Daniel Grmela 1 Danuše Čuprová 2

Rozměr: px
Začít zobrazení ze stránky:

Download "Daniel Grmela 1 Danuše Čuprová 2"

Transkript

1 TEPELNÝ ODPOR SLAMĚNÝCH KONSTRUKCÍ Daniel Grmela 1 Danuše Čuprová 2 1. Úvod Přes zjevné výhody, jako jsou minimální spotřeba energie na výrobu a provoz, nízká cena, dostatečná životnost a následná jednoduchá a ekologicky výhodná likvidace, využití lokálních zdrojů, přínos pro místní ekonomiku a vhodnost pro stavbu svépomocí, brání širšímu využívání slaměných balíků ve stavebnictví zejména nedostatek tuzemských zkušeností, chybějící metodika pro navrhování a z toho plynoucí oprávněná nedůvěra investorů. Ze směsi slámy s hlínou (tzv. cob) staví lidé od nepaměti. První domy z balíků slámy byly stavěny v Americe na počátku 18. století, když byly vynalezeny balící stroje. Tato raná metoda stavění vzkvétala zhruba do roku 1940, kdy kombinace války a vzrůst popularity a používání cementu vedly k jejímu faktickému zániku. Koncem 70ých let byla tato metoda znovuobjevena ekologickými nadšenci v USA. Od té doby se stavění z balíků slámy rozšířilo prakticky do všech zemí, ve kterých je sláma v balících k dispozici. V česku bylo doposud realizováno několik staveb využívajících slámu. Jejich počet však rychle roste. 2. Specifika izolací z balíků slámy Od konvenčních tepelných izolací se izolace ze slaměných balíků liší zejména mnohem větší průvzdušností a tloušťkou. S rostoucím teplotním spádem, průvzdušností a tloušťkou vrstvy roste vliv šíření tepla prouděním (konvekcí) uvnitř tepelně izolační vrstvy [1,2,5]. Druhým významným specifikem je velká vlhkostní citlivost slámy. Sláma bez problémů snese opakované cykly vlhnutí a vysychání. Je li však dlouhodobě vystavena relativní vlhkosti prostředí překračující 70% nebo pokud její hmotnostní vlhkost přesáhne 30%, zplesniví [3]. Mechanismus šíření vlhkosti ve slaměných stěnách byl popsán prozatím pouze pro svislé konstrukce skladby hliněná omítka - slaměný balík - hliněná omítka. Takové konstrukce jsou z vlhkostního hlediska považovány za bezpečné. Z tohoto hlediska však zatím nebyl proveden žádný výzkum vodorovných konstrukcí a konstrukcí jiných skladeb. Velikost konvekce a obsah vlhkosti ve slaměných stěnách závisí podstatnou měrou na použitém stavebním systému, technologii a kvalitě provedení. Zahraniční a historické zkušenosti ukazují, že nejlépe fungují stěny z nosné slámy oboustranně omítnuté hliněnými omítkami. Ve stěnách z nosné slámy je vliv konvekce menší. V zatížených slaměných stěnách se balíky rozpínají do stran a eliminují tak mezery. Slaměná hmota je rovnoměrně stlačena a průvzdušnost je tak snížena. Hliněné omítky mají díky svým specifickým vlastnostem příznivý vliv na obsah vlhkosti ve slaměných stěnách [5]. 1 Daniel Grmela, Ing., Vysoké učení technické v Brně, Fakulta stavební, Ústav pozemního stavitelství, Veveří 95, Brno, tel.: , danielgrmela@ .cz 2 Danuše Čuprová, Ing., CSc., VUT Brno, Fakulta stavební, Ústav pozemního stavitelství, vedoucí Kabinetu stavební fyziky a tvorby vnitřního prostředí, odborná asistentka, Veveří 331/95 Brno, tel: , cuprova.d@vutbr.cz

2 Vedle klasického, historického, nebraského stylu stavění z nosné slámy, vhodného pouze pro stavbu malých jednopodlažních domků, se v posledních dvou desetiletích vyvíjejí systémy nové, umožňující z nosné slámy stavět nejrůznější stavby od standardních rodinných domů až po rozsáhlé průmyslové objekty. Ať už je to patentovaná CUT (cell under tension) technika přírodního stavitele Toma Rijvena [4], hybridní systém vyvinutý britskou neziskovou společností Amazon Nails [3] či stavění z obřích balíků (big bale building) používané v německy mluvících zemích [8], ve všech systémech je sláma v konstrukcích rovnoměrně zhutněna, je co možná nejvíce bez dutin a mezer a je omítána hliněnými omítkami přímo na slámu. V současnosti je však nejschůdnějším kompromisem pro běžnou výstavbu použití slaměného balíku pouze jako náhrady konvenční tepelné izolace, kdy jsou balíky uzavřeny v konstrukci dřevostavby, pro následující zřejmé důvody: pracnost shodná s klasickou dřevostavbou, zlevnění stavby snížením nákladů na tepelnou izolaci, minimální potřeba znalosti speciálních technologií, možnost dodávky stavby zaučenou firmou specializovanou na dřevostavby [9]. Zatím ale nebyl stanoven odpovídající postup výpočtu tepelného odporu, není znám postup určení rizika kondenzace vodní páry a růstu plísní uvnitř a na povrchu takových konstrukcí. Obr. 1 - Nízkoenergetický rodinný domek v Dolanech u Prahy - příčný řez

3 3. Tepelná vodivost Tepelná vodivost slámy závisí na orientaci stébel. Ve směru kolmém na stébla je nižší než ve směru podél stébel. Rozdíly v hodnotách uvedených v tab.1 jsou dány různou vlhkostí, různými druhy slámy, různou mírou slisování a různými okrajovými podmínkami měření. Ekvivalentní tepelná vodivost zahrnuje vedle vedení i šíření tepla prouděním a sáláním. Zdroj teplota vlhkost objemová hmotnost tepelná vodivost kolmo na stébla tepelná vodivost podél stébel ekvivalentní tepelná vodivost ( C) (%) λ (W/mK) λ (W/mK) λ (W/mK) Andersen [2] 0,05 0,082 0,085 Stone [5] 0,099* Strawbale guide [3] 0,09 ByogByg [2] 75 0,052 0,057 ByogByg [2] 90 0,06 0,056 Hause der zuk. [2] 100 0,38 Christian [2] 62 resp. 81 0,057 0,082 McCabe [2] 150 0,048 0,06 Sandia national [2] 90 0,05-0,06** 0,05-0,06** Bautechnik inst. [6] 23 < ,067 0,044 Grmela 20, ,063 0,052 Tab. 1 Tepelné vodivosti udávané různými autory * přepočteno z IP (inch-pound) jednotek R=1.45 Btu/hr.s.f. F/inch ** orientace nespecifikována 4. Měření vodivosti přístrojem Izomet Tepelná vodivost vzorků slámy a hliněných omítek byla měřena přístrojem Izomet zapůjčeným Ústavem pozemního stavitelství VUT v Brně. Izomet je mikroprocesorem řízený ruční přístroj na přímé měření součinitele tepelné vodivosti, měrné objemové tepelné kapacity, součinitele teplotní vodivosti a teploty kompaktních, sypkých a kapalných materiálů pomocí výměnných jehlových a plošných sond. Vzorky slámy a hliněných omítek byly odebrány ze stavby nízkoenergetického přírodního domu ve Sluneční ulici v Hradčanech u Tišnova. Směr tepelého toku θ ( C) λ (W/mK) c p 10 6 (J/m 3 K) a 10 6 (m 2 /s) ρ (kg/m 3 ) w (%) Kolmo na stébla 19,1 0,0506 0,125 0, ,6 0,0519 0,137 0, Rovnoběžně se stébly 20,6 0,0629 0,192 0, Tab. 2 - Tepelně fyzikální vlastnosti slámy

4 Obr. 2 - Jehlová sonda Izometu ve vzorku slámy Obr. 3 - Vzorek hliněné omítky, s plošnou sondou Hodnoty součinitele tepelné vodivosti naměřené Izometem dobře korespondují s hodnotami uváděnými v zahraniční literatuře. θ ( C) λ (W/mK) c p 10 6 (J/m 3 K) a 10-6 (m 2 /s) ρ (kg/m 3 ) w (%) 20,46 0,52 0,71 0, ,46 0,516 0,706 0, ,46 0,542 0,707 0, Tab. 3 Tepelně technické vlastnosti hliněné omítky 5. Konvekce teoreticky Vliv proudění na tepelný tok se vyjadřuje tzv. Nusseltovým číslem. Je-li rovno jedné, je to případ, kdy se proudění nijak tepelně neprojevuje, tepelný tok se realizuje jen zářením a vedením ve vzduchu a vedením ve vláknech. Je-li rovno dvěma, pak to znamená, že proudění snížilo tepelný odpor izolační vrstvy na polovinu [1]. Abychom získali Nusseltovo číslo N u, vyjdeme z modifikovaného Rayleighova čísla R am pro porézní vrstvy. R am je úměrné výšce porézní dutiny H, teplotnímu rozdílu T a permeabilitě K. Pro obvyklou zimní teplotu v dutině a obvyklé materiály s λ = 0,04 W/(m.K) je to kolem R am = 0,7 (H / 1 dm) (T / 10 K) (K / 0,01 mm 2 ). (1) Např. pro vodorovné homogenní vrstvy s R am >40 platí, že N u = 1 + 0,04.(R am 40). Snížit modifikované Rayleighovo číslo lze bud snížením permeability, tedy přidáním dostatečně jemnozrnné frakce, nebo rozdělením vrstvy na několik vrstev menších tloušťek [1]. Závislost tepelného odporu na teplotním spádu a tloušťce dělení vrstev dle této teorie vrstev pak ukazují grafy 1 a 2.

5 Vnější teplota ( C) Vliv přenosu tepla konvekcí na velikost tepelného odporu v závislosti na vnější teplotě (tl. izolace 0,5 m) R k (W/m 2 K) Tepelný odpor (z Nu lineárně) Tepelný odpor (z Nu kvadraticky) Vnější teplota ( C) Závislost Rk na tloušťce vrstev Rk (W/m 2 K) 500 mm 2x250 mm 3x167 mm 4x125 mm Graf 1 Vliv přenosu tepla konvekcí na Graf 2 Závislost tepelného odporu na velikost tepelného odporu tloušťce vrstev Z dosud provedených měření vyplývá, že konvekce na velikost tepelného odporu slaměných vrstev vliv má, ovšem podstatně menší, než jaký by odpovídal uvedené teorii. 6. Měření v neustáleném teplotním stavu Měření bylo prováděno ve dnech na západní obvodové stěně v 2.NP téhož objektu (viz. kap. 4). Vnitřní a vnější povrchové teploty konstrukce, teploty vnějšího a teploty a relativní vlhkost vnitřního vzduchu a hustoty tepelného toku byly měřeny automaticky v nastavených intervalech každých 15 min v průběhu pěti dnů. Výpočet tepelného odporu je proveden s průměrnými vstupními hodnotami. Použité vztahy dle [10]. Θ i teplota vzduchu v interiéru [ C]; q hustota tepelného toku [W.m 2 ] Θ e teplota vzduchu v exteriéru [ C]; Θ si teplota vnitřního povrchu stěny [ C] Θ se teplota vnějšího povrchu stěny [ C] q h i = = 4,68 W/(m 2 q.k) (2); h e = = 1,29 W/m 2.K (3); θ θ θ θ i si θ si θ R q = se = 6,20 m 2 K/W (4). q h i součinitel přestupu tepla na vnitřní straně konstrukce, [Wm -2.K -1 ] h e součinitel přestupu tepla na vnější straně konstrukce, [Wm -2.K -1 ] R q tepelný odpor konstrukce určený z povrchových teplot a tepelných toků, [m 2 K.W -1 ] e se Graf 3 Neustálený teplotní stav hustota tepelného toku slaměnou stěnou

6 7. Tepelný odpor určený výpočtem z naměřených hodnot tepelné vodivosti Omítka hliněná tl. d o = 0,05m oboustranně, λ o = 0,53 W/mK Slaměný balík tl. d s = 0,5m, λ s = 0,063 W/mK R o = 2.d o /λ o = 0,18 m 2 K /W (5) R s = d s /λ s = 7,94 m 2 K /W (6) R λ = R o +R s = 8,12 m 2 K /W > R q = 6,2 m 2 K /W (7) d o tloušťka vrstev hliněné omítky, d s tloušťka vrstvy slámy [m], λ o tepelná vodivost hliněné omítky, λ s tepelná vodivost slámy [W/mK], R o tepelný odpor vrstev hliněné omítky, R s tepelný odpor vrstvy slámy [m 2 K/W], R λ tepelný odpor konstrukce určený z tepelných vodivostí a tlouštěk vrstev, R q tepelný odpor konstrukce určený z povrchových teplot a tepelných toků [m 2 K/W]. Tepelný odpor určený z tepelných vodivostí a tlouštěk vrstev (neprojeví se přenos tepla prouděním) je asi o čtvrtinu vyšší než tepelný odpor určený z povrchových teplot a tepelných toků (přenos tepla prouděním se projeví). Velikost tepelného odporu slaměných konstrukcí závisí na celé řadě faktorů a nelze jej jednoduše vyjádřit obecně. Prozatím se k výpočtu tepelného odporu, prostupu tepla slaměných konstrukcí jeví jako nejschůdnější užití stávající metodiky dle ČSN : 2005 Tepelná ochrana budov s dosazením hodnot tepelné vodivosti dle [6]. Do budoucna je třeba vytvořit metodiku novou, slaměným konstrukcím šitou na míru. Základním úkolem je stanovení ekvivalentní tepelné vodivosti slámy a tepelného odporu slaměných vrstev. Zjistit na čem a jak tyto veličiny závisí. Úzce souvisejícím úkolem je nalezení a ověření takových způsobů používání slaměných balíků ve stavebních konstrukcích, které zajistí jejich dokonalou funkčnost v průběhu celé životnosti stavby, zejména s ohledem na velkou citlivost slámy na zvýšenou vlhkost. Článek byl vytvořen za podpory VVZ MSM Progresivní stavební materiály s využitím druhotných surovin a jejich vliv na životnost konstrukcí. Literatura 1. Hollan, J. (2008) Jak fungují tepelné izolace a kdy dokonale, Sborník Juniorstav 2008, VUT v Brně, Brno. 2. Andersen, J., M., Andersen B., M., (2004) Halmhuse, Udformning og materialeegenskaber, Danish Building and Urban Research, Dánsko. 3. Jones, B. (2001) Information guide to strawbale building, 4. Rijven, T. (2008) Between earth and straw, Goute de Sable, Francie. 5. King, B. (2006) Design of Straw Bale Buildings, The State of the Art, Green. 6. Building Press, San Rafael, California, USA. 7. Deutsches Institut fur Bautechnik (2006) Allgemeiner bauaufsichtlicher Zullasung fur Baustrohballen, Deutsches Institut fur Bautechnik, Berlin, Německo HUDEC, Mojmír. (2007) Slaměný balík jako stavební komponent přednáška k příležitosti Světového dne pasivního domu VVZ MSM : Výzkum a vývoj nových materiálů z druhotných surovin a zajištění vyšší trvanlivosti stavebních konstrukcí. (2000) Závěrečná zpráva z roku 2000.

TEPELNĚ TECHNICKÉ NAVRHOVÁNÍ A POSUZOVÁNÍ SLAMĚNÝCH KONSTRUKCÍ-ŠÍŘENÍ TEPLA A VLHKOSTI POJEDNÁNÍ K DISERTAČNÍ PRÁCI

TEPELNĚ TECHNICKÉ NAVRHOVÁNÍ A POSUZOVÁNÍ SLAMĚNÝCH KONSTRUKCÍ-ŠÍŘENÍ TEPLA A VLHKOSTI POJEDNÁNÍ K DISERTAČNÍ PRÁCI Obsah: 1 Úvod...2 2 Současný stav řešené problematiky...2 2.1 Specifika izolací z balíků slámy...2 2.2 Tepelný odpor...3 2.3 Konvekce teoreticky...4 2.4 Tepelná vodivost...5 3 Výsledky vlastní dosavadní

Více

Obr.1- metoda chráněné teplé skříně, panel z balíků slámy (foto Ing. Petr Hamšík, 3)

Obr.1- metoda chráněné teplé skříně, panel z balíků slámy (foto Ing. Petr Hamšík, 3) Obsah: 1 Úvod... 2 2 Specifika izolací z balíků slámy... 2 3 Podíl jednotlivých složek mechanismu přenosu tepla ve slaměné izolaci... 3 4 Stanovení závisloti tepelné i na vlhkosti... 5 5 Průběh vlhkosti

Více

Domy ze slámy zdravé a levné bydlení

Domy ze slámy zdravé a levné bydlení Domy ze slámy zdravé a levné bydlení 3. Část Konstrukční systémy Ing. Daniel Grmela 1 Domy ze slaměných balíků s hliněnými a vápennými omítkami využívají taková řešení stavebních konstrukcí, která vytváří

Více

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně

Více

Využití slámy jako stavebního materiálu

Využití slámy jako stavebního materiálu Využití slámy ve stavebních konstrukcích šíření tepla a vlhkosti Petr Hamšík, Daniel Grmela, Danuše Čuprová Perex: Přes zjevné výhody, jako jsou minimální spotřeba energie na výrobu a provoz, nízká cena,

Více

Využití slámy ve stavebních konstrukcích. Ing. Daniel Grmela nízkoenergetické domy z přírodních materiálů www.slamak.info

Využití slámy ve stavebních konstrukcích. Ing. Daniel Grmela nízkoenergetické domy z přírodních materiálů www.slamak.info Využití slámy ve stavebních konstrukcích Ing. Daniel Grmela nízkoenergetické domy z přírodních materiálů www.slamak.info Udržitelnost nadprodukce v ČR - 6 mil.tun/rok pro stavebnictví - 1,2 mil. tun/rok

Více

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid

Více

102FYZB-Termomechanika

102FYZB-Termomechanika České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH

Více

BH059 Tepelná technika budov

BH059 Tepelná technika budov BH059 Tepelná technika budov Ing. Danuše Čuprová, CSc. Ing. Sylva Bantová, Ph.D. Výpočet součinitele prostupu okna Lineární a bodový činitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce

Více

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově

Více

1 Úvod...2 2 Hledání metodiky měření na jednoduché teplé skříni...2 3 Výsledky měření na jednoduché teplé skříni...8 4 Měření tepelné stability...

1 Úvod...2 2 Hledání metodiky měření na jednoduché teplé skříni...2 3 Výsledky měření na jednoduché teplé skříni...8 4 Měření tepelné stability... Obsah: 1 Úvod...2 2 Hledání metodiky měření na jednoduché teplé skříni...2 3 Výsledky měření na jednoduché teplé skříni...8 4 Měření tepelné stability...12 1 ŠÍŘENÍ TEPLA A VLHKOSTI VE SLAMĚNÝCH KONSTRUKCÍCH

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam

Více

Obsah 1 Předmět normy 4

Obsah 1 Předmět normy 4 ČESKÁ NORMA MDT 699.86.001.4 Květen 1994 TEPELNÁ OCHRANA BUDOV ČSN 73 0540-3 Část 3: Výpočtové hodnoty veličin pro navrhování a ověřování Thermal Protection of Buildings La Protection Thermique en Bâtiments

Více

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.

Více

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště,

Více

Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem

Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Bytový dům čp. 357359 Ulice: V Lázních 358 PSČ: 252 42 Město: Jesenice Stručný

Více

Stavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L)

Stavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) Jan Tywoniak A48 tywoniak@fsv.cvut.cz součásti stavební fyziky Stavební tepelná technika Stavební akustika Denní osvětlení. 6 4

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: BD Ulice: Družstevní 279 PSČ: 26101 Město: Příbram Stručný popis budovy

Více

Lineární činitel prostupu tepla

Lineární činitel prostupu tepla Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

BH059 Tepelná technika budov

BH059 Tepelná technika budov BH059 Tepelná technika budov Přednáška č. 4 Přídavný difúzní odpor Výpočet roční bilance kondenzace a vypařování vodní páry v konstrukci -ručně Výpočet roční bilance kondenzace a vypařování vodní páry

Více

TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h =

TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h = Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: MŠ Krasno Místo: Zadavatel: Zpracovatel: Zakázka: Archiv: Projektant: E-mail: Datum: Telefon:..0 Výpočet je proveden dle STN 00:00 SCH -

Více

www.decoen.cz VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE

www.decoen.cz VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE Influence Perforations thermal Insulation Composite System onto Humidity behavior of Structures Ing. Petr Jaroš, Ph.D.,

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší

Více

1 ÚVOD. Jiří TESLÍK 1, Barbora HRUBÁ 2 ZAMĚŘENO NA STAVĚNÍ ZE SLÁMY. Abstrakt

1 ÚVOD. Jiří TESLÍK 1, Barbora HRUBÁ 2 ZAMĚŘENO NA STAVĚNÍ ZE SLÁMY. Abstrakt Abstrakt Jiří TESLÍK 1, Barbora HRUBÁ 2 ZAMĚŘENO NA STAVĚNÍ ZE SLÁMY Stále více můžeme v současné době v odborné literatuře a časopisech zaměřených na bydlení, také v televizních pořadech a internetu najít

Více

AKADEMIE ZATEPLOVÁNÍ. Není izolace jako izolace, rozdělení minerálních izolací dle účelu použití. Marcela Jonášová Asociace výrobců minerální izolace

AKADEMIE ZATEPLOVÁNÍ. Není izolace jako izolace, rozdělení minerálních izolací dle účelu použití. Marcela Jonášová Asociace výrobců minerální izolace Není izolace jako izolace, rozdělení minerálních izolací dle účelu použití Marcela Jonášová Asociace výrobců minerální izolace Kritéria výběru izolace Fyzikální vlastnosti Součinitel tepelné vodivosti,

Více

WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika

WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší

Více

Školení DEKSOFT Tepelná technika 1D

Školení DEKSOFT Tepelná technika 1D Školení DEKSOFT Tepelná technika 1D Program školení 1. Blok Požadavky na stavební konstrukce Okrajové podmínky Nové funkce Úvodní obrazovka Zásobník materiálů Uživatelské skupiny Vlastní katalogy Zásady

Více

Reflexní parotěsná fólie SUNFLEX Roof-In Plus v praktické zkoušce

Reflexní parotěsná fólie SUNFLEX Roof-In Plus v praktické zkoušce Reflexní parotěsná SUNFLEX Roof-In Plus v praktické zkoušce Měření povrchových teplot předstěny s reflexní fólií a rozbor výsledků Tepelné vlastnosti SUNFLEX Roof-In Plus s tepelně reflexní vrstvou otestovala

Více

Výzkum a vývoj dřevostaveb na FAST VUT Brno

Výzkum a vývoj dřevostaveb na FAST VUT Brno Výzkum a vývoj dřevostaveb na FAST VUT Brno Autoři: J. Pospíšil, J. Král, R. Kučera 25. 5. 2018 Současné výzkumy Ing. Jaroslav Pospíšil (pospisil.j@fce.vutbr.cz) Experimentální ověření a simulace vzduchotěsnosti

Více

Tepelně vlhkostní posouzení

Tepelně vlhkostní posouzení Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí

Více

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN

Více

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku: Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:

Více

ICS Listopad 2005

ICS Listopad 2005 ČESKÁ TECHNICKÁ NORMA ICS 91. 120. 10 Listopad 2005 Tepelná ochrana budov - Část 3: Návrhové hodnoty veličin ČSN 73 0540-3 Thermal protection of buildings - Part 3: Design value quantities La protection

Více

SEMINÁŘE DEKSOFT SEKCE TEPELNÁ OCHRANA BUDOV. Úvod

SEMINÁŘE DEKSOFT SEKCE TEPELNÁ OCHRANA BUDOV. Úvod SEMINÁŘE DEKSOFT SEKCE TEPELNÁ OCHRANA BUDOV Úvod Normy Klíčovou normou pro tepelnou ochranu budov v ČR je norma ČSN 73 0540-1 až 4 ČSN 73 0540-1 (2005) Část 1: Terminologie ČSN 73 0540-2 (2011) Část 2:

Více

BH059 Tepelná technika budov Konzultace č.1

BH059 Tepelná technika budov Konzultace č.1 Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura, podmínky zápočtu Zadání, protokoly Součinitel prostupu tepla U, teplotní

Více

SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík

SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík Tvorba vzdělávacího programu Dřevěné konstrukce a dřevostavby CZ.1.07/3.2.07/04.0082 OBSAH 1. ÚVOD 2. SOFTWAROVÁ PODPORA V POZEMNÍM STAVITELSTVÍ

Více

PS01 POZEMNÍ STAVBY 1

PS01 POZEMNÍ STAVBY 1 PS01 POZEMNÍ STAVBY 1 SVISLÉ NOSNÉ KONSTRUKCE 1 Funkce a požadavky Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb)

Více

Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb

Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ZÁSADY NÁVRHU principy pro skladbu

Více

NÁVRH STANDARTU REVITALIZACE A ZATEPLENÍ OBJEKTU

NÁVRH STANDARTU REVITALIZACE A ZATEPLENÍ OBJEKTU ČVUT V PRAZE, FAKULTA ARCHITEKTURY ÚSTAV STAVITELSTVÍ II. SGS14/160/OHK1/2T/15 ENERGETICKÁ EFEKTIVNOST OBNOVY VYBRANÝCH HISTORICKÝCH BUDOV 20. STOLETÍ. SGS14/160/OHK1/2T/15 ENERGETICAL EFFICIENCY OF RENEWAL

Více

Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem

Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Základní škola Slatina nad Zdobnicí Ulice: Slatina nad zdobnicí 45 PSČ:

Více

Principy návrhu střech s opačným pořadím izolačních vrstev

Principy návrhu střech s opačným pořadím izolačních vrstev Seminář portálu TZB-info na veletrhu For Arch 2011 Principy návrhu střech s opačným pořadím izolačních vrstev Ing. Vladimír Vymětalík MONTAKO s.r.o., vedoucí střediska technické podpory Předpisy a normy

Více

Vlhkost. Voda - skupenství led voda vodní pára. ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára

Vlhkost. Voda - skupenství led voda vodní pára. ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára Vlhkost Voda - skupenství led voda vodní pára ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára Vlhkost ve stavebních konstrukcích nežádoucí účinky... zdroje: srážková v. zemní v.

Více

POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE

POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE Řešitel: Doc. Ing. Miloš Kalousek, Ph.D. soudní znalec v oboru stavebnictví, M-451/2004 Pod nemocnicí 3, 625 00 Brno Brno ČERVENEC 2009

Více

13. DŘEVO A MATERIÁLY NA BÁZI DŘEVA

13. DŘEVO A MATERIÁLY NA BÁZI DŘEVA 13. DŘEVO A MATERIÁLY NA BÁZI DŘEVA HISTORIE DŘEVA VE STAVEBNICTVÍ DŘEVO PATŘÍ MEZI NEJSTARŠÍ STAVEBNÍ MATERIÁLY. SETKÁVÁME SE S NÍM U NEJRŮZNĚJŠÍCH DRUHŮ STAVEB A KONSTRUKCÍ. JE VELMI PRAVDĚPODOBNÉ, ŽE

Více

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY ECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu Parametry pasivní výstavby Investice do Vaší

Více

M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22

M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22 M T I B ZATÍŽENÍ KONSTRUKCÍ KLIMATICKOU TEPLOTOU A ZÁKLADY VEDENÍ TEPLA Ing. Kamil Staněk, k124 2010/03/22 ROVNICE VEDENÍ TEPLA Cíl = získat rozložení teploty T T x, t Řídící rovnice (parciální diferenciální)

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Nejnižší vnitřní povrchová teplota a teplotní faktor

Nejnižší vnitřní povrchová teplota a teplotní faktor Nejnižší vnitřní povrchová teplota a teplotní faktor Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.

Více

Icynene chytrá tepelná izolace

Icynene chytrá tepelná izolace Icynene chytrá tepelná izolace Šetří Vaše peníze, chrání Vaše zdraví Icynene šetří Vaše peníze Využití pro průmyslové objekty zateplení průmyslových a administrativních objektů zateplení novostaveb i rekonstrukcí

Více

OBSAH ŠKOLENÍ. Internet DEK netdekwifi

OBSAH ŠKOLENÍ. Internet DEK netdekwifi OBSAH ŠKOLENÍ 1) základy stavební tepelné techniky pro správné posuzování skladeb 2) samotné školení práce v aplikaci TEPELNÁ TECHNIKA 1D Internet DEK netdekwifi 1 Základy TEPELNÉ OCHRANY BUDOV 2 Legislativa

Více

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou Michal Kovařík, 3.S termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou současně základem pro téměř nulové

Více

Šíření tepla. Obecnéprincipy

Šíření tepla. Obecnéprincipy Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření

Více

Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 2. Ing. Michal Kraus, Ph.D. Katedra stavebnictví

Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 2. Ing. Michal Kraus, Ph.D. Katedra stavebnictví Vysoká škola technická a ekonomická V Českých Budějovicích Energetický audit budov Seminář č. 2 Ing. Michal Kraus, Ph.D. Katedra stavebnictví Tepelná ochrana budov Přehled základních požadavků na stavební

Více

Detail nadpraží okna

Detail nadpraží okna Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé

Více

TOB v PROTECH spol. s r.o Pavel Nosek - Kaplice Datum tisku: DP_RDlow-energy. 6 c J/(kg K) 5 ρ kg/m 3.

TOB v PROTECH spol. s r.o Pavel Nosek - Kaplice Datum tisku: DP_RDlow-energy. 6 c J/(kg K) 5 ρ kg/m 3. TOB v... POTECH spol. s r.o. 00 - Pavel Nosek - Kaplice Datum tisku:..0 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: Místo: Zpracovatel: odinný dům Kaplice Zadavatel: Zakázka: Projektant:

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2011, ročník XI, řada stavební článek č.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2011, ročník XI, řada stavební článek č. Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2011, ročník XI, řada stavební článek č. 23 Barbora SOUČKOVÁ 1 TEPELNĚ-TECHNICKÉ POSOUZENÍ SUTERÉNNÍ ČÁSTI PANELOVÉHO

Více

POSOUZENÍ KCÍ A OBJEKTU

POSOUZENÍ KCÍ A OBJEKTU PROTOKOL TEPELNĚ TECHNICKÉ POSOUZENÍ KCÍ A OBJEKTU dle ČSN 73 0540 Studentská cena ENVIROS Nízkoenergetická výstavba 2006 Kateřina BAŽANTOVÁ studentka 5.ročníku VUT Brno - fakulta stavební obor NAVRHOVÁNÍ

Více

SF2 Podklady pro cvičení

SF2 Podklady pro cvičení SF Podklady pro cvičení Úloha 7 D přenos tepla riziko růstu plísní a kondenzace na vnitřním povrchu konstrukce Ing. Kamil Staněk 11/010 kamil.stanek@fsv.cvut.cz 1 D přenos tepla 1.1 Úvodem Dosud jsme se

Více

Rigips. Rigitherm. Systém vnitřního zateplení stěn. Vnitřní zateplení Rigitherm

Rigips. Rigitherm. Systém vnitřního zateplení stěn. Vnitřní zateplení Rigitherm Vnitřní zateplení Rigitherm Rigips Rigitherm Systém vnitřního zateplení stěn 2 O firmě Rigips, s.r.o. je dceřinnou společností nadnárodního koncernu BPB - největšího světového výrobce sádrokartonu a sádrových

Více

BH059 Tepelná technika budov

BH059 Tepelná technika budov BH059 Tepelná technika budov Tepelná stabilita místnosti v zimním období Tepelná stabilita místnosti v letním období Tepelná stabilita charakterizuje teplotní vlastnosti prostoru, tvořeného stavebními

Více

SOFTWARE PRO STAVEBNÍ FYZIKU

SOFTWARE PRO STAVEBNÍ FYZIKU PROTOKOL Z VÝSLEDKŮ TESTOVÁNÍ PROGRAMU ENERGETIKA NA POTŘEBU ENERGIE NA VYTÁPĚNÍ A CHLAZENÍ DLE ČSN EN 15 265. SOFTWARE PRO STAVEBNÍ FYZIKU Testována byla zkušební verze programu ENERGETIKA 3.0.0 z 2Q

Více

Stavební stěnové díly

Stavební stěnové díly Stavební stěnové díly 2 Představení společnosti MFC MORFICO s.r.o. byla založena v roce 1991, jako stavební fi rma se specializací na povrchové úpravy průmyslových betonových podlah a ploch. Po dobu svého

Více

Podklad musí být hladký, čistý a bez nerovností. Izolaci nelze aplikovat, pokud jsou na ploše výstupky, otřepy, hřebíky, šrouby, kamínky atd.

Podklad musí být hladký, čistý a bez nerovností. Izolaci nelze aplikovat, pokud jsou na ploše výstupky, otřepy, hřebíky, šrouby, kamínky atd. λ Izolace vakuová má využití v místech, kde není dostatek prostoru pro vložení klasické tepelné izolace. Je vhodná i do skladeb podlah s podlahovým vytápěním. Používá se ve stavebnictví (v nezatížených

Více

Tepelně technické posuzování slaměných konstrukcí

Tepelně technické posuzování slaměných konstrukcí Tepelně technické posuzování slaměných konstrukcí Thermal physics assessment of straw bale structures Ing. Daniel Grmela 1 Abstract Holistic approach to design of high-quality indoor climate in residential

Více

SVISLÉ NOSNÉ KONSTRUKCE

SVISLÉ NOSNÉ KONSTRUKCE KPG SVISLÉ NOSNÉ KONSTRUKCE Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb) Požadavky a principy konstrukčního řešení Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz

Více

Protokol pomocných výpočtů

Protokol pomocných výpočtů Protokol pomocných výpočtů STN-1: příčka - strojovna Pomocný výpočet korekce součinitele prostupu tepla ΔU Korekce pro vzduchové vrstvy dle ČSN EN ISO 6946 Korekční úroveň: Vzduchové spáry propojující

Více

SCHÖCK NOVOMUR LIGHT SCHÖCK NOVOMUR. Uspořádání v konstrukci...18. Dimenzační tabulka / rozměry / možnosti...19. Tepelně technické parametry...

SCHÖCK NOVOMUR LIGHT SCHÖCK NOVOMUR. Uspořádání v konstrukci...18. Dimenzační tabulka / rozměry / možnosti...19. Tepelně technické parametry... SCHÖCK NOVOMUR Nosný hydrofobní tepelně izolační prvek zabraňující vzniku tepelných mostů u paty zdiva pro použití u rodinných domů Schöck typ 6-17,5 Oblast použití: První vrstva zdiva na stropu suterénu

Více

NPS. Nízkoenergetické a pasivní stavby. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích

NPS. Nízkoenergetické a pasivní stavby. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích NPS Nízkoenergetické a pasivní stavby Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví

Více

VLASTNOSTI PRODĚRAVĚNÝCH PAROZÁBRAN

VLASTNOSTI PRODĚRAVĚNÝCH PAROZÁBRAN Ing. Petr Slanina Fakulta stavební,čvut v Praze, Česká republika VLASTNOSTI PRODĚRAVĚNÝCH PAROZÁBRAN ABSTRAKT Příspěvek se zaměřuje na případy plochých střech, ve kterých je parotěsnící vrstva porušena

Více

window certified system Made in Germany illmod Trio+ Pro moderní montáž oken

window certified system Made in Germany illmod Trio+ Pro moderní montáž oken window certified system Made in Germany illmod Trio+ Pro moderní montáž oken Materiál: illmod Trio+ Okna: hliník Stavba: novostavba Místo: Würzburg, DE Realizace: 2015 illmod Trio+ Nejrychlejší řešení

Více

T E C H N I C K Á Z P R Á V A

T E C H N I C K Á Z P R Á V A CENTRUM STAVEBNÍHO INŽENÝRSTVÍ a.s. Autorizovaná osoba č. 212 Akreditovaná zkušební laboratoř č. 1007.4 Zkušebna tepelných vlastností materiálů, konstrukcí a budov T E C H N I C K Á Z P R Á V A Zakázka

Více

Technologie a procesy sušení dřeva

Technologie a procesy sušení dřeva strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA. Technická fakulta České zemědělské univerzity v Praze

VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA. Technická fakulta České zemědělské univerzity v Praze VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA Radomír Adamovský Pavel Neuberger Technická fakulta České zemědělské univerzity v Praze H = 1,0 2,0 m; D = 0,5 2,0 m; S = 0,1

Více

SVISLÉ NOSNÉ KONSTRUKCE TEPELNĚ IZOLAČNÍ VLASTNOSTI STĚN

SVISLÉ NOSNÉ KONSTRUKCE TEPELNĚ IZOLAČNÍ VLASTNOSTI STĚN 2.2.2.1 TEPELNĚ IZOLAČNÍ VLASTNOSTI STĚN Základní vlastností stavební konstrukce z hlediska šíření tepla je její tepelný odpor R, na základě něhož se výpočtem stanoví součinitel prostupu tepla U. Čím nižší

Více

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ÚVOD 2 ENERGETICKY

Více

Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství. BH059 Tepelná technika budov Konzultace č.1

Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství. BH059 Tepelná technika budov Konzultace č.1 Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura: Studijní opory: BH10 Tepelná technika budov Normy: ČSN 73 0540 Tepelná

Více

Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com

Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa jan.kurc@knaufinsula;on.com Zateplená dřevostavba Prvky které zásadně ovlivňují tepelně technické vlastnos; stěn - Elementy nosných rámových konstrukcí

Více

Příloha 2 - Tepelně t echnické vlast nost i st avební konst rukce. s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y

Příloha 2 - Tepelně t echnické vlast nost i st avební konst rukce. s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Příloha 2 - Tepelně t echnické vlast nost i st avební konst rukce l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í

Více

KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY

KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2014 EDU stěna obvodová Název úlohy : Zpracovatel : Jan

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

Icynene. chytrá tepelná izolace. Šetří Vaše peníze, chrání Vaše zdraví

Icynene. chytrá tepelná izolace. Šetří Vaše peníze, chrání Vaše zdraví Icynene chytrá tepelná izolace Šetří Vaše peníze, chrání Vaše zdraví Icynene chytrá izolační pěna z Kanady, která chrání teplo Vašeho domova Co je to Icynene Icynene [:ajsinýn:] je stříkaná izolační pěna

Více

SCHÖCK NOVOMUR SCHÖCK NOVOMUR. Uspořádání v konstrukci...12. Dimenzační tabulka / rozměry / možnosti...13. Tepelně technické parametry...

SCHÖCK NOVOMUR SCHÖCK NOVOMUR. Uspořádání v konstrukci...12. Dimenzační tabulka / rozměry / možnosti...13. Tepelně technické parametry... SCHÖCK NOVOMUR Nosný hydrofobní tepelně izolační prvek zabraňující vzniku tepelných mostů u paty zdiva pro použití u vícepodlažních bytových staveb Schöck typ 20-17,5 Oblast použití: První vrstva zdiva

Více

Posudek k určení vzniku kondenzátu na izolačním zasklení oken

Posudek k určení vzniku kondenzátu na izolačním zasklení oken Posudek k určení vzniku kondenzátu na izolačním zasklení oken Firma StaniOn s.r.o. Kamenec 1685 Bystřice pod Hostýnem Zkušební technik: Stanislav Ondroušek Telefon: 773690977 EMail: stanion@stanion.cz

Více

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav Obsah: Úvod... 1 Identifikační údaje... 1 Seznam podkladů... 2 Tepelné technické posouzení... 3 Energetické vlastnosti objektu... 10 Závěr... 11 Příloha č.1: Tepelně technické posouzení konstrukcí obálky

Více

SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU

SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z pórobetonových tvárnic tl. 250 mm, konstrukce stropů provedena z železobetonových dutinových

Více

Protokol č. V- 213/09

Protokol č. V- 213/09 Protokol č. V- 213/09 Stanovení součinitele prostupu tepla U, lineárního činitele Ψ a teplotního činitele vnitřního povrchu f R,si podle ČSN EN ISO 10077-1, 2 ; ČSN EN ISO 10211-1, -2, a ČSN 73 0540 Předmět

Více

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům Klasický rodinný dům pro tři až čtyři obyvatele se sedlovou střechou a obytným podkrovím. Obvodové stěny vystavěny ze škvárobetonových tvárnic tl. 300 mm, šikmá střecha zateplena mezi krokvemi. V rámci

Více

SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I.

SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I. INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM

Více

NOVÉ PARAMETRY PRO NAVRHOVÁNÍ ETICS

NOVÉ PARAMETRY PRO NAVRHOVÁNÍ ETICS NOVÉ PARAMETRY PRO NAVRHOVÁNÍ ETICS Ing. Milan Machatka,CSc. Cech pro zateplování budov ČR Úvod Stavební výrobek musí plnit svoji funkci ve stavbě tak, aby byly zajištěny základní požadavky na stavby.

Více

DIFÚZNÍ MOSTY. g = - δ grad p (2) Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze

DIFÚZNÍ MOSTY. g = - δ grad p (2) Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze DIFÚZNÍ MOSTY ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti uvnitř střešního pláště podle ČSN EN ISO

Více

ZÁKLADY STAVEBNÍ FYZIKY

ZÁKLADY STAVEBNÍ FYZIKY ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze

Více

SVISLÉ NOSNÉ KONSTRUKCE

SVISLÉ NOSNÉ KONSTRUKCE SVISLÉ NOSNÉ KONSTRUKCE FUNKCE A POŽADAVKY Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb) SVISLÉ KONSTRUKCE Technologické a materiálové rozdělení zděné konstrukce

Více

Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA

Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA o Anotace a cíl předmětu: návrh stavebních konstrukcí - kromě statické funkce důležité zohlednit nároky na vnitřní pohodu uživatelů

Více

00-611 Warszawa, ul. Filtrowa 1, tel. 022 8250471, fax. 022 8255286. Výpočet koeficientu prostupu tepla u oken systému Pol-Skone a Skandynawskie

00-611 Warszawa, ul. Filtrowa 1, tel. 022 8250471, fax. 022 8255286. Výpočet koeficientu prostupu tepla u oken systému Pol-Skone a Skandynawskie 00-611 Warszawa, ul. Filtrowa 1, tel. 022 8250471, fax. 022 8255286 Výpočet koeficientu prostupu tepla u oken systému Pol-Skone a Skandynawskie podle PN-EN 14351-1:2006 Č. práce: NF-0631/A/2008 (LF-89/2008)

Více

Thermio. Potěr pro podlahová topení. Extrémní účinek na teplo domova

Thermio. Potěr pro podlahová topení. Extrémní účinek na teplo domova Thermio Potěr pro podlahová topení Extrémní účinek na teplo domova ANHYLEVEL Thermio ANHYLEVEL Thermio je tenkovrstvý anhydritový podlahový potěr, s extrémní tepelnou vodivostí, vyvinutý speciálně pro

Více

Návrh skladby a koncepce sanace teras

Návrh skladby a koncepce sanace teras Návrh skladby a koncepce sanace teras Bytový dům Kamýcká 247/4d 160 00 Praha - Sedlec Zpracováno v období: Březen 2016 Návrh skladby a koncepce sanace střešního pláště Strana 1/8 OBSAH 1. VŠEOBECNĚ...

Více

TECHNICKÉ INFORMACE SCHÖCK NOVOMUR / NOVOMUR LIGHT

TECHNICKÉ INFORMACE SCHÖCK NOVOMUR / NOVOMUR LIGHT TECHNICKÉ INFORMACE SCHÖCK NOVOMUR / NOVOMUR LIGHT ZÁŘÍ 2009 SCHÖCK NOVOMUR Obsah SCHÖCK NOVOMUR Strana Zastoupení a poradenský servis............................................................ 2 Stavební

Více

Výpočet potřeby tepla na vytápění

Výpočet potřeby tepla na vytápění Výpočet potřeby tepla na vytápění Výpočty a posouzení byly provedeny při respektování zásad CSN 73 05 40-2:2011, CSN EN ISO 13789, CSN EN ISO 13790 a okrajových podmínek dle TNI 73 029, TNI 73 030. Vytvořeno

Více