 27 z 50 3.2. ASOVÝ POSTUP PRACÍ - rok 2009 3.2.0. P EHLED DÍL ÍCH CÍL PLÁNOVANÉ 2009 íslo podrobn Datum pln ní matematicky formulovat postup výpo t V001 výpo etní postup ve form matematických

Více