Ze 120 kg cukrovky se získá 24 kg cukru. Z kolika tun cukrovky se získají 4 tuny cukru?

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Ze 120 kg cukrovky se získá 24 kg cukru. Z kolika tun cukrovky se získají 4 tuny cukru?"

Transkript

1 Přímá úměrnost Přímá úměrnost Roste-li první veličina, roste i druhá. Snižuje-li se první veličina, snižuje se i druhá. (Např. čím více rohlíků koupíme, tím více za ně zaplatíme) Kolikrát se zvětší (zmenší) jedna veličina, tolikrát se zvětší (zmenší) druhá veličina. Přímá úměrnost je dána rovnicí y k x, kde k je koeficient přímé úměrnosti. Grafem přímé úměrnosti je přímka. Cvičení 1. Ze 120 kg cukrovky se získá 24 kg cukru. Z kolika tun cukrovky se získají 4 tuny cukru? a) Řešení rovnicí: y hmotnost cukrovky x hmotnost cukru y k x y k x 120 k 24 y 5 4 k 5 y 20 4 tuny cukru se získají z 20 tun cukrovky. b) Řešení trojčlenkou: Trojčlenka představuje mnemotechnický postup, jak rychle vyřešit úlohy na přímou a nepřímou úměrnost. 120 kg cukrovky. 24 kg cukru x tcukrovky. 4 t cukru x x tuny cukru se získají z 20 tun cukrovky. Příklad 1. 9 jízdenek stálo 153 Kč. Kolik stojí 11 jízdenek? 1 Výukový materiál pro předmět Matematika

2 Příklad 2. Z 20 kg pampelišek se získá 5,3 kg medu. Z kolika kilogramů pampelišek se získá 23,6 kg medu? Příklad 3. Za 4 kg papíru dostaneme ve sběrně 2 Kč. Kolik kilogramů časopisů musíme nasbírat, abychom si mohli koupit auto za Kč? Příklad 4. Auto spotřebuje 8 litrů benzínu na 100 km. Kolik litrů benzínu spotřebuje, jestliže ujede 60 km? Příklad 5. Sedm dělníků opracuje za směnu 357 součástek. Kolik součástek opracuje za směnu 16 dělníků? Nepřímá úměrnost Nepřímá úměrnost Roste-li první veličina, druhá klesá. Klesá-li první veličina, druhá roste. (Např. čím rychlejší máme připojení k Internetu, tím menší dobu potřebujeme ke stažení souboru.) Kolikrát se zvětší (zmenší) jedna veličina, tolikrát se zmenší (zvětší) druhá veličina. k Nepřímá úměrnost je dána rovnicí: y, kde k je koeficient nepřímé úměrnosti. x Grafem nepřímé úměrnosti je hyperbola. 2 Výukový materiál pro předmět Matematika

3 Cvičení 2. Pět dlaždičů by vydláždilo náměstí za 12 dní. Za kolik dní by toto náměstí vydláždili 4 dlaždiči? a) Řešení rovnicí: x počet dlaždičů y počet dní k 12 5 k y 4 y 15 4 dlaždiči vydláždí náměstí za 15 dní. b) Řešení trojčlenkou: 5 dlaždičů..12 dní 4 dlaždiči.. x dní x x dlaždiči vydláždí náměstí za 15 dní. Příklad 6. Na auto naložili 160 ocelových prutů, každý s hmotností 18 kg. Při další jízdě nakládali pruty s hmotností 12 kg. Kolik jich mohou naložit, má-li být celkový náklad stejný? Příklad 7. Na opravě mostu pracuje 9 dělníků. Oprava má podle plánu trvat 40 dní. Jak se musí změnit původní počet dělníků, aby byla oprava hotova o 10 dní dříve? 3 Výukový materiál pro předmět Matematika

4 Příklad 8. Čerpadlem o výkonu 25 litrů za sekundu se naplní nádrž za 1 hodinu a 12 minut. Za jak dlouho se naplní nádrž čerpadlem o výkonu 20 litrů za sekundu? Příklad 9. Eva vyšívá ubrus. Kdyby vyšívala denně tři čtvrtě hodiny, byla by hotová za 8 dní. Za kolik dní bude s vyšíváním hotová, bude-li denně vyšívat jen 20 minut? Příklad 10. Průměrná délka kroku Standy je 80 cm. Při přespolním běhu jich Standa napočítal Petr má krok 85 cm. Kolik kroků udělal Petr při přespolním běhu? Jak byla dlouhá trať závodu? Úlohy 1. 1) Rozhodněte, které z následujících dvojic veličin jsou přímo nebo nepřímo úměrné: a) spotřeba benzínu a doba jízdy automobilu b) délka strany čtverce a obsah čtverce c) rychlost letadla a doba letu mezi dvěma městy d) objem nádrže a doba, za kterou se nádrž čerpadlem naplní e) tlak vzduchu a nadmořská výška f) rozloha státu a počet obyvatel g) velikost poloměru a délka kružnice h) hmotnost jednoho jablka a počet jablek v 1 kg 2) Rozhodněte, které z následujících dvojic veličin jsou přímo nebo nepřímo úměrné: 1. proměnná 2. proměnná nemění se odpověď Počet lahví šťávy Částka za ně zaplacená Cena 1 lahve Délka strany kosočtverce Velikost výšky kosočtverce Obsah kosočtverce Objem válce Výška válce Obsah podstavy Průměrná rychlost auta Doba jízdy z A do B Vzdálenost míst A a B Počet soustruhů Počet hotových výrobků Výkon soustruhu 4 Výukový materiál pro předmět Matematika

5 3) Na obdélníkový záhon s rozměry 8 m a 3 m bylo vysázeno 96 sazenic jahodníku. Kolik sazenic vysázíme na čtvercový záhon se stranou dlouhou 12 metrů? 4) Když traktorista použije pluh se 4 radlicemi, zorá lán za 48 hodin. Jak dlouho bude trvat orba, když použije pluh se šesti radlicemi? 5) Prázdná nádoba má hmotnost 4,6 kg. Naplněná olejem 26,68 kg. Kolik litrů oleje je v nádobě, když jeden litr oleje má hmotnost 920 gramů? 6) Na vůz se naložilo 46 beden s melouny a každá bedna vážila 13,8 kg. Kolik beden s melouny o hmotnosti 42,32 kg lze naložit na tento vůz, aby náklad zůstal stejný? 7) Bazén by se napustil třemi stejnými přívody za 52 hodiny. Po 20 hodinách byly přidány ještě další dva stejné přívody. Za kolik hodin celkem se bazén napustí? Procenta Procenta - způsob, jak vyjádřit část celku (setiny, tzn. zlomek) pomocí celého čísla. 1 1 % 0, Název pochází z italštiny, per cento znamená ze sta. Při počítání s procenty si musíme vždy ujasnit, co je základ (100 %)! Označení údajů v úlohách z - základ...100% p - počet procent (např. 33%...p 33) č - procentová část Řešení úloh s procenty a) pomocí 1 % z b) pomocí vzorce č p 100 c) pomocí trojčlenky Výpočet procentové části Cvičení 3. Vypočítejte 18 % z 1350 Kč. a) Řešení pomocí 1 %: 100 % Kč 1 %... 13,5 Kč 18 % 13, Kč z b) Řešení pomocí vzorce č p 100 z 1350 Kč, p 18, z 1350 č p Kč c) Řešení pomocí trojčlenky 100 % Kč 18 %. x Kč 5 Výukový materiál pro předmět Matematika

6 x x Kč % z 1350 Kč je 243 Kč. Příklad 11. Vypočítejte: 48 % ze % z % z % ze % z 350 Příklad 12. Žáci psali diktát, který obsahoval 80 slov. Helena napsala chybně 5 % slov, Olga a Jirka měli správně 90 % slov, Petr a Věra napsali správně 85 % slov. Kolik slov napsal správně každý z pěti žáků? Příklad 13. Z 800 žáků základní školy bylo 25 % vyznamenaných, 74,5 % prospělo a ostatní žáci neprospěli. Vypočítej, kolik žáků školy bylo s vyznamenáním, kolik prospělo a kolik neprospělo. Výpočet základu Cvičení 4. Vypočítejte základ, jestliže platí 18 % 864. a) Řešení pomocí 1 %: 18 % % % Výukový materiál pro předmět Matematika

7 č b) Řešení pomocí vzorce z 100 p č 864 z p 18 c) Řešení pomocí trojčlenky Příklad % %...x x x Vypočítejte základ, jestliže platí: 0,86 % 0, % 201,6 112 % 43,568 Příklad 15. Rodina Novákova platí měsíčně za byt Kč, což je 12 % jejich příjmů za měsíc. Rodina Polákova platí stejné nájemné, které představuje 16 % jejich měsíčních příjmů. Vypočítejte měsíční příjem každé rodiny. Příklad 16. Jaká byla původní cena televize, jestliže byla zlevněna o 10 % na 5400 Kč? Příklad 17. Sušením ztrácí podběl 70 % své hmotnosti. Kolik čerstvého podbělu musíme nasbírat, abychom získali 0,75 kg sušeného? 7 Výukový materiál pro předmět Matematika

8 Výpočet počtu procent Cvičení 5. Vypočítejte, kolik % je 24,36 z 58 a) Řešení pomocí 1 %: 100 % %... 0,58 p %... 24,36 b) Řešení pomocí vzorce č č p 100 z z 100 č 24,36 p z 58 c) Řešení pomocí trojčlenky 100 % p %... 24,36 p 24,36 24,36 p ,36 z 58 je 42 %. Příklad 18. Vypočítejte, kolik % je: 83 z z z 390 Příklad 19. V internátě je 65 žáků. Z toho je 40 chlapců a 25 děvčat. Kolik procent je chlapců a kolik děvčat? 8 Výukový materiál pro předmět Matematika

9 Příklad 20. Kolik procent bude činit odpad při výrobě těsnících podložek, budou-li se vyrábět ze čtvercových desek o délce strany a 20 cm. Podložka má tvar kruhu s průměrem 50 mm. Uvažte, kolik těsnících podložek je možné vyrobit z jedné desky. Příklad 21. Při střelbě trestných hodů v košíkové dosáhlo první družstvo 39 bodů z 68 hodů. Druhé družstvo dosáhlo z 89 hodů celkem 46 bodů. Které družstvo bylo úspěšnější? Příklad 22. Vyjádřete v procentech: a) b) c) d) e) f) h) i) j) k) l) m) Příklad 23. Vypočítejte zpaměti: a) 25 % z 60 b) 30 % z 20 c) 20 % z 50 d) 50 % z 15 e) 75 % 40 f) 80 % z 15 g) 120 % z 30 h) 150 % z 80 i) 300 % z 5 Příklad 24. Vypočítejte zpaměti 100%, když víte, že: 1 % je % 7 % je % 20 % je % 25 % je % 15 % je % 50 % je % 9 Výukový materiál pro předmět Matematika

10 Příklad 25. Vypočítejte zpaměti, kolik procent je: 50 ze 100 p 200 z 800 p 13 ze 13 p 150 z 1500 p 1 z 5 p 45 z 5 p Příklad 26. Z 1800 kusů žárovek je 21 vadných. Kolik procent žárovek je kvalitních? Příklad 27. Určete hmotnost soli kuchyňské v 1,2 kg patnáctiprocentního vodného roztoku. Úlohy 2. 1) Bronz je slitina cínu a mědi. Mědi je 85 %, zbytek je cín. Kolik bronzu vyrobíme z 51 kg mědi? Bude nám stačit 8 kg cínu? 2) Výroba televizorů vzrostla z 3500 ks na 4200 kusů. O kolik % se výroba zvýšila? 3) Každý pracovní den byla oseta 8 1 pole. Kolik procent pole zbývá o víkendu oset? 4) Za hodinu natře natěrač 5 metrů pletiva. Kolik metrů měří plot, jestliže za 6 hodin natřel 25 % plotu? 5) Martin, Radim a Michal si rozdělili zisk ze společného podniku. Radim dostal 35 %, Martin 0,45 zbytku. Kolik dostal každý, byl-li celkový zisk Kč? 6) Číslo 72 zvětšete o 25 %. O kolik procent budete muset číslo, které vyšlo zmenšit, aby opět vyšlo číslo 72? 7) Žáci šestých tříd sbírali léčivé rostliny. Každá třída slíbila nasbírat nejméně 5 kg bylin. Třída 6.A závazek překročila o 5 2, 6.B splnila na 140 % a 6.C nasbírala o 2 kg více. Jaké bylo pořadí tříd? Kolik bylin celkem třídy nasbíraly? 8) V cukrárně vyrobili o 35 % šlehačky méně než měli, takže ozdobili pouze 130 zákusků. Kolik zákusků měli ozdobit původně? 10 Výukový materiál pro předmět Matematika

11 9) 12 7 elektrické energie bylo vyrobeno v tepelných elektrárnách, 5 1 ve vodních elektrárnách, zbytek v atomových elektrárnách. Kolik % energie bylo vyrobeno v atomových elektrárnách? 10) Zahradnictví má připravit 6000 ks sazenic rajčat pro drobný prodej. Klíčivost semen je 80 %, množství uhynulých rostlin z vyklíčených je 15 %. Kolik semen musí v zahradnictví zasít, aby mohli zajistit dodávku 6000 ks rostlin? 11) Zboží s původní cenou 568 Kč bylo třikrát po sobě zlevněno. Poprvé o 12 %, podruhé o 5 % a naposledy o 25 % z novější ceny. Jaká byla konečná cena zboží a o kolik % bylo zboží zlevněno celkem? 12) Ve firmě mají celkový stav zásob v hodnotě Kč tj. 125 % normované výše. Jaké jsou nadnormativní zásoby v Kč? 13) 5,5 kg bílé barvy bylo určeno k natření plochy o velikosti 25 m 2. Natěrači však vystačila jen na 86 % plánované plochy. Kolik m 2 natěrač natřel? Kolik kg barvy ještě potřebuje, aby práci dokončil? Jednoduché úrokování Základní pojmy K jistina, kapitál (půjčená nebo uložená částka) p úroková sazba t úrokovací doba (doba uložení kapitálu, doba zapůjčení kapitálu) ú úrok (odměna věřiteli za to, že poskytl kapitál) Je-li úrokovací doba t kratší než úrokovací období jde o jednoduché úrokování. Je-li úrokovací doba t delší než úrokovací období jde o složené úrokování Úrokovací období p.a. úrokovací období 1rok p.q. úrokovací období 1čtvrtletí p.m. úrokovací období 1 měsíc Základní vztah jednoduchého úrokování: K ú p t K i t, kde 100 p i 100 Cvičení 6. Kolik Kč úroku zaplatí dlužník, který si na půl roku vypůjčil Kč při 12 % p.a.? ú 12 0, Za daných podmínek je úrok 1440 Kč. Cvičení 7. (důležité) Jak vysoký je úrok z úvěru Kč při 4 % p.a. za dobu od do ? a) výpočet úrokovací doby t: platí zde určité dohody: d t, kde d je počet dnů mezi a , Výukový materiál pro předmět Matematika

12 den změny je den splatnosti tj. nepočítá se 5. 3., ale počítá se nebo naopak den půjčky počítá se 5. 3., ale ne měsíc má 30 dní rok má 360 dní d b) výpočet úroku: ú , Dlužník zaplatí úrok 2678, 40 Kč. Příklad 28. Vypočítejte úroky: a) 6% p.a. z Kč ,-- od do b) 5% p.a. z Kč ,-- od do Cvičení 8. Dlužník zaplatil při 12% p.a. za 330 dnů úroky ve výši 2024 Kč. Jak vysokou měl půjčku? ú ú K i t K i t , Dlužník si vypůjčil Kč. Cvičení 9. Jakou částku jsme uložili na účet úročený 12% p.a., jestliže za 130 dní byl zůstatek na účtu včetně úroků Kč? K K + ú K + K i t K ( 1 + i t) K K 1+ i t K , Na účet jsme vložili Kč. 12 Výukový materiál pro předmět Matematika

13 Příklad 29. Jak velká byla původní jistina, jestliže po připsání úroků při 9% p.a. byl na účtu po 96 dnech zůstatek Kč? Příklad 30. Jak velký byl připsaný úrok za 85 dní při 12% p.a., jestliže po připsání činila jistina Kč? Příklad 31. Vypočtěte, jak velká byla jistina, kolik Kč činil úrok, když podnik vyrovnal dluh a úroky částkou ,44 Kč při 8% p.a. Půjčka byla poskytnuta a splacena Příklad 32. Banka požaduje splacení půjčky Kč poskytnuté na 295 dnů. Současně uplatňuje nárok na úroky ve výši 3097,5 Kč. Vypočítejte roční úrokovou sazbu, při které byla půjčka poskytnuta. 13 Výukový materiál pro předmět Matematika

14 Úlohy 3. 1) Podnik zaplatil ,40 Kč úroků a splatil půjčku Kč půjčenou na 7,2% p.a. Kolik dnů měl podnik peníze půjčeny? 2) Stanovte roční úrokovou míru, při které poskytne jistina Kč za 55 dní 158,4 Kč úroku. 3) Kolik dní byl úročen vklad 2700 Kč, který při 4% p.a. přinesl úrok 26,70 Kč? 14 Výukový materiál pro předmět Matematika

Přímá a nepřímá úměrnost

Přímá a nepřímá úměrnost Přímá a ne - rovnice: y = k.x + c - graf: přímka - platí: čím víc, tím víc - př.: spotřeba benzínu motorovým vozidlem a vzdálenost, kterou vozidlo urazí při stejném výkonu ne k - rovnice: y c x - graf:

Více

7.1. Jistina, úroková míra, úroková doba, úrok

7.1. Jistina, úroková míra, úroková doba, úrok 7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina

Více

Slovní úlohy na procenta

Slovní úlohy na procenta Slovní úlohy na procenta 1. Krev činí v lidském těle přibližně 7,6 % hmotnosti těla. Kolik kg krve je v těle dospělého člověka, který má hmotnost 80 kg? Kolik procent hmotnosti bude činit krev v těle téhož

Více

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,

Více

Přímá nepřímá úměrnost Sbírka příkladů k procvičování

Přímá nepřímá úměrnost Sbírka příkladů k procvičování Přímá nepřímá úměrnost Sbírka příkladů k procvičování. 8 Trysek naplní bazén za 2 a půl hodiny. Za jak dlouho naplní bazén 5 trysek? 2. 24 zedníků vypije za den na stavbě 72 lahví nápoje. Kolik lahví by

Více

PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST PŘÍMÁ EPŘÍMÁ ÚMĚRNOST y kx, kde k je Pro kladné veličiny x, y, které jsou přímo úměrné, platí kladné číslo, které se nazývá koeficient přímé úměrnosti. Kolikrát se zvětší x, tolikrát se zvětší y. Kolikrát

Více

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,

Více

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč 2. Obnos 1080 Kč představuje základ z, ze kterého počítáme procentovou část č, odpovídající počtu procent p 3,5; vypočítanou procentovou část pak přičteme k základu. 1. způsob: z 1080 Kč p 103,5 č... Kč

Více

Slovní úlohy na poměr, PÚ a NÚ.

Slovní úlohy na poměr, PÚ a NÚ. Slovní úlohy na poměr, PÚ a NÚ. 1) Délky sousedních stran rovnoběžníku jsou v poměru 7:3. Kratší strana je dlouhá 4,2 cm. Vypočítej obvod rovnoběžníku. 2) V podniku na výrobu počítačů je zaměstnáno 540

Více

Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581. Datum: 7. 02. - 10. 2. 2012. Ročník: 7.

Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581. Datum: 7. 02. - 10. 2. 2012. Ročník: 7. Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581 Autor: Marie Smolíková Datum: 7. 02. - 10. 2. 2012 Ročník: 7. Vzdělávací oblast: Vzdělávací obor: Tematický okruh:

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila

Více

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.

Více

Variace. Poměr, trojčlenka

Variace. Poměr, trojčlenka Variace 1 Poměr, trojčlenka Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Poměr Poměr je matematický zápis

Více

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,... Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 1 Trojčlenka označuje postup při řešení úloh přímé

Více

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6. MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N

Více

Příklady k opakování učiva ZŠ

Příklady k opakování učiva ZŠ Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,

Více

2.5.15 Trojčlenka III

2.5.15 Trojčlenka III .5.15 Trojčlenka III Předpoklady: 0051 Př. 1: Doplň tabulku, která udává vzdálenost, kterou je možné ujít za různé doby velmi rychlou chůzi. Kolik kilometrů ujdeme touto rychlostí za 1 hodinu? doba chůze

Více

10a) Procenta, promile

10a) Procenta, promile 10a) Procenta, promile 1% (procento) je 1 setina základu Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část (č ).

Více

Slovní úlohy na lineární rovnici

Slovní úlohy na lineární rovnici Slovní úlohy na lineární rovnici Slovní úlohy je výhodné rozdělit na několik typů a určit nejsnadnější postup jejich řešení. Je vhodné označit v dané úloze jednu veličinu jako neznámou ( většinou tu, na

Více

PENÍZE, BANKY, FINANČNÍ TRHY

PENÍZE, BANKY, FINANČNÍ TRHY PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou

Více

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika její aplikace Vzdělávací obor Matematika

Více

1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka,

1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, 1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, Alena o 27 Kč méně než Jana. Celkem uspořily 453 Kč. Kolik

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

1 Umořovatel, umořovací plán, diskont směnky

1 Umořovatel, umořovací plán, diskont směnky 1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si

Více

MATEMATIKA 7. ročník II. pololetí

MATEMATIKA 7. ročník II. pololetí MATEMATIKA 7. ročník II. pololetí Racionální čísla A) Vypočítejte a výsledek zapište v základním tvaru popř. ve tvaru smíšeného čísla 5-7 - - 8 + 5 4 ( 9 7 + ) ( - 9 ) (- 0,) ( - ) + ( - 4 ) B) Vypočítejte

Více

Procenta. 100, tzn. desetinné číslo 0,45. Jméno pochází z per cento, znamenajícího na sto.

Procenta. 100, tzn. desetinné číslo 0,45. Jméno pochází z per cento, znamenajícího na sto. Procenta Procenta jsou způsobem, jak vyjádřit část celku (setiny, tzn. zlomek) pomocí celého čísla. Zápis např. 45% je ve skutečnosti jenom zkratkou pro zlomek 45 100, tzn. desetinné číslo 0,45. Jméno

Více

1.1.4 Poměry a úměrnosti I

1.1.4 Poměry a úměrnosti I 1.1.4 Poměry a úměrnosti I Předpoklady: základní početní operace Poznámka: Následující látka patří mezi nejdůležitější, probírané na základní škole. Bohužel patří také mezi ty, kde je nejvíce rozšířené

Více

01-8 Z 1500 vyrobených žárovek bylo 21 vadných. Kolik procent vyrobených žárovek bylo bez vady?

01-8 Z 1500 vyrobených žárovek bylo 21 vadných. Kolik procent vyrobených žárovek bylo bez vady? Příklady na 1. týden 01-1 Vypočtěte: a) 23 - [2,6 + (6-3 2 ) - 4,52] b) 3,5 2 + 2 [2,7 - (-0,5 + 0,3. 0,6)] 01-2 Vyjádřete v jednotkách uvedených v závorce: a) 4 g (kg) 325 km (m) b) 12 kg (g) 37,5 mm

Více

Jedná se o slovní úlohy s tématy běžného života. Žáci řeší slovní úlohy pomocí trojčlenky.

Jedná se o slovní úlohy s tématy běžného života. Žáci řeší slovní úlohy pomocí trojčlenky. Šablona č. I, sada č. 1 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Matematika a její aplikace Matematika a její aplikace Číslo a proměnná Přímá a nepřímá úměrnost Ročník 7. Materiál slouží

Více

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Složené úročení. Škoda, že to neudělal

Složené úročení. Škoda, že to neudělal Složené úročení Charakteristika (rozdíl oproti jednoduchému) Kdy je obecně užíváno Využití v praxi Síla složeného úročení Albert Einstein: Je to další div světa Složené úročení Složené úročení Kdyby Karel

Více

Finanční matematika I.

Finanční matematika I. Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené

Více

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem

Více

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M. Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Jak pracovat

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST 6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST Zde je třeba pečlivě nastudovat teorii, ohledně obou funkci, jejich znázorňování a Důležitou roli přirozeně hraje metoda trojčlenky, kterou je třeba

Více

EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost

EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 e-mail: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA

Více

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),

Více

Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému.

Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Úročení (spoření, střádání) (2015-01-18) Základní pojmy Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Věřitel (ten, kdo půjčil) získává tedy úrok za to, že dočasně poskytl

Více

Téma: Jednoduché úročení

Téma: Jednoduché úročení Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad

Více

Rovnice ve slovních úlohách

Rovnice ve slovních úlohách Rovnice ve slovních úlohách Při řešení slovních úloh postupujeme obvykle takto (matematizace): 1. V textu úlohy vyhledáme veličinu, která je neznámá, a její číselnou hodnotu označíme vhodným písmenem (

Více

MATEMATIKA jak naučit žáky požadovaným znalostem

MATEMATIKA jak naučit žáky požadovaným znalostem 17 30. DUBNA 2008 MATEMATIKA jak naučit žáky požadovaným znalostem Na pomoc učitelům základních škol V rámci systémového projektu Kvalita I, jednoho z projektů Evropského sociálního fondu, vydal Ústav

Více

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010 Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web

Více

2.5.17 Dvojitá trojčlenka

2.5.17 Dvojitá trojčlenka 2..1 Dvojitá trojčlenka Předpoklady: 020 Př. 1: Čerpadlo o výkonu 1, kw vyčerpá ze sklepa vodu za hodiny. Za jak dlouho by vodu ze sklepa vyčerpalo čerpadlo o výkonu 2,2 kw? Čím výkonnější čerpadlo, tím

Více

2.5.21 Nepřímá úměrnost III

2.5.21 Nepřímá úměrnost III .5.1 Nepřímá úměrnost III Předpoklady: 0050 Př. 1: Porovnej do dvou sloupců přímou a nepřímou úměrnost (předpis, základní vlastnost, postup při řešení příkladů,...). Přímá úměrnost Nepřímá úměrnost předpis

Více

Základní škola Kaplice, Školní 226

Základní škola Kaplice, Školní 226 Základní škola Kaplice, Školní 226 DUM VY_2_INOVACE_06MA autor: Michal Benda období vytvoření: 2011 ročník, pro který je vytvořen: 7 vzdělávací oblast: vzdělávací obor: tématický okruh: téma: Matematika

Více

MIŠ MAŠ. 38 PROCENTA procentová část 4.6.2014.notebook. May 18, 2015. Základní škola Nýrsko, Školní ulice, příspěvková organizace.

MIŠ MAŠ. 38 PROCENTA procentová část 4.6.2014.notebook. May 18, 2015. Základní škola Nýrsko, Školní ulice, příspěvková organizace. Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km.

odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km. Různé slovní úlohy 1. Turisté ušli za tři dny 45 km. Druhý den ušli dvakrát více než první den. Třetí den o pět km méně než druhý den. Kolik ušli turisté první, druhý a třetí den? zkouška: odpověď: Turisté

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 9. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní, 86 00 Praha 8 tel.: 0 fax: 0 0 e-mail: scio@scio.cz www.scio.cz

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

8 Leasing. 1 Co je to leasing? [online]. [cit. 09/2008] Dostupné z:

8 Leasing. <http://www.sfinance.cz/firmy-a-podnikani/informace/pruvodce/rozdeleni/> 1 Co je to leasing? [online]. [cit. 09/2008] Dostupné z: 8 Leasing Slovo "leasing" bylo převzato do české terminologie z anglického slova, které v překladu znamená "pronájem". Jedná se o obchodní operaci leasingového pronajímatele (leasingová společnost) a leasingového

Více

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6) Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015

Více

Úlohy k procvičení tematického celku Procenta

Úlohy k procvičení tematického celku Procenta Úlohy k procvičení tematického celku Procenta 1. Zlomkem a desetinným číslem vyjádřete: a) 3 % b) 17 % c) 145 % d) 0,14 % 2. Vypočítejte: a) 8 % z 80 b) 0,1 % ze 200 3. Určete, kolik procent je: a) 75

Více

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření

Více

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč.

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Kolik kusů tužek od každého druhu bylo koupeno? 16 ks dražších a 9

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý. DDÚ Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je m dlouhý. Na délce válce vůbec nezáleží, záleží na jeho obvodu, poloměr je 110 cm, vypočítám

Více

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob.

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob. Součástí oběžného majetku jsou: zásoby oběžný finanční majetek pohledávky Oběžný majetek Charakteristickým rysem oběžného majetku je jednorázová spotřeba, v procesu výroby mění svoji formu. Tato změna

Více

Sada 1 Matematika. 06. Finanční matematika - úvod

Sada 1 Matematika. 06. Finanční matematika - úvod S třední škola stavební Jihlava Sada 1 Matematika 06. Finanční matematika - úvod Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

Slovní úlohy s přirozenými čísly

Slovní úlohy s přirozenými čísly ARNP 1 2015 Př. 11 Slovní úlohy s přirozenými čísly Slovní úlohy s jednou operací Slovní úloha je úloha, ve které je popsána reálná situace (problém), který řešíme matematickými prostředky. Příklady cílů

Více

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění

Více

Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část ( č ).

Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část ( č ). 5. Procenta 5.. Vymezení pojmů Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část ( č ). Z těchto tří údaje dva známe

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

Výukový materiál zpracován v rámci operačního projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0512

Výukový materiál zpracován v rámci operačního projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. Matematika Trojčlenka

Více

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Základní pojmy od P do Z www.zlinskedumy.cz plat - mzda, kterou dostávají státní zaměstnanci promile jedna tisícina ze základu pohledávka právo věřitele na plnění určitého dluhu dlužníkem

Více

Základní škola Ruda nad Moravou. Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy

Základní škola Ruda nad Moravou. Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy Číslo mate riálu Datum Třída Téma hodiny Ověřený materiál - název Téma, charakteristika Autor Ověřil 1. 2.5. 2012 VI.B I. Sestavení

Více

1BMATEMATIKA. 0B9. třída

1BMATEMATIKA. 0B9. třída BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za

Více

Kapitola 2 Krátkodobý finanční majetek

Kapitola 2 Krátkodobý finanční majetek Kapitola 2 Krátkodobý finanční majetek SHRNUTÍ UČIVA O KRÁTKODOBÉM FINANČNÍM MAJETKU se účtuje ve druhé účtové třídě. Patří sem zejména peníze v pokladně, ceniny, bankovní účty a krátkodobé cenné papíry.

Více

4. Poměr a úměrnost 4.1. Poměr

4. Poměr a úměrnost 4.1. Poměr 4. Poměr a úměrnost 4.. Poměr 7. ročník -4. Poměr a úměrnost 4... Vymezení pojmu Poměr je vztah mezi dvěma veličinami, který nám vyjadřuje podíl mezi velikostmi těchto veličin. Z poměru můžeme také vyčíst

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/4.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_2_INOVACE_CH29_1_01 ŠVP Podnikání RVP 64-41-L/51

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Kapitola 2 Krátkodobý finanční majetek

Kapitola 2 Krátkodobý finanční majetek Kapitola 2 Krátkodobý finanční majetek SHRNUTÍ UČIVA O KRÁTKODOBÉM FINANČNÍM MAJETKU se účtuje ve druhé účtové třídě. Patří sem zejména peníze v pokladně, ceniny, bankovní účty a krátkodobé cenné papíry.

Více

2.5.12 Přímá úměrnost III

2.5.12 Přímá úměrnost III .5.1 Přímá úměrnost III Předpoklady: 00511 Př. 1: Narýsuj milimetrový papír grafy přímých úměrností. a) y = x b) y = x. U každé přímé úměrnosti si můžeme spočítat několik bodů (ve skutečnosti stačí jeden

Více

Mateřská škola a Základní škola při dětské léčebně, Křetín 12

Mateřská škola a Základní škola při dětské léčebně, Křetín 12 VY_32_INOVACE_DUM.M.18 Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Autor: Mgr. Miroslav Páteček Vytvořeno: červen 2012 Klíčová slova: Třída: Anotace: Matematika a její aplikace Racionální

Více

Sbírka úloh z matematiky. 6. - 9. ročník

Sbírka úloh z matematiky. 6. - 9. ročník Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Ekonomika podniku Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Struktura

Více

Majetek. MAJETEK členění v rozvaze. Dlouhodobý majetek

Majetek. MAJETEK členění v rozvaze. Dlouhodobý majetek Majetek Podnikání se bez majetku neobejde, různé druhy podnikání ovlivňují i skladbu a velikost majetku. Základem majetku jsou peníze, za které se nakupují potřebné majetkové části. Rozvaha (bilance) písemný

Více

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš

Více

OBJEM A POVRCH TĚLESA

OBJEM A POVRCH TĚLESA OBJEM A POVRCH TĚLESA 9. Objem tělesa (např. krychle, kvádr) je prostor, který těleso tvoří. Zjednodušeně řečeno vyjadřuje, kolik vody do uvedeného tělesa nalijete. Objem se počítá v metrech krychlových

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Ročník 6. Materiál slouží k osvojení a upevnění dovednosti výpočtu slovních úloh pomocí trojčlenky. Práce s textem.

Ročník 6. Materiál slouží k osvojení a upevnění dovednosti výpočtu slovních úloh pomocí trojčlenky. Práce s textem. Šablona č. I, sada č. 1 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Matematika a její aplikace Matematika a její aplikace Číslo a proměnná Procenta Ročník 6. Materiál slouží k osvojení a upevnění

Více

Šablona: III/2. Sada: VY_32_INOVACE_7IS

Šablona: III/2. Sada: VY_32_INOVACE_7IS Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_7IS Pořadové číslo: 11 Ověření ve výuce Třída: 8.A Datum: 14.10.2013 1 Procenta úroková míra Předmět: Ročník: Škola

Více

MATEMATIKA. základní úroveň obtížnosti DIDAKTICKÝ TEST MAGZD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! Didaktický test obsahuje 20 úloh.

MATEMATIKA. základní úroveň obtížnosti DIDAKTICKÝ TEST MAGZD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! Didaktický test obsahuje 20 úloh. MATEMATIKA základní úroveň obtížnosti MAGZD0C0T0 DIDAKTICKÝ TEST Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)

Více

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální. . Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace

Více

Úlohy na procvičení z matematiky před nástupem na SPŠST Panská

Úlohy na procvičení z matematiky před nástupem na SPŠST Panská Úlohy na procvičení z matematiky před nástupem na SPŠST Panská PROCENTA Kolik je 0 % ze? Určete základ, je-li 0 rovno % Kolik procent je 0 ze 7? Najděte číslo, které je o % větší, než číslo 0 Je zlomek

Více

S = 2. π. r ( r + v )

S = 2. π. r ( r + v ) horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má

Více

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ Gymnázium Jana Pivečky a Střední odborná škola Slavičín Ing. Jarmila Űberallová

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ Gymnázium Jana Pivečky a Střední odborná škola Slavičín Ing. Jarmila Űberallová Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748 Gymnázium Jana Pivečky a Střední odborná škola Slavičín Ing.

Více

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0 Seznámení se zlomky Pro lidi s krví Rh je riskantní cestovat do jiných částí světa, kde jsou zásoby krve Rh jen malé. Vybarvi podle hodnot uvedených v tabulce dané části. Ve kterých oblastech mají málo

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry

Více

1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota

1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota 1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny dva

Více