Evoluční algoritmy. Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Evoluční algoritmy. Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla)"

Transkript

1 Evoluční algoritmy Hollandovy genetické algoritmy (binární řetězce) Fogelovo evoluční programování (automaty) Kozovo genetické programování (stromy) Schwefelovy evoluční strategie (parametry funkcí) Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla)

2 Odkazy: Holland: Adaptation in natural and artificial systems, MIT Press, Goldberg: Genetic algorithms in Optimization, Search and Learning, Addison-Wesley, Koza: Genetic Programming, I-III, MIT Press, 1992, 1994, Mitchell: Introduction to GA, MIT Press, Hitch-hiker's guide to EC:

3 Obecný evoluční algoritmus Populace P(t) jedinců {x 1 (t),... x n (t)} Každý jedinec je zakódované řešení problému Každý jedinec má fitness (jak dobře řeší problém) Vytváření populace P(t+1): Výběr (selekce) Křížení apod Mutace apod

4 OEA pokr. Evolution program() { t=0; initialze P(t); evaluate P(t); while (! end) { } t++; select P(t) from P(t-1); alter P(t); evaluate P(t); }

5 Jednoduchý genetický algoritmus genetická reprezentace řešení vytvoření iniciální populace ohodnocovací/účelová/fitness funkce genetické operátory: výběr, křížení, mutace parametry GA: velikost populace, pravděpodobnosti operátorů

6 JGA pokr. Reprezentace: Binární řetězce Mutace: Náhodná změna bitu Křížení Jednobodové Selekce Ruletová

7 Schémata Schéma je slovo v abecedě 0, 1 a* (don't care) Schéma reprezentuje množinu řetězců Schéma s r * reprezentuje 2 r řetězců Řetězec délky m je reprezentován 2 m schématy Je 3m schémat délky m V populaci velikosti n je 2m až n.2 m schémat

8 Schémata pokr. Řád schématu S: o(s) Počet 0 a 1 (pevných pozic) Definující délka: d(s) Vzdálenost mezi první a poslední pevnou pozicí Fitness schématu: F(S) Průměrná fitness odpovídajících řetězců v populaci

9 Věta o schématech Krátká nadprůměrná s malým řádem schémata se v populaci během GA exponencielně množí. Hypotéza o stavebních blocích: GA hledá suboptimální řešení problému rekombinací krátkých, nadprůměrných s malým řádem schémat (building blocks). just as a child creates magnificent fortress through arrangement of simple blocks of wood, so does a GA seek near optimal performance...

10 Důkaz věty o schématech 1 Populace P(t), P(t+1),... n jedinců délky m Co se děje s konkrétním schématem S při: Selekci Křížení Mutaci C(S,t)... četnost schématu S v populaci P(t) (počet řetězců v reprezentovaných S v P(t)) Postupně odhadujeme C(S,t+1)

11 Důkaz věty o schématech 2: Selekce: Řetězec v má pravděpodobnost vybrání: p s (v)=f(v)/f(t), kde F(t) je suma F(u), u z P(t) Schéma S má pravděpodobnost vybrání: p s (S)=F(S)/F(t) Tedy: C(S,t+1) = C(S,t) n p s (S) Jinými slovy: C(S,t+1)=C(S,t) F(S)/F prum (t) F prum (t)=f(t)/n průměrná fitness v P(t)

12 Důkaz věty o schématech 3:... ještě selekce: Shrňme si to: C(S,t+1)=C(S,t) F(S)/F prum (t) Kdyby bylo schéma nadprůměrné o e%: F(S,t)=F prum (t) + e F prum (t), pro t=0,... C(S,t+1)=C(S,t) (1+e) C(S,t+1)=C(S,0) (1+e) t Četnost nadprůměrných schémat roste geometrickou řadou (v populacích (po selekci)).

13 Důkaz věty o schématech 4: Křížení: Pravděpodobnost, že schéma křížení (ne)přežije: p d (S) = d(s)/(m-1); p s (S) = 1 d(s)/(m-1) Křížení má pravděpodobnost pc: p s (S)>= 1 p c. d(s) / (m-1) Selekce a křížení dohromady: C(S,t+1) >= C(S,t). F(S)/F prum (t) [1- p c. d(s) / (m-1)]

14 Důkaz věty o schématech 5: Mutace: 1 bit (ne)přežije: p m ; 1 p m Schéma nepřežije (p m <<1): p s (S) = (1 p m ) o(s) = asi tak = 1 p m. o(s) Selekce, křížení a mutace dohromady: C(S,t+1)>=C(S,t).F(S)/F prum (t) [1-p c.d(s)/(m-1)-p m.o(s)] QED.

15 Význam VoS a HoSB Na zakódování záleží Na velikosti záleží Předčasná konvergence škodí Co GA nejde: (111*******) a (********11) jsou nadprůměrní Ale F(111*****11) << F(000*****00) Ideál je ( ); GA ho těžko najde Podmínka na výběr je divná

16 Implicitní paralelismus GA pracuje s n jedinci, ale implicitně vyvíjí (mnohem více) schémat: 2 m až n.2 m. Kolik schémat se v GA zpracuje efektivně: Holland (a další): (Za různých přepokladů, např., že n = 2 m, schémata zůstávají nadprůměrná,... ) Počet schémat, kterým se v GA dostává exponenciálního růstu, je úměrný n 3. Jediný příklad kombinatorické exploze na straně dobra.

17 Exploration vs. Exploitation Původní motivace: GA je adaptivní plán vyvažující při hledání řešení napětí mezi explorací (nacházení nových oblastí hledání) explorací (využití stávajících znalostí) Jen explorace: náhodné procházky, nevyžívá se předchozích znalostí Jen exploatace: uvíznutí v lokálních extrémech, rigidita

18 1-ruký bandita

19 2-ruký bandita Mám N mincí, stojím před dvourukým banditou (ruce vyplácejí se střední hodnotou m 1, m 2 a rozptylem s 1, s 2 ). N-n alokuji lepší ruce, n horší. Cíl: maximalizovat zisk / minimalizovat ztrátu. Analytické řešení: alokovat exponenciálně více pokusů pro právě vyhrávající ruku. N-n = O(exp(c n)); c závisí na m 1, m 2, s 1, s 2

20 ... a GA GA taky alokuje exponenciálně mnoho nadějným schématům Řeší tedy optimálně problém expl. vs. expl. Schémata spolu hrají mnohoruké bandity Výhra je počet pozic v populaci Je odhadnut hodnotou fintess schématu Nejdříve se myslelo: GA hraje 3 m rukého banditu, Všechny schémata jsou konkurenční ruce

21 Ale... Hraje se paralelně více her Schémata soutěží o konfliktní pevné pozice Schémata řádu k soutěží vždy o těch konkrétních k pevných pozic hrají spolu 2 k rukého banditu Takže vždy nejlepší z této hry dostane exp. mnoho míst v populaci A to ještě jen tehdy, když GA může v populaci správně odhadnout fitness schémat

22 Takže, blbá úloha pro GA je... = 2; pro x ~ 111*... * f(x) = 1; pro x ~ 0*...* = 0; jinak Pro schémata platí: F(1*...*) = ½ ; a F(0*...*) = 1 Jenže GA odhadnou F(1*...*) ~ 2, Protože 111*...* v populaci převáží GA zde nesampluje schémata nezávisle, takže neodhadne jejich skutečnou fitness.

23 Problémy V banditovi jsou ruce nezávislé, GA ale nesampluje schémata nezávisle Selekce nepracuje ideálně jako ve VoS, je dynamická. GA maximalizuje on-line performance, jsou velmi vhodné pro adaptivní případy. (Škoda je zastavovat ;-) (Paradoxně) se nejčastěji používají jen pro hledání nejlepšího řešení.

24 statická hypotéza o blocích Grafenstette, 91: Lidi předpokládají, že GA konverguje k řešením se skutečně nejlepší statickou průměrnou fitness; a ne k těm existujícím v populacích s nejlepší pozorovanou fitness. To pak lidi může zklamat: Kolaterální konvergence Velký rozptyl fitnees

25 Kolaterální konvergence Když už se někam začne konvergovat, nemusejí být schémata samplována stejnoměrně. Je-li např. schéma 111***...* dobré, převáží v populaci po pár generacích (skoro všechny řetězce tak začínají). Pak ale skoro všechny samply schématu ***000...* jsou i samply schématu *...*. Takže GA neodhadne F(***000*...*) správně.

26 Velký rozptyl fitness Má-li statická průměrná fitness schématu velký rozptyl, GA ji zase nemusí odhadnout dobře. Viz schéma 1*...* z našeho blbého příkladu. Rozptyl jeho fitness je velký, takže GA nejspíš bude konvergovat jen na těch částech prostoru, kde má fitness velkou hodnotu. To ale zatíží další samplování schématu chybou, takže se neodhadne správně jeho statická fitness.

27 Pokusy o jemnější analýzu GA Royal road fitness, IGA (idealizovaný GA) Mitchell, Forrest, Holland, Přesné matematické uchopení GA Pravděpodobnostní přístupy, Markovovské řetězce Vose, Liepins. Whitley, 90.léta Statistické (en-bloc) popisy Statistická mechanika Pruegel-Bennett, Shapiro, 94

28 IGA Udělat fitness, která by byla ideální pro GA: Krátká, kompaktní, dobrá schémata Snadná rekombinovatelnost Rozdělím schéma na s i, ty budu v řetězci hledat R(x) = Σ i o(s i ) δ i (x); kde δ i (x)=1 pro x~s i R1(x) pracovala s 8 bloky o 8 1kách R1( ) = 8; R1( ) = 64;

29 Pokusy s R1 Zdá se, že R1 je pro GA ideální, takže GA předhoní všechny hill-climbing techniky Random Mutation Hill Climbing: 1) Vyber S náhodně 2) Vytvoř S' změnou náhodnho bitu v S, 3) Je-li F(S')> F(S), S = S' 4) Goto 2 5) To vše, until S je dost dobrý

30 Výsledky s R1 GA porazily kdekoho RHMC porazil GA o faktor 10. Časová složitost RHMC se dá analyticky odvodit. Čas k nalezení K bloků N jedniček u RHMC je řádově ~ 2 K N ln N Ale GA takhle analyzovat nejde. Navržen IGA: teoretický nástroj, který splňuje statickou HoBB

31 IGA 1) V každém kroku zvol náhodně řetězec 2) Když najdeš v řetězci schéma, schovej si ho 3) Když najdeš v řetězci ještě neobjevené schéma, skřiž ho se schovaným, tak, aby schovaný měl všechny dosud objevená schémata Všechna schémata jsou samplována nezávisle Selekce je modelována schováním nadějného Křížení je modelováno ideálním křížení

32 IGA poráží RHMC Časová složitost RHMC: Čas k nalezení N bloků K jedniček u RHMC je řádově ~ 2 K N ln N Časová složitost IGA: Čas k nalezení N bloků K jedniček u RHMC je řádově ~ 2 K ln N O faktor N (počet bloků)

33 Teď ale vážně IGA neexistuje Nezávislé samply: velká populace, existence mutace Uchování dobrých schémat: Vlastnosti selekce (silná, pomalá) Rychlé křížení: prostě rychlé Zrychlení vůči hill-climbingu: N, počet potenciálních bloků musí mít smysl

34 Takže, kdy je GA dobrý? Slabé metody: nevyžadují nic speciálního od problému (náhodné procházky,...) GA většinou lepší než jiné slabé metody Hlavně v případech složitějšího prohledávacího prostoru, velkého prohledávacího prostoru Více maxim, šum, apod Není nutné najít globální maximum

35 A kdy ne? Už jsme viděli Hledá se 1 dobře skryté globální maximum U dobře prozkoumaných prohledávacích prostorů (obchodní cestující, apod.) jsou často velmi dobré heuristické algorimy využívající specifika problému (silné metody)

36 Kódování Binární Odjakživa Teoretické výsledky Holland: binární řetězce délky 100 jsou lepší než desítkové délky 30, protože mají víc schémat (2 100 >2 30 ). Ale často nepřirozené a neintuitivní pro daný problém.

37 A jiná kódování Víceznakové abecedy Floating point Úplně jiné: Stromy, Matice, Neuronové sítě Zvířátka

38 Genetické programování Programy ve formě stromů (LISP) Operace: Křížení, Mutace, Selekce: fitness dle řešené úlohy Strom: Terminály - vstupy Neterminály operace

39 Genetické programování Evoluce programů Reprezentace syntaktickými stromy S-expressions, LISP Křížení, Mutace, Procedury

40 GP 3 Škálovatelnost: ADF Generalizace (mimo tréninkovou množinu) Omezení růstu stromů Alternativy: Programy na kreslení elektrických obvodů Programy na kreslení antén,... Strojový kód

41 Alife T.S.Ray : Tierra Množící se programy ve strojovém kódu Modelování ekosystému: Zdroje: strojový čas, paměť Implicitní fitness (přežívání) Parazitismus, emergence chování život in silicio

42 Evoluce neuronových sítí Evoluce vah (alternativa k jiným učícím alg.) Montana, Davis 89: Síť zakódována jako vektor vah Floating point kódování vah Mutace: přičítání malého náhodného čísla Křížení: pro každý neuron vyberu náhodně 1 rodiče a beru váhy od tohoto rodiče Prý rychlejší než Back Prop

43 Evoluce vah 2 Schaffer, Whitley, Enselmann 94: QuickProp rychlejší než GA Neruda, 98: kanonický GA pro NS využívající redundance v prostoru parametrů (zmenšuje prostor prohledávání na 1/k! (k počet skrytých neuronů) GA lépe paralelizovatelné GA použitelné i tam, kde BP/QP selžou

44 Evoluce architektury sítí Přímé kódování (Miller,...): Topologie sítě: binární matice NxN Evolvuje se jako jedinec v GA Křížení: výměna řádek matice Fitness: chyba po učení BP nějakou dobu Gramatické kódování (Kitano, 90): Snaha o redukci prohledávacího prostoru Vyvíjí se gramatika pro vytvoření binární matice

45 Další možnosti Evoluce učícího pravidla: Klasická BP: w(t+1) = w(t) C de/dw Možnosti: druhé derivace, předchozí směr,... Kombinace BP a fuzzy kontroleru změny konstant na základě změny chyby,... Jeden krok BP jako speciální mutace

Evoluční algoritmy a umělý život

Evoluční algoritmy a umělý život Evoluční algoritmy a umělý život Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Olomouc, červen 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělý život Odkazy: Steven Levy: Artificial

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Úvod do mobilní robotiky NAIL028

Úvod do mobilní robotiky NAIL028 md at robotika.cz http://robotika.cz/guide/umor08/cs 11. listopadu 2008 1 2 PID Sledování cesty Modely kolových vozidel (1/5) Diferenční řízení tank b Encoder Motor Centerpoint Motor Encoder Modely kolových

Více

Varianty Monte Carlo Tree Search

Varianty Monte Carlo Tree Search Varianty Monte Carlo Tree Search tomas.kuca@matfyz.cz Herní algoritmy MFF UK Praha 2011 Témata O čem bude přednáška? Monte Carlo Tree Search od her podobných Go (bez Go) k vzdálenějším rozdíly a rozšíření

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Budování automatických obchodních systémů

Budování automatických obchodních systémů Budování automatických obchodních systémů Building automated trading systems Radek Vostřez Abstrakt Účelem tvorby každého obchodního systému je konzistentní ziskovost za akceptovatelného rizika. Mechanický

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

UNIVERZITA PARDUBICE. Fakulta elektrotechniky a informatiky. Hledání parametrů modelů dynamických systémů Miroslav Moravec

UNIVERZITA PARDUBICE. Fakulta elektrotechniky a informatiky. Hledání parametrů modelů dynamických systémů Miroslav Moravec UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Hledání parametrů modelů dynamických systémů Miroslav Moravec Bakalářská práce 2011 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73) Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Data a datové typy 1 / 28 Obsah přednášky Základní datové typy Celá čísla Reálná čísla Znaky 2 / 28 Organizace dat Výběr vhodné datvé struktry různá paměťová náročnost různá

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

LABORATORNÍ CVIČENÍ Střední průmyslová škola elektrotechnická

LABORATORNÍ CVIČENÍ Střední průmyslová škola elektrotechnická Střední průmyslová škola elektrotechnická a Vyšší odborná škola, Pardubice, Karla IV. 13 LABORATORNÍ CVIČENÍ Střední průmyslová škola elektrotechnická Příjmení: Hladěna Číslo úlohy: 10 Jméno: Jan Datum

Více

Operační systémy. Správa paměti (SP) Požadavky na SP. Spojování a zavedení programu. Spojování programu (linking) Zavádění programu (loading)

Operační systémy. Správa paměti (SP) Požadavky na SP. Spojování a zavedení programu. Spojování programu (linking) Zavádění programu (loading) Správa paměti (SP) Operační systémy Přednáška 7: Správa paměti I Memory Management Unit (MMU) hardware umístěný na CPU čipu např. překládá logické adresy na fyzické adresy, Memory Manager software, který

Více

X36SIN: Softwarové inženýrství. Životní cyklus a plánování

X36SIN: Softwarové inženýrství. Životní cyklus a plánování X36SIN: Softwarové inženýrství Životní cyklus a plánování 1 Kontext Minule jsme si řekli, co to je deklarace záměru, odborný článek, katalog požadavků, seznam aktérů a seznam událostí. Seznam aktérů a

Více

Dotazovací jazyky I. Datová krychle. Soběslav Benda

Dotazovací jazyky I. Datová krychle. Soběslav Benda Dotazovací jazyky I Datová krychle Soběslav Benda Obsah Úvod do problematiky Varianty přístupu uživatelů ke zdrojům dat OLTP vs. OLAP Datová analýza Motivace Vytvoření křížové tabulky Datová krychle Teorie

Více

Systémy pro podporu rozhodování. Modelování a analýza

Systémy pro podporu rozhodování. Modelování a analýza Systémy pro podporu rozhodování Modelování a analýza 1 Připomenutí obsahu minulé přednášky Datové sklady, přístup, analýza a vizualizace Povaha a zdroje dat (data, informace, znalosti a interní, externí,

Více

PARALELISMUS V DIFERENCIÁLNÍ EVOLUCI A JEJICH ADAPTIVNÍCH VARIANTÁCH

PARALELISMUS V DIFERENCIÁLNÍ EVOLUCI A JEJICH ADAPTIVNÍCH VARIANTÁCH PARALELISMUS V DIFERENCIÁLNÍ EVOLUCI A JEJICH ADAPTIVNÍCH VARIANTÁCH Jiří Bůžek Ostravská univerzita v Ostravě Katedra informatiky a počítačů 30. dubna 22, 701 03 Ostrava Abstrakt: Tato práce se zabývá

Více

Um lá inteligence II

Um lá inteligence II Um lá inteligence II 13 http://ktiml.mff.cuni.cz/~bartak Roman Barták, KTIML roman.bartak@mff.cuni.cz Motivace! Uvažujme agenta, který se u í hrát šachy.! P i u ení s u itelem je pot eba pro každou pozici

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Optimalizační metody v CFD diferenciální evoluce

Optimalizační metody v CFD diferenciální evoluce Fakulta strojní ČVUT, Ú 12107.1 - Odbor mechaniky tekutin a termodynamiky Optimalizační metody v CFD diferenciální evoluce Ondřej Suchomel, ing. Tomáš Hyhlík Abstrakt Příspěvek popisuje využití jednokriteriální

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Projekt do NEU Dokumentace

Projekt do NEU Dokumentace Projekt do NEU Dokumentace Vypracoval: Zbyně k Křivka (xkrivk01) Datum: 10. 12. 2003 Zadání: Demonstrace využ ití neuronovésítě typu BP a RCE při analýze jazyků v teoretické informatice. Analý za problé

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Jak kriticky myslet? Kamil Gregor @kamilgregor

Jak kriticky myslet? Kamil Gregor @kamilgregor Jak kriticky myslet? Kamil Gregor @kamilgregor Inspirace Petr Ludwig Zlin.barcamp.cz Dva díly Jak se to nemá dělat (tinyurl.com/gregor-plzen) Jak se to má dělat 2 min Jak na to? Tvrzení Základem je správná

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS KOEVOLUCE KARTÉZSKÝCH

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4

Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4 Uložení dat v počítači Data = užitečné, zpracovávané informace Kódování (formát) dat = způsob uložení v počítači (nutno vše převést na čísla ve dvojkové soustavě) Příklady kódování dat Text každému znaku

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

Metody výběru ve výzkumech veřejného mínění

Metody výběru ve výzkumech veřejného mínění Metody výběru ve výzkumech veřejného mínění Populace (základní soubor) Soubor jednotek, o nichž předpokládáme, že jsou pro ně závěry výzkumu platné Někdy se rozlišuje: Cílová populace - všechny jednotky

Více

WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý

WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý Daniel Juřík, Antonín Popelka, Petr Marvan AIS spol. s r.o. Brno Wide Area Monitoring Systémy (WAMS) umožňují realizovat

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy - 2.1 - Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit Množiny vztahů Otázky návrhu Plánování mezí Klíče E-R diagram Rozšířené E-R rysy Návrh E-R databázového schématu Redukce

Více

Fenomén Big Data Pohled technický

Fenomén Big Data Pohled technický Fenomén Big Data Pohled technický Diribet / Q-DAS Konference Homo Digitalis, 2014-10-09 Motivace Běžná situace při rozhodování: Mám více dat, než jsem schopen zpracovat Mám pocit nedostatku informací Více

Více

Rozhodovací pravidla

Rozhodovací pravidla Rozhodovací pravidla Úloha klasifikace příkladů do tříd. pravidlo Ant C, kde Ant je konjunkce hodnot atributů a C je cílový atribut A. Algoritmus pokrývání množin metoda separate and conquer (odděl a panuj)

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Dobývání a vizualizace znalostí

Dobývání a vizualizace znalostí Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich

Více

6. Fyzická (interní) úroveň databázového systému

6. Fyzická (interní) úroveň databázového systému 6. Fyzická (interní) úroveň databázového systému 6.1. Struktura databázového systému... 2 6.2. Přístup k datům v databázi... 3 6.3. Struktura souborů... 4 6.4. Správa vyrovnávací paměti... 8 6.5. Podstata

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU RNDr. Miroslav Pavelka, PhD m.pavelka@sh.cvut.cz Ing. Jan Hovad jan@hovad.cz OBSAH Obchodování a strojové učení Specifika prediktivního

Více

Vývojové diagramy 1/7

Vývojové diagramy 1/7 Vývojové diagramy 1/7 2 Vývojové diagramy Vývojový diagram je symbolický algoritmický jazyk, který se používá pro názorné zobrazení algoritmu zpracování informací a případnou stručnou publikaci programů.

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické

Více

Sem vložte zadání Vaší práce.

Sem vložte zadání Vaší práce. Sem vložte zadání Vaší práce. České vysoké učení technické v Praze Fakulta informačních technologií Katedra softwarového inženýrství Bakalářská práce Herní server strategické tahové hry Sepulcher Václav

Více

Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu

Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu Inteligentní modely, algoritmy, metody g y g y y a nástroje pro vytváření sémantického webu Zahájenie seminára Predseda Programu "Informační společnost (prof. Ing. Miroslav Tůma, CSc.) Pohľad koordinátora

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

1. Průběh funkce. 1. Nejjednodušší řešení

1. Průběh funkce. 1. Nejjednodušší řešení 1. Průběh funkce K zobrazení průběhu analytické funkce jedné proměnné potřebujeme sloupec dat nezávisle proměnné x (argumentu) a sloupec dat s funkcí argumentu y = f(x) vytvořený obvykle pomocí vzorce.

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) HODINOVÁ DOTACE: 1

24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) HODINOVÁ DOTACE: 1 24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE AUTOR DOKUMENTU: MGR. MARTINA SUKOVÁ DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 UČIVO: STUDIJNÍ OBOR: PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) INFORMAČNÍ TECHNOLOGIE

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA LOKALIZACE ZDROJŮ AE EUROOVÝMI SÍTĚMI EZÁVISLE A ZMĚÁCH MATERIÁLU A MĚŘÍTKA AE SOURCE LOCATIO BY EURAL ETWORKS IDEPEDET O MATERIAL AD SCALE CHAGES Milan CHLADA, Zdeněk PŘEVOROVSKÝ Ústav termomechaniky

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více