Simulace (nejen) fyzikálních jevů na počítači

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Simulace (nejen) fyzikálních jevů na počítači"

Transkript

1 Simulace (nejen) fyzikálních jevů na počítači V. Kučera Katedra numerické matematiky, MFFUK Praha

2 Aerodynamický flutter

3 Tacoma bridge, 1940

4 Fyzikální model Realita je komplikovaná Navier-Stokesovy rovnice v t + (v v) = p + µ v + f v = 0. $10 6 Clay Math Institute Millenium Prize

5 Fyzikální model Realita je komplikovaná Navier-Stokesovy rovnice v t + (v v) = p + µ v + f v = 0. $10 6 Clay Math Institute Millenium Prize

6 Fyzikální model Realita je komplikovaná Navier-Stokesovy rovnice v t + (v v) = p + µ v + f v = 0. $10 6 Clay Math Institute Millenium Prize

7 Simulace proudění vodní páry turbínou parní turbína

8 Parní turbína výpočetní oblast

9 Parní turbína řešení úlohy Např. metoda konečných objemů výpočetní oblast rozdělíme na elementy přibližné řešení je konstantní na každém elementu rovnice přepíšeme pro danou triangulaci řešíme konečně rozměrnou úlohu soustava lineárních rovnic na každé časové vrstvě z diskrétních hodnot rekonstruhujeme řešení

10 Parní turbína řešení úlohy Např. metoda konečných objemů výpočetní oblast rozdělíme na elementy přibližné řešení je konstantní na každém elementu rovnice přepíšeme pro danou triangulaci řešíme konečně rozměrnou úlohu soustava lineárních rovnic na každé časové vrstvě z diskrétních hodnot rekonstruhujeme řešení

11 Parní turbína řešení úlohy Např. metoda konečných objemů výpočetní oblast rozdělíme na elementy přibližné řešení je konstantní na každém elementu rovnice přepíšeme pro danou triangulaci řešíme konečně rozměrnou úlohu soustava lineárních rovnic na každé časové vrstvě z diskrétních hodnot rekonstruhujeme řešení

12 Parní turbína řešení úlohy Např. metoda konečných objemů výpočetní oblast rozdělíme na elementy přibližné řešení je konstantní na každém elementu rovnice přepíšeme pro danou triangulaci řešíme konečně rozměrnou úlohu soustava lineárních rovnic na každé časové vrstvě z diskrétních hodnot rekonstruhujeme řešení

13 Parní turbína řešení úlohy Např. metoda konečných objemů výpočetní oblast rozdělíme na elementy přibližné řešení je konstantní na každém elementu rovnice přepíšeme pro danou triangulaci řešíme konečně rozměrnou úlohu soustava lineárních rovnic na každé časové vrstvě z diskrétních hodnot rekonstruhujeme řešení

14 Parní turbína řešení úlohy Např. metoda konečných objemů výpočetní oblast rozdělíme na elementy přibližné řešení je konstantní na každém elementu rovnice přepíšeme pro danou triangulaci řešíme konečně rozměrnou úlohu soustava lineárních rovnic na každé časové vrstvě z diskrétních hodnot rekonstruhujeme řešení

15 Parní turbína řešení úlohy Např. metoda konečných objemů výpočetní oblast rozdělíme na elementy přibližné řešení je konstantní na každém elementu rovnice přepíšeme pro danou triangulaci řešíme konečně rozměrnou úlohu soustava lineárních rovnic na každé časové vrstvě z diskrétních hodnot rekonstruhujeme řešení

16 Parní turbína řešení úlohy Např. metoda konečných objemů výpočetní oblast rozdělíme na elementy přibližné řešení je konstantní na každém elementu rovnice přepíšeme pro danou triangulaci řešíme konečně rozměrnou úlohu soustava lineárních rovnic na každé časové vrstvě z diskrétních hodnot rekonstruhujeme řešení

17 Parní turbína isokřivky hustoty

18 Parní turbína detail řešení

19 Parní turbína srovnání s experimentem

20 Parní turbína adaptace sítě

21 Simulace flutteru, Mach=2.0

22 Vznik hlasu v lidských hlasivkách Vzduch: D A w Dt + 2 s=1 g s (w) x s + wdivz = 2 s=1 R s (w, w) x s Tkáň: ρ b 2 u i t 2 + Cρb u i t + 2 j=1 τ b ij x j = f i

23 Vznik hlasu v lidských hlasivkách Vzduch: D A w Dt + 2 s=1 g s (w) x s + wdivz = 2 s=1 R s (w, w) x s Tkáň: ρ b 2 u i t 2 + Cρb u i t + 2 j=1 τ b ij x j = f i

24 Vznik hlasu v lidských hlasivkách Vzduch: D A w Dt + 2 s=1 g s (w) x s + wdivz = 2 s=1 R s (w, w) x s Tkáň: ρ b 2 u i t 2 + Cρb u i t + 2 j=1 τ b ij x j = f i

25 Vznik hlasu v lidských hlasivkách

26 Hollywood

27 Hollywood

28 Hollywood

29 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

30 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

31 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

32 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

33 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

34 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

35 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

36 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

37 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

38 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

39 Internetové vyhledavače Google Internetové vyhledavače 90. léta 20. století, vyhledavače ne příliš efektivní konec 90. let, Google velmi efektivní ohodnotí stránky pro daná klíčová slova Způsob vyhodnocení n webových stránek, (n ) definujeme G i,j, i, j = 1,..., n, G i,j > 0 existuje link mezi stránkou i a j matematicky: úloha nalezení vlastního vektoru matice G, počet operací n , operací za vteřinu cca 1000 stáří vesmíru. nástroji numerické matematiky, přibližný výpočet, cca měsíc

40 Cambridge University pagerank submatrix

41 Rekonstrukce obrazu

42 Rekonstrukce obrazu

43 Rekonstrukce obrazu

44 Rekonstrukce obrazu

45 Rekonstrukce obrazu

46 Díky za pozornost a naviděnou na MFF!

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2

Více

Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr. Eva Hrubešová, Ph.D.

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Splněno ANO/NE/hodnota

Splněno ANO/NE/hodnota část 1 - software pro přípravu interaktivních výukových hodin postavený na aktivní účasti žáků základní specifikace: autorský objektově orientovaný výukový software v českém jazyce s implementovanou galerií

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

01MDS. http://www.krbalek.cz/for_students/mds/mds.html

01MDS. http://www.krbalek.cz/for_students/mds/mds.html 01MDS http://www.krbalek.cz/for_students/mds/mds.html 01MDS Modely dopravních systémů (úvodní přednáška) Milan Krbálek Katedra matematiky Fakulty jaderné a fyzikálně inženýrské, ČVUT v Praze http://www.krbalek.cz/for_students/mds/mds.html

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73) Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální

Více

8 SEMESTRÁLNÍ PRÁCE VYHLEDÁVÁNÍ A ZPRACOVÁNÍ INFORMACÍ

8 SEMESTRÁLNÍ PRÁCE VYHLEDÁVÁNÍ A ZPRACOVÁNÍ INFORMACÍ 8 SEMESTRÁLNÍ PRÁCE VYHLEDÁVÁNÍ A ZPRACOVÁNÍ INFORMACÍ Seznámení s různými vyhledávacími databázemi vědeckých informací na internetu. Postup vyhledávání, rozšiřování a zužování vyhledávaného tématu. Vyhledávání

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Hodnocení ISO pro rok 2013 katedra 714

Hodnocení ISO pro rok 2013 katedra 714 Hodnocení ISO pro rok 2013 katedra 714 1 OBLAST STUDIJNÍ A PEDAGOGICKÁ 1.1 VÝUKA - Zajištění výuky v základních kurzech matematiky, deskriptivní geometrie, výpočetní techniky, algoritmizace, numerických

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

FYZIKÁLNÍ MODELOVÁNÍ KOMPONENT SYSTÉMU ZÁSOBOVÁNÍ TEPELNOU ENERGIÍ. Systém centrálního zásobování tepelnou energií SCZT

FYZIKÁLNÍ MODELOVÁNÍ KOMPONENT SYSTÉMU ZÁSOBOVÁNÍ TEPELNOU ENERGIÍ. Systém centrálního zásobování tepelnou energií SCZT FYZIKÁLNÍ MODELOVÁNÍ KOMPONENT SYSTÉMU ZÁSOBOVÁNÍ TEPELNOU ENERGIÍ Ing. Jiří Marek, CSc., Ing. Jozef Poláček, Ph.D. UNIS a.s. Brno, Jundrovská 33, 624 00 Brno Systém centrálního zásobování tepelnou energií

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE 1. Mechanické vlastnosti materiálů, zkouška pevnosti v tahu 2. Mechanické

Více

Organizace přijímacího řízení do prvních ročníků vzdělávání ve střední škole a vyhlášení prvního kola přijímacího řízení pro školní rok 2015/2016

Organizace přijímacího řízení do prvních ročníků vzdělávání ve střední škole a vyhlášení prvního kola přijímacího řízení pro školní rok 2015/2016 Organizace přijímacího řízení do prvních ročníků vzdělávání ve střední škole a vyhlášení prvního kola přijímacího řízení pro školní rok 2015/2016 Pokyn ředitele č. 2/2015 V Blatné dne: 19. 1. 2015 Čj.

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

Historie matematiky a informatiky

Historie matematiky a informatiky Evropský sociální fond Investujeme do vaší budoucnosti Historie matematiky a informatiky 2014 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze 1 Co je matematika? Matematika

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Úvod do nebeské mechaniky

Úvod do nebeské mechaniky OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod -

Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - M. Jahoda Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty,

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Bc. Michal Kloda 1 CFD STUDIE VLIVU KONDENZACE NA POLE RYCHLOSTI

Bc. Michal Kloda 1 CFD STUDIE VLIVU KONDENZACE NA POLE RYCHLOSTI Bc. Michal Kloda 1 CFD STUDIE VLIVU KONDENZACE NA POLE RYCHLOSTI Abstrakt Studie zabývající se vlivem kondenzace na rychlost proudění v mezitrubkovém prostoru pomocí zjednodušeného modelu v programu Fluent.

Více

chemického modulu programu Flow123d

chemického modulu programu Flow123d Testovací úlohy pro ověření funkčnosti chemického modulu programu Flow123d Lukáš Zedek, Jan Šembera 20. prosinec 2010 Abstrakt Předkládaná zpráva představuje přehled funkcionalit a výsledky provedených

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Ubytování účastníků na konferenci SANM 05

Ubytování účastníků na konferenci SANM 05 Ubytování účastníků na konferenci SANM 05 Hotel Srní - budova A pokoj C112 Heinrich Voss Německo pokoj C113 Prof. RNDr. Ivo Marek, DrSc. ČVUT FSv 166 29 Praha 6 pokoj C114 Ing. Ivan Hlaváček, DrSc. MÚ

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: Obor Obchodní akademie 63-41-M/004 1. Praktická maturitní zkouška Praktická maturitní zkouška z odborných předmětů ekonomických se skládá z obsahu

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Organic Search Traffic

Organic Search Traffic http://forum.matweb.cz http://forum.matweb.cz Matematické forum [DEFAULT] Organic Search Traffic Jan 1, 2012 Dec 31, 2012 % of visits: 86.15% Explorer Site Usage Visits 10,000 5,000 April 2012 July 2012

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Určení předmětů, jejich formy a témata pro profilovou část maturitní zkoušky v roce 2011/12 v jarním i podzimním termínu

Určení předmětů, jejich formy a témata pro profilovou část maturitní zkoušky v roce 2011/12 v jarním i podzimním termínu Pokyn ředitele č. 9/2011 č. j. 495/2011/SSUP Určení předmětů, jejich formy a témata pro profilovou část maturitní zkoušky v roce 2011/12 v jarním i podzimním termínu Ředitel Střední školy uměleckoprůmyslové

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI Pavel Praks, Zdeněk Boháč Katedra matematiky a deskriptivní geometrie, VŠB - Technická univerzita Ostrava 17. listopadu

Více

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat.

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. @08. Derivace funkce S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. Definice: Součet funkce f a g je takový předpis, taková funkce h, která každému

Více

BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer

BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer BIM & Simulace CFD simulace ve stavebnictví Ing. Petr Fischer Agenda 10:15 11:00 Úvod do problematiky Petr Fischer Technické informace a příklady Jiří Jirát Otázky a odpovědi Používané metody navrhování

Více

JOHANN RADON a počítačová tomografie

JOHANN RADON a počítačová tomografie JOHANN RADON a počítačová tomografie Alena Šolcová 26. listopadu 2013 Dětství Narodil se 16. prosince 1887 v Děčíně. Rodiče: Anton a Anna, otec bankovní úředník. Vyrůstal s dcerami otce z prvního manželství.

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

Řízení tepelné soustavy pomocí PLC Siemens

Řízení tepelné soustavy pomocí PLC Siemens Řízení tepelné soustavy pomocí PLC Siemens Martin Kopal TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

OBTÉKÁNÍ AUTA S PŘÍTLAČNÝM KŘÍDLEM VE 2D

OBTÉKÁNÍ AUTA S PŘÍTLAČNÝM KŘÍDLEM VE 2D INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 OBTÉKÁNÍ AUTA S PŘÍTLAČNÝM KŘÍDLEM

Více

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA PROGRAM MAXIMA KORDEK, David, (CZ) Abstrakt. Co je to Open Source Software? Příklady některých nejpoužívanějších software tohoto typu. Výhody a nevýhody Open Source Software. Jak získat program Maxima.

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Témata nepovinných maturitních zkoušek pro školní rok 2013/2014. I. Studijní obor 18-20-M/01 Informační technologie, ŠV: Správce informačních systémů

Témata nepovinných maturitních zkoušek pro školní rok 2013/2014. I. Studijní obor 18-20-M/01 Informační technologie, ŠV: Správce informačních systémů InterDACT s. r. o. Témata nepovinných maturitních zkoušek pro školní rok 2013/2014 I. Studijní obor 18-20-M/01 Informační technologie, ŠV: Správce informačních systémů Matematika: 1. Množiny operace, intervaly

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

1 Studijní program: N2301 Strojní inženýrství

1 Studijní program: N2301 Strojní inženýrství 1 Obsah 1 N2301 Strojní inženýrství 2 1.1 2301T001-Dopravní a manipulační technika (prezenční)....................... 2 1.2 2302T040-Konstrukce zdravotnické techniky (prezenční).......................

Více

Matematické modelování proudění podzemních vod a jeho využití ve vodárenské praxi

Matematické modelování proudění podzemních vod a jeho využití ve vodárenské praxi Matematické modelování proudění podzemních vod a jeho využití ve vodárenské prai Naďa Rapantová VŠB-Technická univerzita Ostrava APLIKACE MATEMATICKÉHO MODELOVÁNÍ V HYDROGEOLOGII řešení environmentálních

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: I. Obor Ekonomické lyceum 78-42-M/002 1. Práce s obhajobou z ekonomiky nebo společenských věd: Témata pro práci s obhajobou budou žáci zpracovávat

Více

VZTAHY MEZI FYZIKÁLNÍMI VELIČINAMI Implementace ŠVP

VZTAHY MEZI FYZIKÁLNÍMI VELIČINAMI Implementace ŠVP Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. VZTAHY MEZI FYZIKÁLNÍMI VELIČINAMI Implementace ŠVP

Více

průměrný percentil za části testu odchylka skóre analytická verbální směrodatná

průměrný percentil za části testu odchylka skóre analytická verbální směrodatná ZŠ Souhrnné výsledky za školu OSP celkový průměrný výsledek za části testu za dovednosti v testu třída počet žáků skupinový čistá úspěšnost průměrné skóre směrodatná odchylka skóre verbální analytická

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Obsah metodiky. Obsah metodiky... 2 Úvod... Cíle využití metody e-learningu ... ... ... 6 Kurz Matematika Svobodová...

Obsah metodiky. Obsah metodiky... 2 Úvod... Cíle využití metody e-learningu ... ... ... 6 Kurz Matematika Svobodová... Metodika aktivity 04 E-learning Matematika v rámci projektu Škola pro praktický život Zpracovala: Mgr. Zdeňka Hudcová Mgr. Martina Svobodová 2010 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝ SOCIÁLNÍ FONDEM

Více

Využití technologie GIS a prostorových databází při výpočtu fragmentace krajiny. Miroslav Kopecký, Tomáš Soukup

Využití technologie GIS a prostorových databází při výpočtu fragmentace krajiny. Miroslav Kopecký, Tomáš Soukup Využití technologie GIS a prostorových databází při výpočtu fragmentace krajiny Miroslav Kopecký, Tomáš Soukup Geoinformace pro praxi, Brno 27.6.-28.6.2009 Řešitelé Projekt je řešen za podpory EEA v rámci

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

Experimenty se systémem Vernier

Experimenty se systémem Vernier Experimenty se systémem Vernier Izotermický děj Petr Kácovský, KDF MFF UK Tyto experimenty vznikly v rámci diplomové práce Využívání dataloggerů ve výuce fyziky, obhájené v květnu 2012 na MFF UK v Praze.

Více

Easy to use remote experiments WITHOUT laboratory systems. doc. RNDr. František (Jiří) (ISES) Lustig, CSc., MFF-UK Praha

Easy to use remote experiments WITHOUT laboratory systems. doc. RNDr. František (Jiří) (ISES) Lustig, CSc., MFF-UK Praha Easy to use remote experiments WITHOUT laboratory systems doc. RNDr. František (Jiří) (ISES) Lustig, CSc., MFF-UK Praha ICTE Rožnov pod Radhoštěm 2013 Trend počítačem podporovaných experimentů: ISES -

Více