1 Základní pojmy a vlastnosti Význačnéřady Základnívlastnostiřad... 3

Rozměr: px
Začít zobrazení ze stránky:

Download "1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3"

Transkript

1 VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti Význačnéřady Základnívlastnostiřad Řady s nezápornými členy Kritériakonvergenceadivergence Řady absolutně a relativně konvergentní Kriteriaabsolutníkonvergence Přerovnávánířad Alternujícířady

2 1 Základní pojmy a vlastnosti Definice1.1 Nechť { } jeposloupnostreálnýchčísel.symbol = a 1 + a 2 + a 3 + senazývánekonečnářadareálnýchčísel(stručnějennekonečnářadanebojenřada).čísla, n= 1,2,3,...,senazývajíčlenyřady, sepaknazývá n-týčlenřady; nsenazývásčítacíindex. Pokudnemůžedojítkmýlce,takbudememísto psátzkrácenějen. Definice1.2 Uvažujmeřadu.Posloupnost {s n },kde s 1 = a 1 s 2 = a 1 + a 2 s 3 = a 1 + a 2 + a 3 s n = a 1 + a 2 + = senazýváposloupnostčástečnýchsoučtůřady.dálejestliže lim n s n = s R,pakříkáme,žeřada konvergujeamásoučet s; lim n s n = ±,pakříkáme,žeřada diverguje(k ± )amásoučet ± ; lim n s n neexistuje,pakříkáme,žeřada diverguje(osciluje)anemásoučet. Poznámka: U každé řady nastane právě jedna z výše uvedených možností. n i=1 a i 1.1 Význačné řady Definice1.3 Řada ( a1 +(n 1)d ),kde a 1,d R,senazýváaritmetickářadasprvnímčlenem a 1 adiferencí d. n-týčástečnýsoučetaritmetickéřadyje s n = 1 2 n(a 1+ ) Jestližejealespoňjednozčísel a 1 a drůznéodnuly,aritmetickářadadiverguje;konvergujepouzev případě,že a 1 = d=0. Definice1.4 Řada a 1 q n 1,kde a 1,q R,senazývágeometrickářadasprvnímčlenem a 1 a kvocientem q. n-týčástečnýsoučetgeometrickéřadyje s n = a 1 1 qn 1 q pro q 1as n = n a 1 pro q=1. Geometrická řada konverguje, jestliže q <1amásoučet s=a q a 1 =0(q Rlibovolné)amásoučet0 Geometrickářadadivergujepro q 1(a 1 0). Definice1.5 Řada 1 n senazýváharmonickářada. Harmonická řada diverguje k +. Definice1.6 Řada ( 1)n 1 senazývágrandihořada. Grandiho řada osciluje. 2

3 1.2 Základní vlastnosti řad Věta 1.1(Nutná podmínka konvergence řady) Jestližeřada konverguje,paklim n =0. Poznámka: Obrácená věteplatí. Definice 1.7(Algebraické operace s řadami) Součtem,resp.rozdílemřad a b n rozumímeřadu ( ) ( ) an + b n,resp.řadu an b n. Násobkemřady ačísla c Rrozumímeřadu ( c an ). Věta1.2 Nechťjsoudánydvěřady a b n.nechťexistuje n 0 Ntak,že = b n n n 0.Pak obě řady buď konvergují nebo obě divergují. Věta1.3 Nechťjsoudánydvěkonvergentnířady = a Ra b n = b Račíslo c R.Potom jsoukonvergentnítakéřady ( ± b n )a (c )aplatí (an ± b n ) = ± b n = a ± b (c an ) = c a n = c a Věta1.4 Jestližekonvergujeřada a 1 + a ,pakkonvergujetakéřada(a 1 + a )+( )+(2 +1+ )+ aoběmajístejnýsoučet. Poznámka: Snadno lze sčítat pouze geometrické řady. U ostatních bychom museli postupovat podle definiceazdebyvětšinounastalproblémsnalezenímtvarupro s n.většinounámprotopostačípouze informace o tom, zda daná řada má nebo nemá konečný součet, tj. zjištění, zda řada konverguje nebo diverguje. Na to nám slouží tzv. kritéria konvergence. 2 Řady s nezápornými členy Definice2.1 Řada senazývářadasnezápornými(resp.kladnými)členy,jestliže 0 n N (resp. >0 n N). Věta 2.1 Každá řada s nezápornými členy buď konverguje nebo diverguje k. Věta 2.2 Řada s nezápornými členy konverguje právě tehdy, když je posloupnost jejích částečných součtů(shora) omezená. 2.1 Kritéria konvergence a divergence Následující věty se nazývají kritéria konvergence a divergence řad. Kriteria dávají jak postačující podmínky pro konvergenci a tak i postačující podmínky pro divergenci číselné řady. Není-li ani jedna z postačujících podmínek stanovených v kriteriu splněna, nelze podle tohoto kriteria rozhodnout. Věta 2.3(První srovnávací kritérium) Nechť a b n jsouřadysnezápornýmičlenyanechť b n provšechn N.Potomplatí: jestližeřada b n konverguje,pakkonvergujetakéřada ; jestližeřada diverguje,pakdivergujetakéřada b n. 3

4 Poznámka:Jestliže b n n N,pakseřada b n nazývámajorantnířadakřadě ařada an senazýváminorantnířadoukřadě b n. Věta 2.4(Druhé srovnávací kritérium) Nechť a b n jsouřadyskladnýmičlenyanechť +1 b n+1 b n jestližeřada b n konverguje,pakkonvergujetakéřada ; jestližeřada diverguje,pakdivergujetakéřada b n. Věta 2.5(Podílové- D Alembertovo kritérium) Nechť jeřadaskladnýmičleny.potomplatí: provšechn N.Potomplatí: jestliže +1 jestliže +1 q <1 n N,pakřada konverguje; 1 n N,pakřada diverguje. Věta 2.6(Limitní podílové kritérium) Nechť jeřadaskladnýmičlenyanechťexistujelimita +1 lim = q R. n Potom platí: je-li q <1,pakřada konverguje; je-li q >1,pakřada diverguje. Věta 2.7(Odmocninové- Cauchyovo kritérium) Nechť jeřadasnezápornýmičleny.potomplatí: jestliže n q <1 n N,pakřada konverguje; jestliže n 1pronekonečněmnohoindexů n N,pakřada diverguje. Věta 2.8(Limitní odmocninové kritérium) Nechť jeřadasnezápornýmičlenyanechťexistujelimita Potom platí: lim n je-li q <1,pakřada konverguje; je-li q >1,pakřada diverguje. n an = q R. Věta 2.9(Raabeovo kritérium) Nechť jeřadaskladnýmičleny.potomplatí: ( ) jestliže n 1 +1 q >1pros.v. n N,pakřada konverguje; ( ) jestliže n pros.v. n N,pakřada diverguje. Věta 2.10(Limitní Raabeovo kritérium) Nechť jeřadaskladnýmičlenyanechťexistujelimita ( lim n 1 a ) n+1 = q R. n Potom platí: 4

5 je-li q >1,pakřada konverguje; je-li q <1,pakřada diverguje. Věta 2.11(Integrální kritérium) Nechť fjereálnáfunkcejednéproměnnédefinovanánaintervalu <1, ),kterájenatomtointervalu nezápornáanerostoucí.uvažujmeřadu,kde = f(n) n N.Potomřada konverguje právětehdy,kdyžkonvergujenevlastníintegrál 1 f(x)dx. Poznámka: Všechna kritériejsou stejně silná, tj. nepodaří-li se nám o konvergenci/divergenci řady rozhodnout podle jednoho kritéria, zvolíme jiné. Většinou přitom postupujeme od jednodušších ke složitějším,vždyvšakspřihlédnutímkekonkrétnímutvaru. Poznámka: Existuje celá řada dalších kritérií konvergence pro řady s nezápornými členy. Žádné z nich však není univerzální v tom smyslu, že bychom podle něho mohli rozhodnout o konvergenci/divergenci libovolné řady s nezápornými členy. 3 Řady absolutně a relativně konvergentní Nyníbudemeuvažovatřady slibovolnými(tj.kladnýmiizápornými)členy.kekaždéřadě an mápaksmysluvažovatřadu,tj.řadu Definice 3.1 = a 1 + a Říkáme,žeřada konvergujeabsolutně(nebojeabsolutněkonvergentní),jestližekonverguje řada. Říkáme,žeřada konvergujerelativně(nebojerelativněkonvergentní),jestližeřada konvergujeařada diverguje. Věta3.1(Oabsolutníkonvergenci) Je-liřada absolutněkonvergentní,pakjetakékonvergentní. Věta3.2 Nechťřada konvergujeabsolutně.pakplatí an 3.1 Kriteria absolutní konvergence Vzhledemktomu,že jeřadasnezápornýmičleny,dávajíkriteriazpředchozíkapitolyihned kriteria pro absolutní konvergenci, např.: Věta3.3(Srovnávacíkriterium) Nechť b n jekonvergentnířadasnezápornýmičlenya řada s libovolnými členy. Potom platí: jestliže b n n N,pak konvergujeabsolutně; jestliže +1 b n+1 b n n N,pak konvergujeabsolutně. Věta 3.4(Odmocninové kriterium) Jestliže n q <1 n N,pak konvergujeabsolutně; jestliže n 1pronekonečněmnohoindexů n N,pak diverguje; 5

6 jestližeexistujelimitalim n n =q R,pakpro q <1řada konvergujeabsolutněa pro q >1řada diverguje. Věta 3.5(Podílové kriterium) Jestliže q <1 n N,pak an konvergujeabsolutně; jestliže n N,pak an diverguje; a jestližeexistujelimitalim n+1 =q n R,pakpro q <1řada konvergujeabsolutněa pro q >1řada diverguje. 3.2 Přerovnávání řad Definice3.2 Nechť ječíselnářadaaposloupnost {k n } jepermutacímnožiny N(tj.jeto posloupnost,vnížsekaždépřirozenéčíslovyskytujeprávějednou).potomříkáme,žeřada a kn vzniklapřerovnáním řady. Věta3.6 Nechťřada konvergujeabsolutně.potomabsolutněkonvergujetakéřada a kn vzniklá přerovnánímřady aplatí a kn =. Věta3.7 Nechťřada konvergujerelativněanechť s Rjelibovolnéčíslo.Potom existujepřerovnání a kn řady takové,že a kn konvergujeamásoučet s; existujepřerovnání a pn řady takové,že a pn diverguje; existujepřerovnání a qn řady takové,že a qn osciluje. 3.3 Alternující řady Definice3.3 Nekonečnáčíselnářada b n senazýváalternující(sestřídavýmiznaménky),jestliže sgn b n+1 = sgn b n provšechn N. Alternující řady jsou tedy tvaru ( 1) n 1 = a 1 a 2 + a 3 a 4 + a 5 a 6 + ( 1) n = a 1 + a 2 a 3 + a 4 a 5 + a 6 kde { }jeposloupnostkladnýchčísel. Věta3.8 Alternujícířada ( 1) n 1 konvergujeprávětehdy,když { }jenerostoucíposloupnostkladnýchčísela lim n =0. Prosoučet stétořadynavícplatí a 1 a 2 < s < a 1. 6

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

11. Číselné a mocninné řady

11. Číselné a mocninné řady 11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

LEKCE10-RAD Otázky

LEKCE10-RAD Otázky Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá

Více

Kapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada.

Kapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada. Kapitola 5 Číselné řady 5. Základní pojmy Definice 5...Symbol a + a 2 + +a n +,kde n N, a n R,se nazývá číselná řada. Jiná označení: n= a n, a n (vynecháme-lipodmínku pro n,uvažujemečlenyodnejmenšího n

Více

Michal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62

Michal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62 Nekonečné řady Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 0. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 62 Obsah Nekonečné číselné řady a určování jejich součtů 2 Kritéria

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Více

1. Posloupnosti čísel

1. Posloupnosti čísel 1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina

Více

(verze 12. května 2015)

(verze 12. května 2015) Pár informací o nekonečných řadách (doplňkový text k předmětu Matematická analýza 3) Pavel Řehák (verze 12. května 2015) 2 Několik slov na úvod Tento text tvoří doplněk k části předmětu Matematická analýza

Více

MA2, M2. Kapitola 1. Funkční posloupnosti a řady. c 2009, analyza.kma.zcu.cz

MA2, M2. Kapitola 1. Funkční posloupnosti a řady. c 2009, analyza.kma.zcu.cz 1 Kapitola 1 Funkční posloupnosti a řady 2 Definice 1.1(funkční posloupnost) Funkční posloupnost( = posloupnost funkcí) je zobrazení, které každému přirozenému číslu n N přiřazuje právějednufunkci f n

Více

MATEMATIKA B 2. Integrální počet 1

MATEMATIKA B 2. Integrální počet 1 metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet

Více

Přednáška 6, 7. listopadu 2014

Přednáška 6, 7. listopadu 2014 Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující

Více

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení. STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

Zobecněný Riemannův integrál

Zobecněný Riemannův integrál Zobecněný Riemannův integrál Definice (Zobecněný Riemannův integrál). Buď,,. Nechť pro všechna existuje určitý Riemannův integrál. Pokud existuje konečná limita, říkáme, že zobecněný Riemannův integrál

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15

Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15 Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15 Klíčové pojmy Neznalost některého z klíčových pojmů bude mít za následek ukončení zkoušky se známkou neprospěl(a). supremum infimum limita

Více

ČÍSELNÉ RADY. a n (1) n=1

ČÍSELNÉ RADY. a n (1) n=1 ČÍSELNÉ RADY Budeme sa zaoberať výrazmi, ktoré obsahujú nekonečne veľa sčítancov. Takéto výrazy budeme nazývať nekonečné rady. V nasledujúcom príklade je ilustrované, ako môže takýto výraz vzniknúť. Príklad.

Více

Kapitola 1. Funkční posloupnosti a řady

Kapitola 1. Funkční posloupnosti a řady 1 2 Kapitola 1 Funkční posloupnosti a řady Definice 1.1(funkční posloupnost) Funkční posloupnost( = posloupnost funkcí) je zobrazení, které každému přirozenému číslu n N přiřazuje právějednufunkci f n

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

15. Nulové body a póly. Věta. Je-li funkce f : G holomorfní v oblasti G a f(z 0 ) 0 pro z 0 G, pak

15. Nulové body a póly. Věta. Je-li funkce f : G holomorfní v oblasti G a f(z 0 ) 0 pro z 0 G, pak 5. Nulové body a póly Věta. Je-li funkce f holomorfní v oblasti G C, a f(z 0 ) 0 pro bod z 0 G, pak existuje okolí U(z 0 ) bodu z 0 takové, že f(z) 0 pro z U(z 0 ). Definice: Je-li funkce f holomorfní

Více

ŘADY KOMPLEXNÍCH FUNKCÍ

ŘADY KOMPLEXNÍCH FUNKCÍ ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z

Více

Riemannova a Hurwitzova ζ-funkce

Riemannova a Hurwitzova ζ-funkce Riemannova a Hurwitzova ζ-funkce Riemannova a Hurwitzova ζ-funkce Michael Krbek. Definice a souvislost s prvočísl. Buď s C komplexní číslo takové, že Rs δ, δ >.Potompro

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx = . cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je

Více

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Matematická analýza pro informatiky I. Limita posloupnosti (I) Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz

Více

Číselné posloupnosti

Číselné posloupnosti Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kapitola Nekonečné číselné řady Definice. Nechť {a n } n= je posloupnost reálných čísel. Symbol a n nebo a + a 2 + a 3 +... n= nazýváme nekonečnou číselnou řadou. s n = n i= a i = a + a 2 +... + a n nazveme

Více

Uzavřené a otevřené množiny

Uzavřené a otevřené množiny Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,

Více

Posloupnosti a jejich konvergence

Posloupnosti a jejich konvergence a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.

Více

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí

Více

Příklad 1. Řešení 1a Máme určit poloměr a obor bodové konvergence mocninné řady ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 13

Příklad 1. Řešení 1a Máme určit poloměr a obor bodové konvergence mocninné řady ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 13 Příklad 1 Určete poloměr a obor bodové konvergence mocninných řad: a) 1 8 b) +1 c) 3 d) +2+1 e)! f)! 3 g) +2 +3 h) 2 2 1 =8, = 7,9 =1, = 1,1 =3, = 3,3 =1, = 2,0 =+, =,+ =0, =3 =1, = 3,1 = 1 2, = 1 2,1

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

Součet řady je definován jediným možným rozumným

Součet řady je definován jediným možným rozumným Řady ŘADY ČÍSEL Zatím byly probrány dva druhy operací s posloupnostmi: 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Definice. Na množině R je dána relace ( R R), operace sčítání +, operace násobení a množina R obsahuje prvky 0 a 1 tak, že platí

Definice. Na množině R je dána relace ( R R), operace sčítání +, operace násobení a množina R obsahuje prvky 0 a 1 tak, že platí 1. Úvod 1.1. Výroky a metody důkazů Výrok je tvrzení, o kterém má smysl říci, že je pravdivé či ne. Vytváření nových výroků: Logické spojky & a, Implikace, Ekvivalence, Negace. Obecný kvatifikátor a existenční

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

Matematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné)

Matematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné) Matematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné) 0. Úvod a opakování (značení, operace s množinami apod.) 1. Reálná čísla a jejich vlastnosti Uspořádané těleso Komutativní

Více

Funkcionální řady. January 13, 2016

Funkcionální řady. January 13, 2016 Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine

Více

MATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR PŘEDNÁŠKA

MATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR PŘEDNÁŠKA MATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR 2018 2019 PŘEDNÁŠKA LUBOŠ PICK 1. Logika, množiny a základní číselné obory 1.1. Logika. Logika je věda o formální správnosti myšlení. Formálně logická správnost spočívá

Více

Posloupnosti a řady. 4. kapitola. Absolutní a neabsolutní konvergence

Posloupnosti a řady. 4. kapitola. Absolutní a neabsolutní konvergence Posloupnosti a řady 4. kapitola. Absolutní a neabsolutní konvergence In: Jiří Jarník (author): Posloupnosti a řady. (Czech). Praha: Mladá fronta, 1979. pp. 90 113. Persistent URL: http://dml.cz/dmlcz/403939

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

Numerické řešení nelineárních rovnic

Numerické řešení nelineárních rovnic Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html

Více

Matematická analýza. L. Pick a J. Spurný

Matematická analýza. L. Pick a J. Spurný Matematická analýza L. Pick a J. Spurný 25. května 200 Obsah Matematická analýza a 5 Výroky, důkazové techniky a množiny.................................... 5. Výroková a predikátová logika....................................

Více

a n (z z 0 ) n, z C, (1) n=0

a n (z z 0 ) n, z C, (1) n=0 Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce 1. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Abelovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce spojitá na [a, b) a funkce g : [a, b) R je na [a, b) spojitá

Více

Otázky z kapitoly Posloupnosti

Otázky z kapitoly Posloupnosti Otázky z kapitoly Posloupnosti 8. září 08 Obsah Aritmetická posloupnost (8 otázek). Obtížnost (0 otázek)........................................ Obtížnost (0 otázek).......................................

Více

2. přednáška 8. října 2007

2. přednáška 8. října 2007 2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =

Více

Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj.

Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. 1 Limity posloupností 1. (a) pro a > 1 je (c) Pro β > 0 a a > 1 Tabulkové ity n! n n = 0 a n n! = 0. n β a n = 0. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. libovolně malé) ln α n n β = 0. (e)

Více

MATEMATICKÁ ANALÝZA 1, NMMA101, ZIMNÍ SEMESTR POPIS PŘEDMĚTU A INFORMACE K ZÁPOČTU A KE ZKOUŠCE

MATEMATICKÁ ANALÝZA 1, NMMA101, ZIMNÍ SEMESTR POPIS PŘEDMĚTU A INFORMACE K ZÁPOČTU A KE ZKOUŠCE MATEMATICKÁ ANALÝZA 1, NMMA101, ZIMNÍ SEMESTR 2018 2019 POPIS PŘEDMĚTU A INFORMACE K ZÁPOČTU A KE ZKOUŠCE LUBOŠ PICK Popis předmětu Jde o první část čtyřsemestrálního základního kursu matematické analýzy.

Více

Helena R ˇ ı hova (CˇVUT) Posloupnosti 5. rˇı jna / 17

Helena R ˇ ı hova (CˇVUT) Posloupnosti 5. rˇı jna / 17 Posloupnosti Helena Říhová FBMI 5. října 2012 Helena Říhová (ČVUT) Posloupnosti 5. října 2012 1 / 17 Obsah 1 Posloupnosti Definice, vlastnosti Vybraná, stacionární, oscilující, ohraničená posloupnost Monotónní

Více

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni.

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni. KMA/ZM1 Přednášky RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni sediva@kma.zcu.cz Obsah 0.1 Matematické objekty, matematické definice, matematické věty.............. 4

Více

Matematika 3. m působíme silou F, uvedeme ho do pohybu a udělíme mu zrychlení a. Úkolem

Matematika 3. m působíme silou F, uvedeme ho do pohybu a udělíme mu zrychlení a. Úkolem Matematika 3. Ing. Marek Nikodým, Ph.D. Katedra matematiky a deskriptívní geometrie VŠB-TU Ostrava DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice jsou velmi důležité a mají obrovské využití hlavně ve fyzice.

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Číselné posloupnosti. H (å) a. a å

Číselné posloupnosti. H (å) a. a å Pokud napíšeme značku H a (ε), je třeba dát pozor, neboť značka je stejná u komplexního i u reálného okolí, ačkoliv jde o jinou množinu (reálné okolí je jen otevřený interval na reálné ose, komplexní zahrnuje

Více

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1] KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Limita posloupnosti a funkce

Limita posloupnosti a funkce Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti

Více

Limita posloupnosti, limita funkce, spojitost. May 26, 2018

Limita posloupnosti, limita funkce, spojitost. May 26, 2018 Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a

Více

Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013. Luboš Pick

Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013. Luboš Pick Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013 Luboš Pick Obsah Popis předmětu 1 Zápočet 1 Zkouška 2 Celkové hodnocení zkoušky 4 Seznamy požadovaných

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

Univerzita Karlova Pedagogická fakulta. Katedra matematiky a didaktiky matematiky BAKALÁŘSKÁ PRÁCE. Posloupnosti - rozšiřující učební text

Univerzita Karlova Pedagogická fakulta. Katedra matematiky a didaktiky matematiky BAKALÁŘSKÁ PRÁCE. Posloupnosti - rozšiřující učební text Univerzita Karlova Pedagogická fakulta Katedra matematiky a didaktiky matematiky BAKALÁŘSKÁ PRÁCE Posloupnosti - rozšiřující učební text Sequences - extended reading Karel Hamšík Vedoucí práce: Mgr. Derek

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Sada 1 Matematika. 04. Nekonečné řady

Sada 1 Matematika. 04. Nekonečné řady S třední škola stavební Jihlava Sada 1 Matematika 04. Nekonečné řady Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace a

Více

BAKALÁŘSKÁ PRÁCE. Kristýna Suchanová. Přírodovědná studia, obor Matematika

BAKALÁŘSKÁ PRÁCE. Kristýna Suchanová. Přírodovědná studia, obor Matematika ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY POSLOUPNOSTI A ŘADY: ZÁKLADNÍ VLASTNOSTI, LIMITY: ŘEŠENÉ PŘÍKLADY BAKALÁŘSKÁ PRÁCE Kristýna Suchanová Přírodovědná

Více

Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2

Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2 Vlastnosti posloupností 90000680 (level ): Je dána posloupnost (an + b), ve které platí, že a = a a 4 = 8. Potom: Posloupnosti a řady 900006807 (level ): Které z čísel 5, 5, 8, 47 není členem posloupnosti

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Použití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT. Monotónie. Konvexita. V této části budou uvedena některá použití derivací.

Použití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT. Monotónie. Konvexita. V této části budou uvedena některá použití derivací. V této části budou uvedena některá použití derivací. Použití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou itu zprava. Samozřejmě obdobné tvrzení platí pro itu zleva

Více

Přednáška 6, 6. listopadu 2013

Přednáška 6, 6. listopadu 2013 Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

Spojitost a limita funkce

Spojitost a limita funkce Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové

Více

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní

Více

Vztah limity k aritmetickým operacím a uspořádání

Vztah limity k aritmetickým operacím a uspořádání Vztah limity k a uspořádání Miroslav Hušek UJEP Prohlížení Celý text je nejlépe čitelný v celoobrazovkovém módu. Toho docílíte stiskem kláves CTRL L. Doprovodný text V textu se užívají definice dle obvyklých

Více

KOMPLEXNÍ ČÍSLA A FUNKCE MNOŽINA KOMPLEXNÍCH ČÍSEL C. Alternativní popis komplexních čísel

KOMPLEXNÍ ČÍSLA A FUNKCE MNOŽINA KOMPLEXNÍCH ČÍSEL C. Alternativní popis komplexních čísel KOMPLEXNÍ ČÍSLA A FUNKCE V předchozích částech byl důraz kladen na reálná čísla a na reálné funkce. Pokud se komplexní čísla vyskytovala, bylo to z hlediska kartézského součinu dvou reálných přímek, např.

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

MATEMATIKA 1B ÚSTAV MATEMATIKY

MATEMATIKA 1B ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika B - Sbírka úloh. Tato sbírka je doplněním tetu Fuchs,

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více