Matematika Postupnosti

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematika Postupnosti"

Transkript

1 Matematika 1-06 Postupnosti

2 Definícia: Nekonečnou postupnosťou reálnych čísel nazývame zobrazenie f: N R množiny prirodzených čísel N do množiny reálnych čísel R. Označenie: a n n=1 = a 1, a 2,, a n, Matematika

3 Spôsoby určenia postupnosti: Explicitne t. j. pomocou vyjadrenia člena a n postupnsti. Príklad: a n = n + 2 2n + 3 alebo n+2 2n+3 n=1 3 5, 4 7, 5 9, 6 11, 7 13,... Matematika

4 Matematika

5 Rekurentne t. j. vzorcom na výpočet člena a n pomocou člena a n 1 a zadaním člena a 1 Príklad: a n = 2a n 1 + 3, a 1 = 1 1, 5, 13, 29, 61,... Matematika

6 Opakovanie Definícia: Postupnosť sa nazýva aritmetická (AP) práve vtedy, keď rozdiel dvoch jej susedných členov je konštantný. Tento rozdiel sa nazýva diferencia a označovať ho budeme d. Vlastnosti AP a n+1 = a n + d, kde poznáme a 1 a n = a 1 + n 1 d pre dva ľubovoľné členy a r, a s AP platí: a r = a s + r s d pre súčet s n prvých n členov AP platí: s n = n 2 a 1 + a n Matematika

7 Opakovanie Definícia: Postupnosť sa nazýva geometrická (GP) práve vtedy, keď podiel dvoch jej susedných členov je konštantný. Tento podiel sa nazýva kvocient a označujeme ho q q 1. Vlastnosti GP a n+1 = a n. q, pričom poznáme a 1 a n = a 1 q n 1 pre dva ľubovoľné členy a r, a s GP platí: a r = a s q r s pre súčet s n prvých n členov GP platí: s n = a 1 q n 1 q 1, Matematika

8 Základné vlastnosti postupností Definícia: Postupnosť a n sa nazýva: a) rastúca, ak pre každé n N platí a n < a n+1, b) klesajúca, ak pre každé n N platí a n > a n+1, c) nerastúca, ak pre každé n N platí a n a n+1, d) neklesajúca, ak pre každé n N platí a n a n+1, Matematika

9 Definícia: Postupnosť a n n=1 sa nazýva: zhora ohraničená, ak existuje konštanta K, že pre každé n N platí a n K zdola ohraničená, ak existuje konštanta k, že pre každé n N platí a n k, ohraničená, ak je ohraničená zdola aj zhora. Matematika

10 Definícia: Nech je daná postupnosť a n n=1 a rastúca postupnosť prirodzených čísel k n n=1. Potom postupnosť a k1, a k2,, čiže nazývame vybranou postupnosťou z postupnosti a kn n=1 a n n=1. Matematika

11 Limita postupnosti Definícia: Budeme hovoriť, že číslo L je limitou postupnosti a n a písať lim a n = L ε > 0 n 0 N n N: n > n 0 a n L < ε. Definícia: Postupnosť, ktorá má limitu, sa nazýva konvergentná, ináč sa nazýva divergentná. Matematika

12 Základné vety o limite postupnosti a) Každá postupnosť má najviac jednu limitu b) Konvergentná postupnosť je ohraničená. c) Postupnosť vybraná z konvergentnej postupnosti a n n=1 je tiež konvergentná a má rovnakú limitu ako postupnosť a n n=1. Matematika

13 Veta: a) Ak postupnosť a n n=1 je neklesajúca a zhora ohraničená, potom je konvergentná. b) Ak postupnosť a n n=1 je nerastúca a zdola ohraničená, potom je konvergentná. Veta:(O limite troch postupností, o zovretí) Nech lim a n = A, lim c n = A a nech pre každé prirodzené číslo n platí a n b n c n. Potom aj lim b n = A Matematika

14 Veta: Ak lim a n = 0 a b n je ohraničená, potom lim a n. b n = 0. Veta: Nech lim a n = A, všetky jej členy platí a n < b n. lim b n = B. Ak A < B, tak pre skoro Veta: Nech lim a n = A, skoro všetky členy, tak A B. lim b n = B. Ak platí a n b n pre Matematika

15 Veta (o operáciách s limitami): Nech lim a n = A, lim b n = B. Potom platí: a) lim a n + b n = A + B b) lim a n b n = A B c) lim a n. b n = A. B d) lim c. a n = c. lim a n = c. A a e) lim n = A (za podmienky B 0, b b n B n 0) Matematika

16 Veta: (Bolzano-Weierstrass) Z každej ohraničenej postupnosti sa dá vybrať konvergentná postupnosť. Veta: (Bolzano-Cauchy) Postupnosť a n je konvergentná práve vtedy, keď spĺňa tzv. Bolzano-Cauchyovu podmienku ε > 0 p N n, m N: n > p m > p a n a m < ε. Matematika

17 Príklad: lim 1 n =0 1,2 a n =1/n 1 0,8 0,6 0,4 0, Matematika

18 Definícia: Nevlastná limita Budeme hovoriť, že postupnosť a n n=1 má nevlastnú limitu plus nekonečno a písať lim a n = práve vtedy, keď pre každé reálne číslo A existuje prirodzené číslo n 0 také, že pre všetky prirodzené n > n 0 platí a n > A. Definícia: Budeme hovoriť, že postupnosť a n má nevlastnú limitu mínus nekonečno a písať lim a n = práve vtedy, keď A R n 0 N n N: n > n 0 a n < A. Matematika

19 Veta: Nech lim a n = a postupnosť b n je ohraničená. Potom lim a n + b n =. Symbolické operácie pre + a : a) a + = + a = b) + = c) a = + a = d) = e) a. =. a =, pre a > 0 f) a. =. a =, pre a < 0 g). =,. = h). =. = a i) = a = 0 Matematika

20 Definícia: Limitu postupnosti a n = Eulerovo číslo t. j. lim n n označujeme e a nazývame n n = e 2, Matematika

21 Veta: Nech n N je a n 0 a lim lim a n a n = e. a n =. Potom Matematika

22 Dovidenia za týždeň Matematika

ČÍSELNÉ RADY. a n (1) n=1

ČÍSELNÉ RADY. a n (1) n=1 ČÍSELNÉ RADY Budeme sa zaoberať výrazmi, ktoré obsahujú nekonečne veľa sčítancov. Takéto výrazy budeme nazývať nekonečné rady. V nasledujúcom príklade je ilustrované, ako môže takýto výraz vzniknúť. Príklad.

Více

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

Limita funkcie. Čo rozumieme pod blížiť sa? y x. 2 lim 3

Limita funkcie. Čo rozumieme pod blížiť sa? y x. 2 lim 3 Limita funkcie y 2 2 1 1 2 1 y 2 2 1 lim 3 1 1 Čo rozumieme pod blížiť sa? Porovnanie funkcií y 2 2 1 1 y 2 1 2 2 1 lim 3 1 1 1-1+ Limita funkcie lim f b a Ak ku každému číslu, eistuje také okolie bodu

Více

Použitie grafického kalkulátora Casio ClassPad300 vo vyučovaní matematiky v tematickom celku POSTUPNOSTI

Použitie grafického kalkulátora Casio ClassPad300 vo vyučovaní matematiky v tematickom celku POSTUPNOSTI Použitie grafického kalkulátora Casio ClassPad300 vo vyučovaní matematiky v tematickom celku POSTUPNOSTI Martina Bestrová Abstrakt: Ako hovorí už samotný názov, článok sa zaoberá použitím grafického kalkulátora

Více

Funkcionální řady. January 13, 2016

Funkcionální řady. January 13, 2016 Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine

Více

Helena R ˇ ı hova (CˇVUT) Posloupnosti 5. rˇı jna / 17

Helena R ˇ ı hova (CˇVUT) Posloupnosti 5. rˇı jna / 17 Posloupnosti Helena Říhová FBMI 5. října 2012 Helena Říhová (ČVUT) Posloupnosti 5. října 2012 1 / 17 Obsah 1 Posloupnosti Definice, vlastnosti Vybraná, stacionární, oscilující, ohraničená posloupnost Monotónní

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Teória grafov. Stromy a kostry 1. časť

Teória grafov. Stromy a kostry 1. časť Teória grafov Stromy a kostry 1. časť Definícia: Graf G=(V, E) nazývame strom, ak neobsahuje kružnicu ako podgraf Definícia Strom T=(V, E T ) nazývame koreňový strom ak máme v ňom pevne vybraný vybraný

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Sada 1 Matematika. 04. Nekonečné řady

Sada 1 Matematika. 04. Nekonečné řady S třední škola stavební Jihlava Sada 1 Matematika 04. Nekonečné řady Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace a

Více

Jak to udělat, aby se vám na monitoru zobrazil náhled slidů s poznámkami a publiku jenom slidy?

Jak to udělat, aby se vám na monitoru zobrazil náhled slidů s poznámkami a publiku jenom slidy? BEAMER PREZENTÁCIA S VLASTNÝMI POZNÁMKAMI Otázka Jak to udělat, aby se vám na monitoru zobrazil náhled slidů s poznámkami a publiku jenom slidy? Návod PDF umí Acrobat JavaScript Ukážka Prezentáciu s vlastnými

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

XX. ročník BRKOS 2013/2014. Pomocný text

XX. ročník BRKOS 2013/2014. Pomocný text XX. ročník BRKOS 203/204 Pomocný text Nekonečná série V šesté, nekonečné sérii se budeme zabývat tím, jak se různé matematické objekty chovají, když jejich standardní, konečné pojetí rozšíříme na nekonečno.

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Numerické metódy matematiky I

Numerické metódy matematiky I Prednáška č. 4 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc Prednáška č. 4 OBSAH. Sústavy lineárnych rovníc 2. Priame metódy 3. Gaussova eliminačná metóda 4. Výber hlavného prvku 5.

Více

TVVP Matematika 2. Ročník 1. Časť ( Repáš, Jančiarová )

TVVP Matematika 2. Ročník 1. Časť ( Repáš, Jančiarová ) TVVP Matematika 2. Ročník 1. Časť ( Repáš, Jančiarová ) SEPTEMBER 1. Opakovanie z 1. ročníka 2. Opakovanie z 1. ročníka Veľké malé, viac menej, najviac najmenej, orientácia v priestore, na číselnom páse

Více

TEÓRIA. Matematické dôkazy - Opíšte základné druhy dôkazov - priamy, nepriamy, sporom a dokumentujte ich príkladmi.

TEÓRIA. Matematické dôkazy - Opíšte základné druhy dôkazov - priamy, nepriamy, sporom a dokumentujte ich príkladmi. TEÓRIA Množiny a operácie s nimi - Vysvetlite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, Vennove diagramy, disjunktné množiny, konečná a nekonečná množina,

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

Kombinatorická pravdepodobnosť (opakovanie)

Kombinatorická pravdepodobnosť (opakovanie) Kombinatorická pravdepodobnosť (opakovanie) Metódy riešenia úloh z pravdepodobnosti a štatistiky Cvičenie 1 Beáta Stehlíková, FMFI UK Bratislava www.iam.fmph.uniba.sk/institute/stehlikova Príklad 1: Zhody

Více

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 32131, 2N187 Názov predmetu : Teória grafov Typ predmetu : Povinne voliteľný Študijný odbor: Biomedicinske inžinierstvo, Telekomunikácie, Aplikovaná mechanika

Více

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Více

Užívateľská príručka systému CEHZ. Základné zostavy Farmy podľa druhu činnosti

Užívateľská príručka systému CEHZ. Základné zostavy Farmy podľa druhu činnosti Užívateľská príručka systému CEHZ Základné zostavy Farmy podľa druhu činnosti Užívateľská príručka systému CEHZ... 1 Základné zostavy Farmy podľa druhu činnosti... 1 1.1. Farmy podľa druhu činnosti...

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

Základy algoritmizácie a programovania

Základy algoritmizácie a programovania Základy algoritmizácie a programovania Pojem algoritmu Algoritmus základný elementárny pojem informatiky, je prepis, návod, realizáciou ktorého získame zo zadaných vstupných údajov požadované výsledky.

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

Množina a jej určenie, konečná a nekonečná množina

Množina a jej určenie, konečná a nekonečná množina Množina a jej určenie, konečná a nekonečná množina Pojem množina je jeden zo základných pojmov modernej matematiky. Pojem množiny nemožno definovať klasickým spôsobom. Približne možno povedať, že množina

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

PODPROGRAMY. Vyčlenenie podprogramu a jeho pomenovanie robíme v deklarácii programu a aktiváciu vykonáme volaním podprogramu.

PODPROGRAMY. Vyčlenenie podprogramu a jeho pomenovanie robíme v deklarácii programu a aktiváciu vykonáme volaním podprogramu. PODPROGRAMY Podprogram je relatívne samostatný čiastočný algoritmus (čiže časť programu, ktorý má vlastnosti malého programu a hlavný program ho môže volať) Spravidla ide o postup, ktorý bude v programe

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Návod na aplikáciu Mobile Pay pre Orange

Návod na aplikáciu Mobile Pay pre Orange Návod na aplikáciu Mobile Pay pre Orange Aktivácia bezkontaktných mobilných platieb Keď máte stiahnutú aplikáciu, môžete si aktivovať bezkontaktné mobilné platby. V menu uvítacej obrazovky zvoľte tlačidlo

Více

7. Relácia ekvivalencie a rozklad množiny

7. Relácia ekvivalencie a rozklad množiny 7 Relácia ekvivalencie a rozklad množiny V tejto časti sa budeme venovať špeciálnemu typu binárnych relácií na množine - reláciám ekvivalencie a ich súvisu s rozkladom množiny Relácia ekvivalencie na množine

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Matematika I Posloupnosti

Matematika I Posloupnosti Matematika I Posloupnosti RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Posloupnost Def. Nekoneènou posloupností reálných èísel

Více

Lineárne nerovnice, lineárna optimalizácia

Lineárne nerovnice, lineárna optimalizácia Opatrenie:. Premena tradičnej škol na modernú Gmnázium Jozefa Gregora Tajovského Lineárne nerovnice, lineárna optimalizácia V tomto tete sa budeme zaoberat najskôr grafickým znázornením riešenia sústav

Více

Finančné pásma na nákup potravín. Pre žiakov zo športových škôl a športových tried

Finančné pásma na nákup potravín. Pre žiakov zo športových škôl a športových tried Finančné pásma na nákup potravín Pre žiakov zo športových škôl a športových tried Legislatíva zákon NR SR č. 245/2008 Z. z. o výchove a vzdelávaní ( školský zákon ) 140 vyhláška MŠ SR č. 330/2009 Z. z.

Více

KOMBINATORICKÉ PRAVIDLO SÚČINU

KOMBINATORICKÉ PRAVIDLO SÚČINU KOMBINATORIKA MODERNÉ VZDELÁVANIE PRE VEDOMOSTNÚ SPOLOČNOSŤ/ PROJEKT JE SPOLUFINANCOVANÝ ZO ZDROJOV EÚ KÓD ITMS PROJEKTU: 26110130645 UČIŤ MODERNE, INOVATÍVNE, KREATÍVNE ZNAMENÁ OTVÁRAŤ BRÁNU DO SVETA

Více

TomTom Referenčná príručka

TomTom Referenčná príručka TomTom Referenčná príručka Obsah Rizikové zóny 3 Rizikové zóny vo Francúzsku... 3 Upozornenia na rizikové zóny... 3 Zmena spôsobu upozornenia... 4 tlačidlo Ohlásiť... 4 Nahlásenie novej rizikovej zóny

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

Naformátuj to. Naformátuj to. pre samoukov

Naformátuj to. Naformátuj to. pre samoukov Naformátuj to pre samoukov PREDHOVOR Publikácia je praktickou príručkou pre každého, kto hľadá jednoduché a ucelené vysvetlenie MS Word z oblasti formátovania dokumentu. Príručka obsahuje jednoduché a

Více

KOMISNÝ PREDAJ. Obr. 1

KOMISNÝ PREDAJ. Obr. 1 KOMISNÝ PREDAJ Komisný predaj sa realizuje na základe komisionárskej zmluvy, pričom ide v podstate o odložený predaj, kde práva k výrobku alebo tovaru prevedie dodávateľ (výrobca, komitent) na predajcu

Více

Vyhodnotenie potenciometrickej titračnej krivky - titrácia H 3 PO 4 s NaOH. V[cm 3 ] V[cm 3 ] ph ph 2 ph ph/ V 2 ph / V 2

Vyhodnotenie potenciometrickej titračnej krivky - titrácia H 3 PO 4 s NaOH. V[cm 3 ] V[cm 3 ] ph ph 2 ph ph/ V 2 ph / V 2 Vyhodnotenie potenciometrickej titračnej krivky - titrácia PO s NaO V[cm ] V[cm ] p p p p/ V p / V,,8,7,,,,,,,,,,8,,7,7 -, -,,87,,7,8,,78,,,,,,,,9,,,7,,7,8,,8,,,,,,9,7,,,87,,7,9,,,,,,,8 7,,,88 -, -,,7,,,,,9

Více

Cenový výmer č. 11/2015

Cenový výmer č. 11/2015 Cenový výmer č. 11/2015 Slovanet, a.s. Bratislava (ďalej len Slovanet alebo poskytovateľ ), v zmysle zákona č. 18/1996 Z.z. o cenách v znení neskorších právnych predpisov a vyhlášky č. 87/1996 Z.z., ktorou

Více

Microsoft Project CVIČENIE 6 1

Microsoft Project CVIČENIE 6 1 Microsoft Project CVIČENIE 6 1 Príprava na realizáciu samostatného projektu Študenti sa rozdelia do 4-členných skupín (a menej členov). Jedna skupina = jedno zadanie = jedna téma. V zápočtovom týždni (alebo

Více

Tematický výchovno vzdelávací plán Matematika

Tematický výchovno vzdelávací plán Matematika Tematický výchovno vzdelávací plán Matematika Vypracovaný podľa Štátneho vzdelávacieho programu ISCED 1 a Školského vzdelávacieho programu ŠTVORLÍSTOK, schválený MZ dňa 30.8.2012 Ročník: štvrtý Šk. rok

Více

Cenový výmer č. 14/2015

Cenový výmer č. 14/2015 Cenový výmer č. 14/2015 Slovanet, a.s. Bratislava (ďalej len Slovanet alebo poskytovateľ ), v zmysle zákona č. 18/1996 Z.z. o cenách v znení neskorších právnych predpisov a vyhlášky č. 87/1996 Z.z., ktorou

Více

MOCNINY A ODMOCNINY Eva Zummerová

MOCNINY A ODMOCNINY Eva Zummerová MOCNINY A ODMOCNINY Eva Zummerová . Mocniny s prirodzeným exponentom Zápis a n (čítame a na n-tú ), kde a R, n N a platí : a n = a.a...a n činiteľov sa nazýva n-tá mocnina čísla a. Číslo a sa nazýva základ

Více

Postup inštalácie aplikácie Blackberry Connect pre Sony Ericsson P990.

Postup inštalácie aplikácie Blackberry Connect pre Sony Ericsson P990. Postup inštalácie aplikácie Blackberry Connect pre Sony Ericsson P990. Tento manuál vám pomôže správne nastaviť mobilný telefón Sony Ericsson P990 na používanie služby BlackBerry prostredníctvom aplikácie

Více

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 2B001 Názov predmetu : Matematika I. Typ predmetu : Povinný Študijný odbor: Všetky odbory bakalárskeho štúdia SjF Zameranie: Ročník : 1. Semester : zimný Počet

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY STŘEDNÍ P RŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 22 TEMATICKÝ PLÁN VÝUKY Studijní 78 42 - M/01 Technické Zaměření: obor: lyceum Předmět: Matematika MAT Ročník: Počet hodin týdně: 4 3. Počet hodin celkem:

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Verifikácia a falzifikácia

Verifikácia a falzifikácia Hypotézy Hypotézy - výskumný predpoklad Prečo musí mať výskum hypotézu? Hypotéza obsahuje vlastnosti, ktoré výskumná otázka nemá. Je operatívnejšia, núti výskumníka odpovedať priamo: áno, alebo nie. V

Více

NEVLASTNÁ VODIVOSŤ POLOVODIČOVÉHO MATERIÁLU TYPU P

NEVLASTNÁ VODIVOSŤ POLOVODIČOVÉHO MATERIÁLU TYPU P NEVLASTNÁ VODIVOSŤ POLOVODIČOVÉHO MATERIÁLU TYPU P 1. VLASTNÉ POLOVODIČE Vlastnými polovodičmi nazývame polovodiče chemicky čisté, bez prímesí iných prvkov. V súčasnosti je najpoužívanejším polovodičovým

Více

Model epidemickej choroby (SIR model)

Model epidemickej choroby (SIR model) Slovenská technická univerzita v Bratislave Fakulta elektrotechniky a informatiky Katedra matematiky Študentská Vedecká a Odborná Činnosť Model epidemickej choroby (SIR model) autor: konzultant: Pavol

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Vzorcem pro n-tý člen posloupnosti, např.:, Rekurentně zadáním prvního členu a rekurentního vzorce, který vyjadřuje, např.: výčtem prvků graficky

Vzorcem pro n-tý člen posloupnosti, např.:, Rekurentně zadáním prvního členu a rekurentního vzorce, který vyjadřuje, např.: výčtem prvků graficky Posloupnosti Motivace Víš, jaký bude následující člen v řadách 2, 4, 6, 8,? a 2, 4, 8, 16,?? Urči součet řady Jak převedeš číslo na zlomek? 1 Definice posloupnosti Posloupnost je funkce. Definiční obor

Více

Katolícka univerzita v Ružomberku Pedagogická fakulta Katedra matematiky. Diferenciálny počet očami G. W. Leibnitza

Katolícka univerzita v Ružomberku Pedagogická fakulta Katedra matematiky. Diferenciálny počet očami G. W. Leibnitza Katolícka univerzita v Ružomberku Pedagogická fakulta Katedra matematiky Diferenciálny počet očami G. W. Leibnitza História matematiky Mária Šuvadová 4. roč. MAT INF Niečo na úvod V rôznych knihách matematiky

Více

Kompenzačný plán. ( Región Európa ) Platný od Úprava PV/BV pri všetkých súčasných produktoch. Cena produktov bude zachovaná.

Kompenzačný plán. ( Región Európa ) Platný od Úprava PV/BV pri všetkých súčasných produktoch. Cena produktov bude zachovaná. Kompenzačný plán ( Región Európa ) Platný od 27. 6. 2017 Úprava PV/BV pri všetkých súčasných produktoch. Cena produktov bude zachovaná. 1 7 Bonusov a kategórií Vstupné predaje 70% 60% 01 04 02 Development

Více

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ 64 1 TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ OBLASŤ PRIJATIA A ZAMIETNUTIA HYPOTÉZY PRI TESTOVANÍ CHYBY I. A II. DRUHU Chyba I. druhu sa vyskytne vtedy, ak je hypotéza správna, ale napriek tomu je zamietnutá,

Více

GEOMETRICKÝ PLÁN AKO TECHNICKÝ PODKLAD NA SPISOVANIE PRÁVNYCH LISTÍN

GEOMETRICKÝ PLÁN AKO TECHNICKÝ PODKLAD NA SPISOVANIE PRÁVNYCH LISTÍN GEOMETRICKÝ PLÁN AKO TECHNICKÝ PODKLAD NA SPISOVANIE PRÁVNYCH LISTÍN Ing. Ingrid Šuppová ÚGKK SR Prednáškový seriál odborníkov ÚGKK SR v rámci blokovej výučby študentov končiacich ročníkov I. a II. stupňa

Více

Přednáška 6, 7. listopadu 2014

Přednáška 6, 7. listopadu 2014 Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující

Více

Hromadná korešpondencia v programe Word Lektor: Ing. Jaroslav Mišovych

Hromadná korešpondencia v programe Word Lektor: Ing. Jaroslav Mišovych Hromadná korešpondencia v programe Word 2010 Lektor: Ing. Jaroslav Mišovych Obsah Čo je hromadná korešpondencia Spustenie hromadnej korešpondencie Nastavenie menoviek Pripojenie menoviek k zoznamu adries

Více

NOVÝ POMOCNÍK Z MATEMATIKY 9, 1.časť

NOVÝ POMOCNÍK Z MATEMATIKY 9, 1.časť Tematický výchovno-vzdelávací plán k pracovnému zošitu NOVÝ POMOCNÍK Z MATEMATIKY 9, 1.časť Stupeň vzdelávania: ISCED 2 - nižšie sekundárne vzdelávanie Vzdelávacia oblasť: Matematika a práca s informáciami

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Popis kontrol vykonávaných pri OVEROVANÍ zúčtovacích dávok na Elektronickej pobočke

Popis kontrol vykonávaných pri OVEROVANÍ zúčtovacích dávok na Elektronickej pobočke Popis kontrol vykonávaných pri OVEROVANÍ zúčtovacích dávok na Elektronickej pobočke Všeobecne, platí pre každú kontrolu: Ak nie je status po overení údajov dávky Bez chýb zobrazí sa k danej chybe príslušný

Více

Reálné posloupnosti 1. Reálné posloupnosti

Reálné posloupnosti 1. Reálné posloupnosti Reálné posloupnosti Reálné posloupnosti Intervaly otevřený interval (a, b) = {x R, a < x < b}; polouzavřený interval (a, b = {x R, a < x b}; uzavřený interval a, b = {x R, a x b}; otevřený neomezený interval

Více

Súmernosti. Mgr. Zuzana Blašková, "Súmernosti" 7.ročník ZŠ. 7.ročník ZŠ. Zistili sme. Zistite, či je ľudská tvár súmerná

Súmernosti. Mgr. Zuzana Blašková, Súmernosti 7.ročník ZŠ. 7.ročník ZŠ. Zistili sme. Zistite, či je ľudská tvár súmerná Mgr. Zuzana Blašková, "úmernosti" 7.ročník ZŠ 1 úmernosti 7.ročník ZŠ Mgr. Zuzana Blašková 2 ZŠ taničná 13, Košice Osová súmernosť určenie základné rysovanie vlastnosti úlohy s riešeniami osovo súmerné

Více

Operačný systém Úvodná prednáška

Operačný systém Úvodná prednáška Operačný systém Úvodná prednáška Pohľad zvonka (z vyšších úrovní) Pohľad zvnútra Pojmy správy procesov Úlohy jednotlivých častí operačného systému Autor: Peter Tomcsányi, Niektoré práva vyhradené v zmysle

Více

Strojový kód, assembler, emulátor počítača

Strojový kód, assembler, emulátor počítača Strojový kód, assembler, emulátor počítača Návrh architektúry hypotetického procesora Strojový kód Assemblerový jazyk Programovanie v assemblerovom jazyku: Lineárny program Vetvenie Cyklus Emulátor počítača

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

Osoba podľa 8 zákona finančné limity, pravidlá a postupy platné od

Osoba podľa 8 zákona finančné limity, pravidlá a postupy platné od A. Právny rámec Osoba podľa 8 zákona finančné limity, pravidlá a postupy platné od 18. 4. 2016 Podľa 8 ods. 1 zákona č. 343/2015 Z. z. o verejnom obstarávaní a o zmene a doplnení niektorých zákonov v znení

Více

Šifrovanie, kódovanie, bit a byte, digitálne informácie. Kódovanie informácií v PC binárna (dvojková) číselná sústava

Šifrovanie, kódovanie, bit a byte, digitálne informácie. Kódovanie informácií v PC binárna (dvojková) číselná sústava Šifrovanie, kódovanie, bit a byte, digitálne informácie Šifry šifrovanie sa používa všade tam, kde treba utajiť obsah komunikácie. Existuje veľmi veľa metód na tajné šifrovanie (a protimetód na dešifrovanie).

Více

ŽIADOSŤ. o určenie lesného celku. v zmysle 39 ods. 3 zákona č. 326/2005 Z. z. o lesoch v znení neskorších predpisov. s názvom

ŽIADOSŤ. o určenie lesného celku. v zmysle 39 ods. 3 zákona č. 326/2005 Z. z. o lesoch v znení neskorších predpisov. s názvom ŽIADOSŤ o určenie lesného celku v zmysle 39 ods. 3 zákona č. 326/2005 Z. z. o lesoch v znení neskorších predpisov s názvom Lesný celok... s výmerou lesných pozemkov... ha (na 2 desatinné miesta) Por. č.

Více

Starogrécky filozof Demokritos ( pred n.l) Látky sú zložené z veľmi malých, ďalej nerozdeliteľných častíc - atómov

Starogrécky filozof Demokritos ( pred n.l) Látky sú zložené z veľmi malých, ďalej nerozdeliteľných častíc - atómov STAVBA ATÓMU Starogrécky filozof Demokritos (450-420 pred n.l) Látky sú zložené z veľmi malých, ďalej nerozdeliteľných častíc - atómov Starogrécky filozof Aristoteles (384-322 pred n.l) Látky možno neobmedzene

Více

TC Obsahový štandard - téma Výkonový štandard - výstup

TC Obsahový štandard - téma Výkonový štandard - výstup Mocniny a odmocniny, zápis veľkých čísel Finančná matemati ka UČEBNÉ OSNOVY DEVIATY ROČNÍK TC Obsahový štandard - téma Výkonový štandard - výstup Vklad, úrok, úroková miera Dane zvládnuť základné pojmy

Více

Matematika test. 1. Doplň do štvorčeka číslo tak, aby platila rovnosť: (a) 9 + = (b) : 12 = 720. (c) = 151. (d) : 11 = 75 :

Matematika test. 1. Doplň do štvorčeka číslo tak, aby platila rovnosť: (a) 9 + = (b) : 12 = 720. (c) = 151. (d) : 11 = 75 : GJH-Prima 1 2 3 4 5 6 7 8 9 10 11 12 13 Súčet Test-13 Matematika test Na tento papier sa nepodpisuj. Na vypracovanie tejto skúšky máš čas 20 minút. Test obsahuje 13 úloh a má 4 strany. Úlohy môžeš riešiť

Více

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3 VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady...... 2 1.2 Základnívlastnostiřad..... 3 2 Řady s nezápornými členy 3 2.1 Kritériakonvergenceadivergence...... 3 3 Řady absolutně

Více

Ministerstvo hospodárstva Slovenskej republiky

Ministerstvo hospodárstva Slovenskej republiky Ministerstvo hospodárstva Slovenskej republiky Riadiaci orgán pre Operačný program Konkurencieschopnosť a hospodársky rast vydáva INŠTRUKCIU K APLIKÁCII RÝCHLEHO TESTU IDENTIFIKÁCIE PODNIKU V ŤAŽKOSTIACH

Více

Paretova analýza Regulačný diagram Bodový diagram

Paretova analýza Regulačný diagram Bodový diagram Paretova analýza Regulačný diagram Bodový diagram Doc. Ing. Vladimír Konečný, PhD. Žilinská univerzita v Žiline 9-1 7 základných nástrojov MK Kontrolná tabuľka (kontrolný list) Histogram Diagram príčin

Více

Mechanická práca, energia a jej rôzne formy, výkon, premeny

Mechanická práca, energia a jej rôzne formy, výkon, premeny Vzdelávacia oblasť: Predmet: Ročník: Hodinová dotácia: Tematický celok: Človek a príroda Fyzika prvý 1 hodina týždenne Mechanická práca, energia Počet hodín v TC: 4 Obsahový štandard: rôznych foriem energie

Více

Úroveň strojového kódu procesor Intel Pentium. Adresovanie pamäte

Úroveň strojového kódu procesor Intel Pentium. Adresovanie pamäte Úroveň strojového kódu procesor Intel Pentium Pamäťový operand Adresovanie pamäte Priama nepriama a indexovaná adresa Práca s jednorozmerným poľom Praktické programovanie assemblerových funkcií Autor:

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

Paneurópska vysoká škola Fakulta psychológie. Smernica dekana č. 2/2015. Individuálny študijný plán

Paneurópska vysoká škola Fakulta psychológie. Smernica dekana č. 2/2015. Individuálny študijný plán Paneurópska vysoká škola Fakulta psychológie Smernica dekana č. 2/2015 Individuálny študijný plán Bratislava 2015 Článok 1 Úvodné ustanovenia 1) Smernica vychádza zo Študijného a skúšobného poriadku Paneurópskej

Více

Kataster. Kataster. Kataster Kataster Kataster. Kataster Kataster Kataster Kataster. Kataster

Kataster. Kataster. Kataster Kataster Kataster. Kataster Kataster Kataster Kataster. Kataster Kataster Kataster Kataster Kataster Kataster Kataster Kataster Kataster Kataster Kataster Platné legislatívne predpisy upravujúce vytyčovanie hraníc pozemkov Zákon NR SR č. 215/1995 Z. z. o geodézii a

Více

MEP ekonomika podniku učtovníctvo 1. časť Ekonomika podniku

MEP ekonomika podniku učtovníctvo 1. časť Ekonomika podniku MEP ekonomika podniku učtovníctvo 1. časť Ekonomika podniku (časť: úvod do podvojného účtovníctva) - kolobeh hospodárských prostriedkov, - súvaha, výsledovka, - účtovníctvo, účet, - podvojná sústava účtovníctva,súvzťažné

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

15. Nulové body a póly. Věta. Je-li funkce f : G holomorfní v oblasti G a f(z 0 ) 0 pro z 0 G, pak

15. Nulové body a póly. Věta. Je-li funkce f : G holomorfní v oblasti G a f(z 0 ) 0 pro z 0 G, pak 5. Nulové body a póly Věta. Je-li funkce f holomorfní v oblasti G C, a f(z 0 ) 0 pro bod z 0 G, pak existuje okolí U(z 0 ) bodu z 0 takové, že f(z) 0 pro z U(z 0 ). Definice: Je-li funkce f holomorfní

Více

Dell S2718H/S2718HX/S2718HN/ S2718NX Dell Display Manager Návod na obsluhu

Dell S2718H/S2718HX/S2718HN/ S2718NX Dell Display Manager Návod na obsluhu Dell S2718H/S2718HX/S2718HN/ S2718NX Dell Display Manager Návod na obsluhu Model: S2718H/S2718HX/S2718HN/S2718NX Regulačný model: S2718Hx/S2718Nx POZNÁMKA: POZNÁMKA označuje dôležité informácie, ktoré

Více

Pracovné prostredie MS EXCEL 2003.

Pracovné prostredie MS EXCEL 2003. Pracovné prostredie MS EXCEL 2003. Tabuľkové kalkulátory sú veľmi praktické aplikácie pre realizáciu výpočtov, grafických prezentácií údajov, ako aj pe prácu s rôznymi údajmi ako s bázou dát. Tieto programy

Více

MATURITA 2016 ZÁKLADNÉ INFORMÁCIE

MATURITA 2016 ZÁKLADNÉ INFORMÁCIE MATURITA 2016 ZÁKLADNÉ INFORMÁCIE Organizáciu MS upravuje zákon č. 245/2008 Z. z. o výchove a vzdelávaní (školský zákon) a o zmene a doplnení niektorých zákonov v znení neskorších predpisov a vyhláška

Více

Matematika test. Cesta trvala hodín a minút.

Matematika test. Cesta trvala hodín a minút. GJH-Prima Test-16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Súčet Matematika test Na tento papier sa nepodpisuj. Na vypracovanie tejto skúšky máš čas 20 minút. Test obsahuje 18 úloh a má 4 strany. Úlohy

Více

POSLOUPNOSTI. 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2

POSLOUPNOSTI. 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2 POSLOUPNOSTI 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2 n+1n, d) a n = n! n n 2. 2. Najděte předpis pro n-tý člen

Více

Metóda vetiev a hraníc (Branch and Bound Method)

Metóda vetiev a hraníc (Branch and Bound Method) Metóda vetiev a hraníc (Branch and Bound Method) na riešenie úloh celočíselného lineárneho programovania Úloha plánovania výroby s nedeliteľnosťami Podnikateľ vyrába a predáva zemiakové lupienky a hranolčeky

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více