Kapitola 15. Číselné řady Základní pojmy. Definice Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada.

Rozměr: px
Začít zobrazení ze stránky:

Download "Kapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada."

Transkript

1 Kapitola 5 Číselné řady 5. Základní pojmy Definice 5...Symbol a + a 2 + +a n +,kde n N, a n R,se nazývá číselná řada. Jiná označení: n= a n, a n (vynecháme-lipodmínku pro n,uvažujemečlenyodnejmenšího n N,proněžmávýraz a n smysl). Číselnou řadu lze tak považovat za zobecnění součtu konečného počtu reálných čísel. Základními otázkami jsou: jak a kdy přiřadit řadě číslo, které by bylo vhodné nazvat součtem řady, a které z vlastností konečných součtů se přenášejí inařady,ježlzepakpovažovatzasoučtynekonečné. Definice5..2. Číslo a n senazývá n-týčlenřady; číslo s n = a + a 2 + +a n senazývá n-týčástečnýsoučet; posloupnost {s n }senazýváposloupnostčástečnýchsoučtů; řada a n senazývákonvergentní,právěkdyžexistujevlastnílimita s= lim n + s n; tatolimita ssenazývásoučetřady a n apíšeme n= a n = s; řada a n senazývádivergentní,právěkdyžneexistujevlastní lim n + s n, tj.kdyžtatolimitajenevlastní(pakjitéžnazývámesoučetřady)nebo neexistuje(pak řada nemá součet); řada a n+ +a n+2 + atéžjejísoučet r n (pokudexistuje)senazývázbytek řady a n (po n-témčlenu).

2 Zřejměprokonvergentnířaduje s=s n + r n,tedy r n 0. U každé řady vyvstávají dva problémy: zda řada konverguje, a když konverguje, tak stanovit její součet. V některých případech lze k odpovědi na oba problémy využít definice konvergence a součtu řady. Úloha Stanovte součet řady n= n(n+). Řešení. Rozkladem na parciální zlomky dostaneme pro n-tý člen: a n = n(n+) =+n n n(n+) = +n n(n+) n n(n+) = n (n+). n-tý částečný součet se tedy dá vyjádřit: ( s n = ) ( ) takže s n,atedysoučetdanéřadyje s=. Geometrická řada n= aq n ( n ) = n+ n+, Dalším příkladem řady, u níž lze snadno rozhodnout o konvergenci a určit její součet, je geometrická řada a+aq+ aq 2 + +aq n +. Zopakujmesi,žejejí n-týčástečnýsoučetazbytekpo n-témčlenujsou:je: Geometrická řada tedy s n = a qn q, r n= aqn q. pro q <konvergujeajejísoučetje s=a q ; pro q >diverguje, s=+ sgna; pro q neexistujelim s n,řadadiverguje,součetneexistuje; pro q=mámedivergentnířadu a+a+ +a+ =+ sgn a. 2

3 Základní harmonická řada n= n je další důležitý příklad číselné řady. Platí přičemž takže s n = n, >2 4 = 2, >4 8 = 2, atd. s =, s 2 =+ 2, s 4 >+2 2, s 8 >+3 2,... s 2 n >+n 2. Ježtovybranáposloupnost {s 2 n}jedivergentní(málimitu+ ),jetaképosloupnostčástečnýchsoučtů {s n }divergentní.tedy: Základní harmonická řada je divergentní, s = +. Tento fakt bychom sotva odhalili součtem několika prvních členů řady, neboť například: s tisíc =7,48..., s milion =4, Ukažme si ještě jeden instruktivní příklad, jak lze dokázat divergenci nějaké řady přímo využitím definice. Úloha Dokažte divergenci řady n= n. Řešení. s n = > n = n +, 2 3 n n tedy daná řada je divergentní. 5.2 Některé vlastnosti číselných řad Věta 5.2. (nutná podmínka konvergence). Konverguje-li řada a n, pak lim a n =0. Důkaz.Tvrzeníplynezevztahu s n = s n + a n aztoho,želims n =lim s n = s. 3

4 Uvedená podmínka konvergence není postačující, neboť například základní harmonická řada tuto podmínku splňuje, i když je divergentní. Některé formulace vlastností řad se zjednoduší, jestliže zavedeme pojem chování řady. Definice Říkáme, že dvě řady mají stejné chování, právě když jsou obě konvergentní, nebo obě mají nevlastní součet nebo obě nemají součet. Věta 5.2.3(o vynechání prvních k členů). Chování řady se nezmění, vynechámeli jejích prvních k členů. Princip důkazu. V původní řadě je v upravené řadě je částečný součet s n = a + a 2 + +a n, σ m = a k+ + a k+2 + +a k+m. Pro n > kpoložme n=k+ m;pak s n = s k + σ m,částečnésoučty s n, σ m se navzájemlišíjenokonstantu s k aodsudplynetvrzeníprovšechnytřidruhy chování. Definice 5.2.4(lineární operace). Součtemřad a n, b n nazývámeřadu (a n + b n ), rozdílemřadu (a n b n ). Násobkemřady a n číslem c Rnazývámeřadu ca n. Věta (olineárníchoperacíchsřadami).nechť a n = s, b n = σ, c R, c 0.Pakplatí (an + b n )=s+σ, can = cs vevšechpřípadech,kdymásmyslpravástranatěchtorovností.navícpro c=0 jevždy ca n =0. Důkaz.Plynezvětyolineárníchoperacíchsposloupnostmi,neboť s=lim s n, σ=lim σ n. Tatovětaneplatínaopak:Zkonvergenceřady (a n +b n )neplynekonvergence řad a n, b n ;uvažtepříklad ( ). 4

5 Věta 5.2.6(asociativní zákon pro řady). Nechť an = s a {k n } jelibovolnárostoucíposloupnostpřirozenýchčísel. Je-li c = a + a 2 + +a k, c 2 = a k ++ a k +2+ +a k2,. c n = a kn ++ a kn +2+ +a kn,. Pak cn = s. Důkaz.Je-li {s n }posloupnostčástečnýchsoučtůřady a n a {σ n }posloupnost částečnýchsoučtůřady c n,pak σ=s,neboť {σ n }jeposloupnostvybranáz posloupnosti {s n }amáprototutéžlimitu. Věta neplatí naopak: například konverguje-li řada skupin členů, nemusí být řadapoodstraněnízávorekkonvergentní;uvažteopětřadu ( ). 5.3 Řady s nezápornými členy Řady a n snezápornýmičleny, a n 0,majíněkterévýznačnévlastnosti pokud jde o konvergenci a její zjišťování. Jsou založeny zejména na tom, že posloupnost {s n }jejichčástečnýchsoučtůjeneklesající,takžemávždylimitu.tedy: Je-liposloupnost {s n }shoraomezená,jeřada a n konvergentní, není-li {s n }shoraomezená,mářada a n součet+. V tomto paragrafu pojednáme zejména o kriteriích konvergence nebo divergence (každé kriterium vyjadřuje postačující podmínku a je přizpůsobeno pro praktické využití). Provšechnyřadyvkapitole5.3nechťtedyplatí a n 0apokud budetřeba,aby a n >0,budememluvitokladnýchřadách. První skupina tří kriterií je známa pod společným názvem srovnávací kriteria. Jejich společným znakem je to, že zkoumanou řadu určitým způsobem srovnáme s vhodnou známou řadou a na základě tohoto srovnání vyslovíme závěr o konvergenci nebo divergenci. 5

6 Věta5.3.(.srovnávacíkriterium).Mějmeřady a n, b n anechťproskoro všechna nplatí a n b n. Pak zkonvergencemajorantnířady b n plynekonvergenceřady a n azdivergenceminorantnířady a n plynedivergenceřady b n. Důkaz.Předpokládejme,ženerovnost a n b n platíjižod n=(jinakmůžeme vynechat členy, kde tato nerovnost neplatí, aniž se změní chování řad). Pak pro částečnésoučty s n, σ n těchtořadplatítážnerovnost s n σ n.zkonvergence σ n σaznerovnosti σ n σplyne s n σ,takžetaké {s n }jekonvergentní. Úloha5.3.2.Rozhodněteochovánířady e n n. Řešení.Řada e n jegeometrickářadaskvocientem q = e < ajetedy konvergentní.ježtoe n <3provšechna n,jee n n =e n e n <3 e n,cožječlen konvergentní geometrické řady. Proto také daná řada je konvergentní. Věta5.3.3(2.srovnávacíkriterium).Mějmedvěkladnéřady a n, b n a nechť existuje a n lim = K. n + b n Pakpro K (0,+ )majíoběřadystejnéchování. Principdůkazu. ϕ >0platíproskorovšechna n: (0 <)K ε < a n b n < K+ ε (K ε)b n < a n <(K+ ε)b n a tvrzení plyne z. srovnávacího kriteria. Kriteriumlzedoplnitpřípadem K =0(pakplatístejnétvrzeníjakou. srovnávacího kriteria) a případem K = + (pak platí analogické tvrzení, ale se záměnou obou řad). Úloha5.3.4.Rozhodněteokonvergenciřady,kde a >0, an+b >0. an+b Řešení. Danou řadu srovnáme se základní harmonickou řadou. Ježto lim n an+b n n = lim n an+b = a >0, mají obě řady stejné chování, tedy daná řada je divergentní. 6

7 Věta5.3.5(3.srovnávacíkriterium).Mějmekladnéřady a n, b n.nechť pro skoro všechna n platí a n+ b n+. a n b n Pak zkonvergenceřady b n plynekonvergenceřady a n azdivergenceřady a n plynedivergenceřady b n. Principdůkazu.Nechťuvedenánerovnostplatíužod n=.pro k=,2,...,n uvažujme n nerovností a k+ b k+.jestližejevšechnymezisebouvynásobíme(proveďte!),dostanemepoúpravě a n a a k b k b b n atvrzenívětyplynez. srovnávacího kriteria. Věta5.3.6(podílové,d Alembertovokriterium).Nechť a n jekladnářada. )Existuje-ličíslo q (0,)tak,žeproskorovšechna nje(d n =) a n+ a n q, pakřada a n konverguje. 2)Jestližeproskorovšechna nje D n,pakřada a n diverguje. Princip důkazu.. tvrzení dostaneme, když ve 3. srovnávacím kriteriu použijeme jako b n konvergentnígeometrickouřadu q n. Druhé tvrzení vlastně znamená, že řada nesplňuje nutnou podmínku konvergence. Úloha5.3.7.Rozhodněteokonvergenciřady Řešení.Vidíme,ževřadějsoučlenydvoudruhů: a 2k = 3 2k 5 k, a 2k = 2k 5 k. Musíme tedy vyšetřit dva podíly dvou po sobě jdoucích členů: a 2k a 2k = 3 2k 5 k : 2k 5 k =3 5, a 2k+ a 2k Voboupřípadech D n 2 3 <,takžeřadakonverguje. = 2k 2k 5k:3 = 2 5 k 3. Toto kriterium se častěji používá ve své limitní podobě. 7

8 Věta5.3.8(limitnípodílovékriterium).Nechť a n jekladnářadaaexistuje Pak pro A <danářadakonverguje apro A >řadadiverguje. a n+ lim = A. n a n Principdůkazu.Nechť A <, ε= A 2.Pakproskorovšechna nje D n < A+ε, takže podle podílového kriteria řada konverguje. Pro A >dokážemepodobnědivergencivolbou ε=a. Uvědomímesi,žepro A=nedávátotokriteriumodpověď. Úloha5.3.9.Rozhodněteokonvergenciřady n 2 n. Řešení. D n = n+ 2 : n n+ n+ 2 n= 2 n 2 <,řadatedykonverguje. Věta5.3.0(odmocninové,Cauchyovokriterium).Nechť a n jeřadasnezápornými členy. )Existuje-ličíslo q (0,)tak,žeproskorovšechna nje pakřada a n konverguje. (C n =) n a n q, 2)Jestližepronekonečněmnoho nje C n,pakřada a n diverguje. Důkaz.Znerovnosti C n qplyne a n q n,takžekonvergenceplynez.srovnávacího kriteria(majorantou je konvergentní geometrická řada). Nerovnost C n znamená,že a n,takžeřadanesplňujenutnoupodmínku konvergence. Úloha5.3..Rozhodněteokonvergenciřady Řešení. Vyzkoušíme podílové kriterium. Pro nlichéje D n = 7 n+: 5 n= 7 alepro nsudéje D n = 5 n+: 7 n= 5 ( ) n 5 < <, ( ) n Podílové kriterium tedy nedává odpověď, ani jeho limitní verze. 8

9 Použijeme odmocninové kriterium. Pro nlichéje C n = 5, pro nsudéje C n = 7, tedy n Nplatí C n 5 <ařadakonverguje. Jak naznačuje tento příklad, bylo by možno dokázat, že odmocninové kriterium je silnější než kriterium podílové. Věta5.3.2(limitníodmocninovékriterium).Nechť a n jeřadasnezápornýmičlenyaexistujelim n a n = A.Pakpro A <danářadakonvergujeapro A >řadadiverguje. Důkaz. Provádí se stejně jako u limitního podílového kriteria. Úloha Určete, zda řada (lnn) njekonvergentní. Řešení. C n = ln n 0<,tedydanářadakonverguje. Všimněme si, že na řadu z úlohy 5.3. nelze použít limitní odmocninové kriterium,neboťposloupnost {C n }nemálimitu.každékriteriumjezpravidla vhodnéprourčitétypyřad,bezohledunajeho sílu.taktobudemechápati náš výběr kriterií. Existuje však celá posloupnost kriterií konvergence, v nichž každédalšíje silnější nežpředchozí.ovšem silnější kriteriumjezpravidla složitější na formulaci a používání. Jako ukázku uveďme ještě: Věta5.3.4(Raabeovokriterium).Nechť a n jekladnářada. )Existuje-ličíslo r >tak,žeproskorovšechna nje ( ) an (R n =) n r, a n+ pakřada a n konverguje. 2)Jestližeproskorovšechna nje R n <,pakřadadiverguje. I toto kriterium má svou limitní verzi(viz následující úlohu). Úloha Rozhodněte o konvergenci řady n= (2n )!! (2n)!! 2n+. 9

10 Řešení.(Definicedvojnýchfaktoriálů:6!!=6 4 2,9!!= ) PřipoužitíRaabeovakriteriajevhodnéstanovit(aupravit)nejprve D n.po (2n+) 2 zkráceníjetedy D n = (2n+2)(2n+3),takžepodílovékriteriumnedává odpověď. Ale ( ) R n = n = = 6n2 +5n D n 4n 2 +4n+ 3 2, řada konverguje podle limitního Raabeova kriteria. Uvědomíme si, že podle žádného z uvedených kriterií nelze rozhodnout o divergenci základní harmonické řady. Tuto schopnost má však integrální kriterium. Věta (Integrálníkriterium).Nechťčlenyřady a n jsouhodnotami kladné nerostoucí funkce f, která je integrace schopná na každém intervalu, K, K R;tedy a n = f(n).pakřada a n anevlastníintegrál f(x)dxsoučasně konvergují nebo divergují. Důkaz. plyne z porovnání n + f(x) dx s vhodnými částečnými součty řady. Úloha Rozhodněte o konvergenci řad n= ns,kde s R. Řešení. Řady n= n ssenazývajíharmonické. Pro s 0 jsou zřejmě divergentní, protože nesplňují nutnou podmínku konvergence. Nechťtedydále s >0. Pro s=dostávámezákladníharmonickouřadu,kterájedle5.divergentní. Je-li s <,je n s < n n s > n,takžedle.srovnávacíhokriteria jsou harmonické řady pro s < rovněž divergentní. Pro další studium harmonických řad použijeme integrální kriterium: Funkcedanápředpisem f(x)= jepro s >0nerostoucíakladná,integraceschopná(protožejespojitá)nakaždémintervalu,K, K Ra x s n Nje(a n =) = f(n). n s 0

11 Pro s jenevlastníintegrál I= + [ ] dx x s+ K ( K s x = lim = lim s K + s+ K + x= s ). s Vidíme,žepro s <je K s +,nevlastníintegrálatedyiharmonické řady jsou divergentní. Pro s >je K s 0,nevlastníintegrálatedyiharmonickéřadyjsou konvergentní. Pro s=je I = lim ln K =+,tedyzákladníharmonickářadaje K + divergentní. Závěr: Harmonické řady jsou konvergentní pro s > a divergentní pro s <. 5.4 Řady s libovolnými členy, absolutní konvergence Včíselnéřadě a n mohoubýtněkteréčlenykladnéaněkterézáporné(nulové nejsou zajímavé, protože pro zjišťování konvergence řady nebo součtu řady je lze vynechat). Je-li záporných členů jen konečný počet, zacházíme při zjišťování konvergence s řadou, jako by měla jen kladné členy(podle věty o vynechání prvních k členů). Jsou-li všechny členy řady záporné, lze konvergenci zjišťovat pro kladnouřadu a n ataktolzevyříditipřípadkonečnéhopočtukladnýchčlenů. Protozbývájedinýpodstatnýpřípad,tj.žeřada a n mánekonečněmnoho kladných členů a nekonečně mnoho členů záporných. Z praktických důvodů však nebudeme vylučovat ani existenci nulových členů, neboť důležité číselné řady vznikají často z funkčních(mocninných) řad po dosazení za nezávisle proměnnou a některé členy mohou být tedy nulové. Proveďme nejprve několik induktivních úvah. Zaveďme označení Pak zřejmě platí: Křadě a n taklzevytvořitřady a + n, a + =max {a,0}, a =max { a,0}. a=a + a, a =a + + a. a n, an ;

12 všechno to jsou řady s nezápornými členy. Označme s = a + n, s = a n, přičemž 0 < s,s +. Z lineárních vlastností řad plyne: Konvergují-liřady a + n, a n,pakkonvergujíiřady a n, a n aplatí an = s s, an =s + s. Prvníztěchtovztahůplatíivevšechdalšíchpřípadech,kdymásmyslrozdíl s s (tj.mimopřípadu ),druhýplatívždy. Víme, že lineární operace neplatí obráceně, tedy zkonvergence sumanneplynekonvergenceřad a + n, a n. Ovšemzkonvergence a n plyne,žečástečnésoučtyřady (a + n+ a n)jsou omezené,takžejsouomezenéičástečnésoučtyobouřad a + n, a n,obětyto řadyjsoutedykonvergentníatakéřada a n jekonvergentní. Tak jsme dostali: Věta 5.4.(o konvergenci řady absolutních hodnot). )Řady a + n, a n konvergují,právěkdyžkonvergujeřada a n. 2)Zkonvergenceřady a n plynekonvergenceřady a n. Tato věta je základem pro definici významného pojmu absolutní konvergence. Definice5.4.2.Řada a n senazývá absolutněkonvergentní,právěkdyžkonvergujeřada a n anazýváse neabsolutně konvergentní, právě když je konvergentní a přitom řada an jedivergentní. Vyšetřováníabsolutníkonvergencetedyznamenázabývatseřadou a n s nezápornými členy, k čemuž lze použít kriteria konvergence uvedená v předchozích paragrafech. Zbývá tedy zejména případ neabsolutně konvergentních řad s libovolnými členy. 2

13 5.5 Alternující řady Jde o důležitý a často se vyskytující zvláštní případ řad s libovolnými členy: c c 2 + c 3 c 4 + +( ) n c n +, kde {c n }jeposloupnostkladnýchčísel.základníkriteriumkonvergencealternujících řad je překvapivě jednoduché. Věta5.5.(Leibnizovokriteriumkonvergence).Nechť {c n }jemonotónnínulováposloupnostkladnýchčísel.pakřada ( ) n c n konverguje.přitompro zbytek r n řadyplatí: c n+ c n+2 r n < c n+ a sgnr n =( ) n. Důkaz.Nejprveukážeme,žeposloupnost {s 2k }sudýchčástečnýchsoučtůvybranázposloupnosti {s n }částečnýchsoučtůjeneklesající: s 2k+2 = s 2k + c 2k+ c 2k+2 > s 2k. Dálevidíme,žeposloupnost {s 2k }jeshoraomezená: s 2k = c (c 2 c 3 ) (c 4 c 5 ) (c 2k 2 c 2k ) c 2k < c. Z toho plynou dva závěry:. s=lim s 2k, 2. c c 2 < s < c. Dále ukážeme, že s je také limitou posloupnosti lichých částečných součtů: s 2k = s 2k c 2k ; pravástranakonvergujekrozdílu s 0,tedyks,proto s 2k s,takže s n s, tedyřadajekonvergentníamásoučet s. Zbytekpo n-témčlenujeopětalternujícířada;tvrzeníojejímsoučtu r n plyne z výše uvedeného 2. závěru. Úloha5.5.2.Rozhodněteokonvergenciřady ( )n +. n Řešení.Danářadajealternujícíaposloupnost {c n }= { n} jemonotónnínulová, takže podle Leibnizova kriteria je daná řada konvergentní. Alternující řada z příkladu je příkladem neabsolutně konvergentní řady, neboť řada absolutních hodnot je divergentní základní harmonická řada. Řadám, které splňují předpoklady Leibnizova kriteria, se též říká řady leibnizovské. Leibnizovské řady se často a s výhodou používají při numerických výpočtech(při přibližném výpočtu konstant, které jsou součtem číselné řady), neboť umožňují velmi jednoduchý odhad chyby metody. 3

14 5.6 Přerovnávání číselných řad Sčítání konečného počtu čísel je asociativní a komutativní. Je tedy otázka, v jaké formě tyto dvě vlastnosti přecházejí nebo nepřecházejí na řady jakožto zobecněný součet. V článku 5. je ukázáno, že asociativnost se v jisté podobě zachovává:členyřadylze závorkovat,aleobecněvřaděnelzezávorkyodstraňovat. Vyšetřování komutativnosti je složitější a snad i zajímavější. Samozřejmě, zaměníme-li pořadí třeba u prvních dvou členů řady(nebo u prvních n například milionu členůřady),nestanesenic,pokudjdeochovánířadyresp.ojejísoučet, protožejdevlastněouplatněníkomutativnostivkonečnémsoučtu s n.budeme seprotozajímatopřípady,kdy změnapořadí členůřadyzasahujenekonečně mnoho členů řady. Definice5.6..Říkáme,žeřada b n vzniklapřerovnánímřady a n,právě kdyžexistujebijekce β: N Ntaková,že n N: b n = a β(n). Definice tedy říká, že n-tý člen přerovnané řady je β(n)-tým členem řady původní.obráceně n-týčlenpůvodnířadyje β (n)-týmčlenemvřaděpřerovnané, kde β jebijekceinverzníkβ. Napříkladalternujícířadu lzepřerovnattak,ževezmeme střídavě vždy tři členy kladné a jeden záporný: Zde β(n)={(,),(2,3),(3,5),(4,2),(5,7),(6,9),...}. jekonver- Věta 5.6.2(o přerovnání řad s nezápornými členy). Nechť gentní řada s nezápornými členy. Potomkaždářada,kterávzniknepřerovnánímřady a n, je konvergentní a její součet je roven součtu řady původní. Důkaz. Prořadu a n je n-týčástečnýsoučet s n s. an Označme b n řadu,kterávzniknepřerovnánímřady a n,aσ n její n-tý částečný součet; zřejmě {s n }, {σ n }jsouneklesajícíposloupnosti. Uvažujme σ n a m=max {β(),β(2),...,β(n)}. Pak σ n s m s,takžeřada b n jekonvergentníamásoučet σ s. 4

15 Přerovnáním se tedy součet řady nezvětší. Jestliženynířadu b n přerovnámezpětna a n,pakpodle.částidůkazu sesoučetopětnezvětší,takže s σ. Proto σ= s,součetpřerovnanéřadyjetýž. jeab- Věta 5.6.3(o přerovnání absolutně konvergentních řad). Nechť solutně konvergentní řada. Potomkaždářada,kterávzniknepřerovnánímřady a n, je konvergentní a její součet je roven součtu řady původní. an Důkaz. Označme b n řadu,kterávzniknepřerovnánímřady a n ; pak b n vzniknepřerovnánímkonvergentnířady a n,takže podlepředchozívětyje b n konvergentní, tedy b n jeabsolutněkonvergentní; jejísoučetoznačme σ. Je-li s= a n,pak s=s s,kde s = a + n a s = a n jsousoučty řad s nezápornými členy. Podobně σ= σ σ,kde σ = b + n, σ = b n. Přerovnánířady a n nařadu b n indukujepřerovnánířady a + n na řadu b + napřerovnánířady a nnařadu b n. Jetedy σ = s, σ = s,takže σ= s. Předchozí věta potvrzuje rozšíření platnosti komutativního zákona pro sčítání konečného počtu čísel na řady absolutně konvergentní. U řad neabsolutně konvergentních nastává nový jev. Nejprve však připomeňme, že u těchto řad je s =+ atéž s =+ ikdyžizdeje a n 0. Věta 5.6.4(Riemannova o přerovnávání řad neabsolutně konvergentních). Je-liřada a n neabsolutněkonvergentní,pakprokaždé B R lzeřadupřerovnattak,žepřerovnanářada b n másoučet B. Důkaz.Zřady a n vytvořímedvěřady: pn a q n atotak,že 5

16 do.řadydámebezzměnypořadívšechnanezáporná a n a dodruhéřadydámeabsolutníhodnotyzápornýchčlenů a n. Jdevlastněořady a + n a a n povynechánínadbytečnýchnulovýchčlenů. Pakkaždýčlenřady a n padneprávědojednézřad p n a q n v původním uspořádání. Zneabsolutníkonvergence a n máme pn =+ a qn =+. Dále se důkaz vede konstruktivně, tedy k libovolně zadanému B zkonstruujeme přerovnání tak, že součet přerovnané řady bude B. a) Nechť B je reálné číslo(například kladné). () Nejprve vezmeme právě tolik kladných členů, aby p + p 2 + +p r > B (tj.bez p r jesoučet B). Tolzevzhledemktomu,že p n =+. (2) Dále vezmeme právě tolik záporných členů, aby p + p 2 + +p r (q + +q s ) B (tj.bez q s jesoučet > B). Tolzevzhledemktomu,že q n =+. (3) Pak vezmeme právě tolik kladných členů, aby pro částečný součet platilo σ r2 +s > B, atd. Vidíme,žetaktose čerpají jakkladnéčleny,takzáporné,takžekaždý člen a n původnířadysedostanedopřerovnanéřady b n.ježto a n 0, je p n 0iq n 0,tedy b n 0.Zuvedenékonstrukcepřerovnáníplyne σ n B b n 0, tedy σ n B. b) Nechť B = +. Předchozí konstrukci nelze přímo použít, protože nelze vzíttolikkladnýchčlenů,abyčástečnýsoučetbylvětšínež+.ajetřeba téžzajistit čerpání zápornýchčlenů.postupujemetedytakto: Nejprve vezmeme právě tolik kladných členů, aby p + p 2 + +p r >, pakjedenzáporný,paktolikkladnýchčlenů,abyčástečnýsoučet σ r2 + >2, pak opět jeden záporný, atd. Ježto q n 0,lzejižjednoduchouúvahou(proveďteji!)dospětkzávěru,že σ n +. 6

17 Z důkazu Riemannovy věty plyne, že i z některých divergentních řad lze přerovnáním vytvořit řady(neabsolutně) konvergentní s libovolně předem zadaným součtem.jdeořady,kterésplňujínutnoupodmínkukonvergenceakde s =+ a s =+. Úloha5.6.5.Přerovnejteneabsolutněkonvergentnířadu a n tak,abypřerovnaná řada neměla žádný součet, ani nevlastní. 5.7 Mocninné řady Geometrická řada a+ax+ax 2 + +ax n + jepříklademmocninnéřady.tatořadajekonvergentníprovšechna x (,); toto je tzv. obor konvergence geometrické řady. Definice5.7..Nechť a 0,a,a 2,...,a n,...ječíselnáposloupnost.pakřada a 0 + a x+a 2 x 2 + +a n x n + = se nazývá mocninná řada. n=0 a n x n ( stručně a n x n ) Věta5.7.2(okonvergencimocninnýchřad).Jestližemocninnářada a n x n konvergujepro x=x ( 0),pakkonvergujeabsolutněprovšechna xzintervalu ( x, x ).Jestližemocninnářada a n x n divergujepro x=x 2,pakdiverguje provšechna xvněintervalu x 2, x 2. Důkaz.Zkonvergenceřady a n x n plyne,že a n x n 0,tedy Mtak,že nje a n x n M.Pakpro x < x platí n n a n x n = x M x. x První tvrzení plyne z. srovnávacího kriteria, neboť na pravé straně je člen konvergentní geometrické posloupnosti. Druhé tvrzení plyne z nepřímého důkazu užitím tvrzení prvního. Pro každou mocninnou řadu tak nastává jedna z možností: -konvergujejenvbodě0, - konverguje pro všechna x, 7 x

18 - existuje pro ni číslo R zvané poloměr konvergence tak, že uvnitř intervalu ( R, R) řada konverguje(absolutně) a vně intervalu R, R řada diverguje. (Vpředchozíchdvoupřípadechklademe R=0,resp. R=+.) Obor konvergence pak dostaneme tak, že k intervalu( R, R) přidáme ty krajní body intervalu konvergence, v nichž řada konverguje. Tato konvergence může být i neabsolutní. Úloha Stanovte obor konvergence řady n= x n n2 n. Řešení. Vyšetříme absolutní konvergenci užitím Cauchyova limitního kritéria: x n x C n = n n2n= 2 n n x 2 < x <2 R=2. Ještě vyšetříme krajní body intervalu konvergence, tj. body 2 a 2. Dosadíme-li dočlenůřady x=2,dostanemepozkrácenízákladníharmonickouřadu,kteráje divergentní. Dosadíme-li x = 2, dostaneme alternující neabsolutně konvergující řadu(neboť řadou absolutních hodnot je základní harmonická řada). Oborem konvergence je tedy interval 2, 2). 5.8 Násobení řad V odstavci 5.2 byly připomenuty lineární operace s řadami: sčítání řad a násobení řady reálným číslem. Viděli jsme, že vlastnosti konečných součtů se na řady přenášejí s jistými výhradami: například konvergentní řady lze sečíst a součet je opět konvergentní řada, ale konvergentní řadu ve tvaru součtu nelze obecně rozdělit na součet konvergentních řad. Při násobení konečných součtů a=(a + +a n ), b=(b + +b m ) násobíme každý člen jednoho součtu každým členem druhého součtu a při libovolnémuspořádánítaktovzniklýchsoučinů a i b j dostanemevždytýžvýsledek ab. Riemannova věta z?? nás varuje, abychom neočekávali totéž pro libovolné konvergentnířady.vdalšíčástiodstavcepředpokládejme n N 0,tedy a n je symbol pro řadu a 0 + a + a 2 +. Uvažujeme-li analogii s konečnými součty, očekáváme, že výsledkem násobení dvouřadbymělabýtřada,vnížjsouvšechnysoučiny,kdekaždýčlenjednéřady 8

19 násobíme každým členem druhé řady. Toto násobení lze zorganizovat pomocí čtvercovéhoschématu ( ): a 0 a a 2 a 3 b 0 a 0 b 0 a b 0 a 2 b 0 a 3 b 0 b a 0 b a b a 2 b a 3 b b 2 a 0 b 2 a b 2 a 2 b 2 a 3 b 2 b 3 a 0 b 3 a b 3 a 2 b 3 a 3 b Nyní jde o to, jak všechny prvky tohoto schématu uspořádat. Nelze například pořádcích nebo posloupcích (tobychomnepoužilivšechnyprvky),alelze například podiagonálách : a 0 b 0 + a 0 b + a b 0 + a 0 b 2 + a b + Pro uspořádání prvků ze schématu však lze použít i pravidlo čtverců( rámování ),kterédářadu a 0 b 0 + a 0 b + a b + a b 0 + a 0 b 2 + a b 2 + Věta 5.8.(Cauchyovaonásobenířad).Jsou-liřady a n, b n absolutně konvergentní a mají součet a resp. b, pak řada vytvořená ze součinů dle schématu ( ) vzatých v libovolném pořadí je také absolutně konvergentní a má součet ab. Důkaz.Křadě a i b j všechsoučinůzeschématu( )uvažujmeřaduabsolutních hodnot: a i b j ajejí n-týčástečnýsoučet σ n.označme m=max {i s,k s }.Pak platí σ m = a 0 b 0 + a 0 b + + a m b m ( a 0 + a + + a m ) ( b 0 + b + + b m ) < a b, kde a, b jsousoučtypříslušnýchřadabsolutníchhodnot.ježtoposloupnost {σ n }jeneklesajícíashoraomezená,existujejejívlastnílimita,řadaabsolutních hodnot součinů je konvergentní, tedy řada součinů je absolutně konvergentní. Podle věty o přerovnání absolutně konvergentních řad nezávisí součet této řady na pořadí členů řady(na jejich uspořádání). Nyní určíme součet této řady. K tomu lze zvolit libovolné uspořádání členů řady;výhodnéseukážeuspořádání rámováním,kdenavícsdružímevždyvšechny členyztéhož rámu : a 0 b 0 +(a 0 b + a b + a b 0 )+(a 0 b 2 + a b 2 + )+ 9

20 Posloupnost { s p }částečnýchsoučtůtétořadyjevybranázposloupnosti {s n } částečnýchsoučtůřadypůvodní.označíme-ličástečnésoučtyřad a n, b n jako s n, s n,pakzřejměplatí s 0 = s 0s 0, s = s s, s 2 = s 2s 2,... s m = s ms m. Ježto s m a, s m b,je s m ab,tedy s=ab. Definice5.8.2.Mějmeřady a n, b n.pakřadu c n nazývámecauchyův součin daných řad, právě když platí c 0 = a 0 b 0, c = a 0 b +a b 0, c 2 = a 0 b 2 +a b +a 2 b 0,... c n = a 0 b n + +a n b 0,... Vidíme,žesdruženímvhodnýchčlenůpřiuspořádání podiagonálách dostaneme Cauchyův součin nebo též, že posloupnost částečných součtů v Cauchyově součinu je vybraná z posloupnosti částečných součtů při uspořádání po diagonálách. Pokud by nám stačilo tvrzení o Cauchyově součinu řad, mohli bychom oslabit předpokladynařady a n, b n atotak,žejednajeabsolutněkonvergentní, ale druhá(jen) konvergentní. Úloha Najděte řadu se součtem a) užitím sčítání řad, b) užitím násobení řad. Řešení. Využijeme toho, že q 3 2 x x 2 jepro q <součetgeometrickéřady +q+ q 2 + +q n + = ad a) Rozložíme na parciální zlomky: kde 3 2 x x 2 = ( ) q = x < x x+2 = x 2 = n=0 x n 2 ( q 2 = x ) < 2 n=0 + x 2 n=0 q n. ( x 2) n, x (,). 20

21 ad b) Rozložíme na součin: 3 = 3 2 x x 2 2 x+ x 2 ( = 3 + ) ( + x n 2 n=0 n=0 ) ( x ) n 2 kde opět ( ) q = x < ( q 2 = x ) < 2 x (,). 2

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3 VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady...... 2 1.2 Základnívlastnostiřad..... 3 2 Řady s nezápornými členy 3 2.1 Kritériakonvergenceadivergence...... 3 3 Řady absolutně

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

Michal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62

Michal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62 Nekonečné řady Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 0. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 62 Obsah Nekonečné číselné řady a určování jejich součtů 2 Kritéria

Více

11. Číselné a mocninné řady

11. Číselné a mocninné řady 11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

LEKCE10-RAD Otázky

LEKCE10-RAD Otázky Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá

Více

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Více

Přednáška 6, 7. listopadu 2014

Přednáška 6, 7. listopadu 2014 Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

MATEMATIKA B 2. Integrální počet 1

MATEMATIKA B 2. Integrální počet 1 metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet

Více

Zobecněný Riemannův integrál

Zobecněný Riemannův integrál Zobecněný Riemannův integrál Definice (Zobecněný Riemannův integrál). Buď,,. Nechť pro všechna existuje určitý Riemannův integrál. Pokud existuje konečná limita, říkáme, že zobecněný Riemannův integrál

Více

Číselné posloupnosti

Číselné posloupnosti Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení. STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To

Více

(verze 12. května 2015)

(verze 12. května 2015) Pár informací o nekonečných řadách (doplňkový text k předmětu Matematická analýza 3) Pavel Řehák (verze 12. května 2015) 2 Několik slov na úvod Tento text tvoří doplněk k části předmětu Matematická analýza

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Matematická analýza pro informatiky I. Limita posloupnosti (I) Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

Posloupnosti a jejich konvergence

Posloupnosti a jejich konvergence a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx = . cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je

Více

1. Posloupnosti čísel

1. Posloupnosti čísel 1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina

Více

Přednáška 6, 6. listopadu 2013

Přednáška 6, 6. listopadu 2013 Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,

Více

ŘADY KOMPLEXNÍCH FUNKCÍ

ŘADY KOMPLEXNÍCH FUNKCÍ ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce 1. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Abelovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce spojitá na [a, b) a funkce g : [a, b) R je na [a, b) spojitá

Více

Uzavřené a otevřené množiny

Uzavřené a otevřené množiny Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1] KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

Konvergence kuncova/

Konvergence  kuncova/ Konvergence http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Příklady.. 3. 3 + d Konverguje - u je funkce spojitá, u srovnáme s /. e d Konverguje - na intervalu [, ] je funkce spojitá, na intervalu

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Příklad 1. Řešení 1a Máme určit poloměr a obor bodové konvergence mocninné řady ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 13

Příklad 1. Řešení 1a Máme určit poloměr a obor bodové konvergence mocninné řady ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 13 Příklad 1 Určete poloměr a obor bodové konvergence mocninných řad: a) 1 8 b) +1 c) 3 d) +2+1 e)! f)! 3 g) +2 +3 h) 2 2 1 =8, = 7,9 =1, = 1,1 =3, = 3,3 =1, = 2,0 =+, =,+ =0, =3 =1, = 3,1 = 1 2, = 1 2,1

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi 2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

KOMPLEXNÍ ČÍSLA A FUNKCE MNOŽINA KOMPLEXNÍCH ČÍSEL C. Alternativní popis komplexních čísel

KOMPLEXNÍ ČÍSLA A FUNKCE MNOŽINA KOMPLEXNÍCH ČÍSEL C. Alternativní popis komplexních čísel KOMPLEXNÍ ČÍSLA A FUNKCE V předchozích částech byl důraz kladen na reálná čísla a na reálné funkce. Pokud se komplexní čísla vyskytovala, bylo to z hlediska kartézského součinu dvou reálných přímek, např.

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 014/015. prosince 014 Předmluva iii

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.

Více

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39 Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá

Více

Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15

Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15 Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15 Klíčové pojmy Neznalost některého z klíčových pojmů bude mít za následek ukončení zkoušky se známkou neprospěl(a). supremum infimum limita

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Přednáška 11, 12. prosince Část 5: derivace funkce

Přednáška 11, 12. prosince Část 5: derivace funkce Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1)

Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1) Z transformace Definice Z transformací komplexní posloupnosti f = { roumíme funkci F ( definovanou vtahem F ( = n, ( pokud řada vpravo konverguje aspoň v jednom bodě 0 C Náev Z transformace budeme také

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor

Více

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Funkce. Limita a spojitost

Funkce. Limita a spojitost Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Spojitost a limita funkce

Spojitost a limita funkce Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové

Více

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Matematika 2 Úvod Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Studijní materiály web předmětu: aix-slx.upol.cz/ fiser St. Trávníček: Matematická analýza kag.upol.cz/travnicek/1-matan.

Více

6.1.2 Operace s komplexními čísly

6.1.2 Operace s komplexními čísly 6.. Operace s komplexními čísly Předpoklady: 60 Komplexním číslem nazýváme výraz ve tvaru a + bi, kde a, b jsou reálná čísla a i je číslo, pro něž platí i =. V komplexním čísle a + bi se nazývá: číslo

Více

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad 1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x 1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

+ n( 1)n+1 (x 7) n, poloměr konvergence 6. 3.Poloměr konvergence je vždy +. a) f(x) = x n. (x 7) n, h(x) = 7 + 7(n+1)( 1) n. ( 1)n

+ n( 1)n+1 (x 7) n, poloměr konvergence 6. 3.Poloměr konvergence je vždy +. a) f(x) = x n. (x 7) n, h(x) = 7 + 7(n+1)( 1) n. ( 1)n VÝSLEDKY I. TAYLORŮV POLYNOM. a + b + 4 4 c + 0 d e + + 4 f + + 4 g + 70 4 h 4 4. a b c d - e log a f 0 g h i j k - 4. a 7 b 4. a AK absolutně konverguje b D diverguje c D d AK e D f AK g AK II. MOCNINNÉ

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

Matematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné)

Matematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné) Matematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné) 0. Úvod a opakování (značení, operace s množinami apod.) 1. Reálná čísla a jejich vlastnosti Uspořádané těleso Komutativní

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více