TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ"

Transkript

1 TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ Gunnar Kűnzel, Mlosla Lnda Abstract V příspěku jsou uedeny analoge elčn a parametrů př transportu lhkost zorkem materálu e formě desky a elektrckém obodu. Uedená analoge umožňuje řešt staconární nestaconární ýměnu lhkost přes jednoduchou nebo složenou stěnu. Je ukázán přechod od úlohy šíření lhkost zolační desce s rozloženým parametry k úloze šíření lhkost se soustředěným parametry a na tomto základě je dán analytcký pops nestaconárních procesů šíření lhkost ploché desce. S použtím Laplaceoy transformace je možno získat přenosoé funkce, určující základní dynamcké charakterstcky ploché desky (stěny). Získané přenosoé funkce procesu šíření lhkost pak umožňují proést analýzu a syntézu systémů automatcké regulace lhkost prostředí MATLAB Smulnk. Úod V mezích platnost lneární teore jsou procesy přenosu lhkost analogcké procesům elektrckém obodu. Vzhledem k tomu, že teore elektrckých obodů je zkoumána mnohem hlouběj než procesy transportu lhkost a mnohé typy procesů četně nestaconárních jsou popsány analytcky, je možné na základě metody analoge použít analytcký pops elektrckých procesů. V tab. I. jsou uedeny tyto analoge. Materál a metody Staconární proces přenosu přes plochou ronoběžnou stěnu (desku). Př staconárním (ustáleném) procesu přenosu desce nedochází k akumulac předáané lhkost, (elektrckého napětí); na hrancích desky jsou zadány hodnoty koncentrace c (U). V elektrckém obodu podle Ohmoa zákona I U U ΔU () R R Obrázek a,b) Rozložení elektrckého napětí a koncentrace lhkost př staconárním procesu. Př přenosu lhkost a zadání tlaku odních par p, p na hrancích desky dostaneme I. Fcků zákon následujícím taru: p p p p p Δp q P. P. P. P. () b b b b

2 kde q hmotnostní tok lhkost [kg/s] P koefcent přenosu lhkost [s], b [m] tloušťka stěny, S [m ] plocha desky, p [Pa] tlak odních par čas τ [s] Tabulka Analoge elčn a parametrů přenosu lhkost a elektrckého obodu Vlhkost přenášená hmotnost lhkost M [kg] hmotnostní tok lhkost q [kg.s] q rozdíl tlaku odních par p [Pa] rozdíl koncentrace lhkost C [kg.m 3 ] C h. p dm dτ koefcent průnku (přenosu) lhkost P [s] dfuzní propustnost koefcent h [s.m - ] koefcent šíření lhkost tělese, materálu, zduchu koefcent dfuze D [m.s - ] P D h lhkostní odpor ploché desky R [m - s - ] R b b P. S h. D. S S [plocha] čas τ [s] Elektrcký obod přenášený náboj Q e [A.s] elektrcký proud I [A] dqe I dt rozdíl napětí U [V] U [V] měrná odost σ [Ω - m - ] [m - ] měrná objemoá kapacta C [F.m - 3 ] nebo měrná porchoá kapacta, zhledem k tomu, že náboje objemu jsou rozloženy na porchu σ [ m. s C ] elektrcký odpor ploché stěny b R σ. S [ Ω] b σ. S kde R [ Ω] b [m] tloušťka stěny, σ [Ω -.m - ] koefcent měrné elektrcké odost materálu stěny S [m ] plocha stěny. Př zadání koncentrace lhkost porchoých rstách s ohledem na ztah c h.p, dostaneme I. Fcků zákon e taru

3 P S c c c c Δc q.. D. D. D. h b b b b Zaedeme elčnu R, která se analog nazýá lhkostní odpor ploché desky [m - s - ] R b b P. S h. D. (3) S Proto platí na základě () a (3), že p q.r C q.r.h Měřcím přístroj je obtížné měřt koncentrac lhkost porchoé rstě, protože je podél tloušťky rozložena neronoměrně. Hodnotu c se daří změřt přímým metodam pouze pro materál, nacházející se ronoážném stau s okolním zduchem, u něhož máme hodnotu tlaku odních par p pro ronoážný sta koncentrace lhkost c hp. 3 Výsledky a dskuze Případ - Staconární přenos přes složenou paralelní stěnu (desku) V tomto případě procesu přenosu desce také nedochází akumulac lhkost, ale tok lhkost postupně prochází několka lhkostním (elektrckým) odpory. V elektrckém obodu je n ΔU U U 6 I. R I.( Rk + R + Rk + R + Rk ) kde R k, R k, R k, kontaktní odpory na hrancích a mez rstam desky [Ω] b R σ S. R b σ S. (4) Obrázek a) Rozložení elektrckého napětí př staconárním procesu přenosu elektřny přes složenou plochou desku. Obrázek b) Přenos tlaku odních par př staconárním procesu přenosu lhkost přes složenou plochou desku.

4 Př přenosu lhkost přes složenou stěnu (desku) na jejchž hrancích jsou zadány hodnoty tlaku odních par p, získáme dle analoge ronc: n Δp p p3 q. R q.( Rk + RIII + RIIIII + RIIIIV + R kiv kde R k I, R k IV lhkostní odpory na hrancích I, IV. [m - s - ] ) (5) R II III lhkostní odpor místě styku, R b IIIII p. ; S R b IIIIV p. jsou lhkostní odpory rste složené stěny (desky) [m - s - ] S Na obr. je styk mez rstam záměrně zobrazen zětšen příslušném místě. V reálných konstrukcích zduchoá mezera styku zásí na mnoha faktorech, např. na mkrogeometr hrančních porchů II a III. V případě, že mezeře chybí lepdlo nebo jná pená ložka mez porchy II a III- se zde bude nacházet malé množstí zduchu s tlakem odních par p. Vzhledem k tomu, že dfuze plynu (zduchu) probíhá as 5 8 x rychlej než e trdém tělese, tlak odních par u porchů II a III bude praktcky stejný, což je dět na obr. b. (úsek p -p ), To znamená, že místě styku mez rstam (za přítomnost malého množstí zduchu) nedochází k úbytku tlaku odních par př přenosu přes stěn hmotnostního toku q, tj. místě styku je lhkostní odpor praktcky roen nule (e sronání s lhkostním odpory pených částí složené desky). Proto R IIIII Ze stejných příčn jsou lhkostní odpory Rka RkIIIIV na hrancích I a IV také rony nule. (e sronání s RIII a R IIIIV ) Vzhledem k těmto zjednodušením platí Δp p p n b b q. R + q. (6) p. S p. S Pro přenos tlaku lboolné rstě pak platí na základě předchozí ronce že Δp Δp. R q. R (7) n R Př řešení úlohy přenosu lhkost přes složenou desku, na jejchž hrancích I a IV nejsou zadány tlaky p a p 3 odních par, ale koncentrace lhkost c I porchoé rstě I a c IV porchoé rstě IV pro složené desky z různých materálů nelze získat rozložení koncentrací podél tloušťky, protože koefcenty h a h jsou různé. Pro řešení takoé úlohy je třeba přejít od koncentrace na hrancích k tlakům odních par p dle ztahu c c p N a (8) h hm c, c N, koncentrace lhkost e zduchu, e rstě materálu a s yužtím ztahů (6), (7) najít rozložení tlaku a koncentrace. Přtom e stěnách z různých materálů zóně styku dochází ke změně koncentrace (z obr. 3).

5 Obrázek 3 Rozložení koncentrace př staconárním procesu přenosu lhkost přes složenou plochou desku (stěnu) Případ - Nestaconární ýměna lhkost tenké stěně a metodka řešení těchto úloh Analoge uedené tab. lze použít pro pops nestaconárních procesů. Nestaconární ýměnu lhkost mnohých prků aparatury je možno yšetřoat prním přblížení jako nestaconární ýměnu lhkost ploché desky (pohlcující lhkost) s okolním prostředím. Řešení dané úlohy probíhá podle následujících kroků: ) Je yšetřena dfuze lhkost ploché desce na základě klascké teore []; pro každou zónu desky (stěny) získané analytcké záslost koncentrace hmotnostního toku přenášené hmoty lhkost na čase, doolují určt lboolný z těchto parametrů. Ošem tyto analytcké záslost neyhoují pro nženýrské ýpočty an pro formulac teore řízení lhkost. ) Je proedeno přblížení (aproxmace) přesných záslostí s cílem jejch získání e formě modelů, hodných pro použtí teor systémů automatcké regulace. Je dána analýza shody přesných záslostí a přblžných modelů. 3) Je ukázán přechod od úlohy šíření lhkost s rozloženým parametry k úloze šíření lhkost se soustředěným parametry a na tomto základě je dán analytcký pops nestaconárních procesů šíření lhkost ploché desce. S použtím Laplaceoy transformace je možno získat přenosoé funkce, určující základní dynamcké charakterstcky ploché desky (stěny) 4) Získané přenosoé funkce procesu šíření lhkost pak umožňují proést analýzu a syntézu systémů automatcké regulace lhkost. Box s proudícím zduchem kolem aparatury Počáteční podmínky: objem zduchu boxu V, počáteční absolutní lhkost zduchu boxu a, aparatura untř boxu (obr. 4) zhledem k pohlcení lhkost je ekalentní ploché desce s plochou S, tloušťkou b, koefcentem dfuze lhkost D a koefcentem šíření lhkost materálu stěny h M.

6 Obrázek 4 Aparatura untř boxu s proudícím zduchem Obtékání se ede zduchem s objemoým tokem q a absolutní lhkostí a, přtom zduch boxu má koncentrac lhkost ronou a. Je třeba určt změnu absolutní lhkost zduchu záslost na čase boxu. Jestlže a < a, pak obtékání ede k ysušoání zduchu boxu a ysušoání aparatury. Jestlže a < a, dochází ke zlhčoání zduchu untř boxu zlhčení aparatury (např. př natékání lhkého zduchu zenku. Př obtékání (proudění) zduch do boxu postupuje přes stupní štěrbnu a ystupuje přes ýstupní štěrbnu. Př mísení zduchu se jeho lhkost mění a důsledku toho se mění lhkost aparatuře. Výsledkem šech těchto procesů bude postupná změna jak lhkost zduchu untř boxu, tak koncentrace lhkost e stěnách aparatury. Základní ronce procesu ýměny lhkost dostaneme př uažoané blanc lhkost e zduchu untř boxu. q. a dt + q dt q adt V da (9).. Na leé straně ronce předstauje prní člen množstí lhkost, postupující s obtékajícím zduchem, druhý člen množstí lhkost ystupující z aparatury př jejím sušení a třetí člen množstí lhkost, odcházející e ytékajícím toku zduchu, praá strana ronce popsuje změnu lhkost, obsažené objemu zduchu V. Z ronce 9 po transformac dostaneme q V da a + a () q q dt Zapíšeme ronc 9 Laplaceoých obrazech, přtom a konst., q konst. a V V +. q(. s. +. a s q q q Velčna q ( má tar hm hm. a s h h Ts q (. () h. R Ts + m b kde T je lhkostní časoá konstanta aparatury (ekalentní desky) D Zaedeme elčnu N q () V (3) kde N [s] časoá konstanta obtékání objemu př toku q obtékajícího zduchu

7 U ( a ( (4) sw ( kde [ T( a + ka ) + N a ] s a [ T( k + ) + N] + U ( N. T. a s + + (5). W ( NTs + s (6) k h. D. h M m (7) q. hm. R h q. b. h Známe-l přenos 4, proedeme zpětnou Laplaceou transformac a určíme orgnál τ ) U () W () U ( s ) s. Wʹ ( s. τ s. τ + e + e (8) U ( s ) s Wʹ ( s ) V úlohách obtékání budou parametry T, N a k ždy kladné, proto kořeny s, s budou ždy reálným záporným čísly. Tomu odpoídá τ ) jako součet dou klesajících exponencálních křek obr. 5 a obr. 6. t ,5.,3. τ ) 5,8. + 3,64. e + 6,39. e (9) t 4 4,8. 4,. τ ) 5,. + 6,9. ( e ) + 3,8. ( e ) () t t Obrázek 5 Záslost a (τ ) př obtékání boxu s aparaturou prní aranta. Obrázek 6 Záslost a (τ ) př obtékání boxu s aparaturou druhá aranta.

8 Čas τ r dosažení ronoážného stau lhkost tj. čas obtékání, průběhu kterého lhkost zduchu aparatury boxu bude ronoáze s lhkostí obtékaného zduchu a, yhouje ronc τ 3 r s () mn kde s mn -je nejmenší z kořenů s nebo s. S použtím blokoého schématu Laplaceoých obrazech sestaíme operátoroé formě ronce procesu ýměny lhkost př lboolném a a též a f (τ ). Výše uedená ronce je yšetřoána pouze pro a konst. Obr. 7. Blokoé schéma procesu obtékání zduchu boxu s aparaturou. S uažoáním nenuloé počáteční podmínky dostaneme: a ( + a ( ( + N Na () a c Ts h m hm.. a ) q hm. R Ts + s h h ( s (3) k q. R. h (4) a pak a (.( Ts + ) + N. T. as + k. T. a N. Ts + [ T( k + ) + N] s + + N. a Ronce 5 je obecnější než ronce, protože platí pro lboolné a (τ ) tedy pro lboolnou lhkost a konst., z ronce 5 obdržíme ronc 4. V blokoém schématu se yskytuje přenos W N ( (6) Ns + V tomto případě e struktuře podle obr. 7 máme časoé konstanty, mající l na dynamku změn a (τ ): -časoá konstanta T charakterzuje dfuz lhkost e stěně aparatury. -časoá konstanta N charakterzuje mísení obtékajícího zduchu se zduchem objemu V. V mnoha reálných úlohách je T >> N, proto takoých případech je možno l N zanedbat. (5) 4 Záěr V referátu je naznačena možnost použtí fyzkální analoge mez staconárním nestaconárním transportem lhkost e zorku daného materálu a mez jednoduchým elektrckým obodem. Tato analoge umožňuje formuloat a řešt staconární nestaconární přenos lhkost přes jednoduchou a složenou stěnu (desku). Pomocí uedené metodky je řešen problém absolutní lhkost

9 aparatury,umístěné boxu s proudícím zduchem. Výpočty byly proedeny prostředí MATLAB Smulnk. Získané přenosoé funkce Laplaceoě tranformac umožňují proést analýzu a systézu automatcké regulace lhkost. Poděkoání Poznatky prezentoané tomto článku byly získány př řešení grantu CIGA ČZU Praze č. 3; 3/33/33 Parametrcké hodnocení lhkostních lastností materálů. Lteratura [] IGUMNOV, N. I., Vlagoobmen prborach apparatach, Mašnostrojene, 4, Moska [] MANN, H., Využtí počítače př elektrotechnckých nárzích, SNTL/Alfa, 984, Praha [3] PAZOUREK, J., Smulace bologckých systémů, Grada, 99, Praha Ing. Gunnar Künzel, Česká zemědělská unerzta Praha, Techncká fakulta, katedra elektrotechnky a automatzace, Kamýcká 9, 65 Praha 6 Suchdol Ing. Mlosla Lnda, Česká zemědělská unerzta Praha, Techncká fakulta, katedra elektrotechnky a automatzace, Kamýcká 9, 65 Praha 6 Suchdol

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6)

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6) 1. Stavebn energetcké vlastnost budov Energetcké chování budov v zním období se v současné době hodnotí buď s pomocí průměrného součntele prostupu tepla nebo s pomocí měrné potřeby tepla na vytápění. 1.1.

Více

1. M ení místních ztrát na vodní trati

1. M ení místních ztrát na vodní trati 1. M ení místních ztrát na odní trati 1. M ení místních ztrát na odní trati 1.1. Úod P i proud ní tekutiny potrubí dochází liem její iskozity ke ztrátám energie. Na roných úsecích potrubních systém jsou

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Průběžná lokalizace a tvorba map pomocí smykem řízeného robotu

Průběžná lokalizace a tvorba map pomocí smykem řízeného robotu IADENIE MOBILNÝCH OBOOV Průběžná lokalzace a torba map pomocí smkem řízeného robotu omáš Neužl, Frantšek Buran Abstrakt V článku je ueden prncp algortmu pro lokalzac a torbu map pomocí moblního robotu.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GEODETICKÉ SÍTĚ MODUL 02 VYROVNÁNÍ GEODETICKÝCH SÍTÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GEODETICKÉ SÍTĚ MODUL 02 VYROVNÁNÍ GEODETICKÝCH SÍTÍ OKÉ ČENÍ ECHNICKÉ RNĚ FKL ENÍ GEODEICKÉ ÍĚ MODL RONÁNÍ GEODEICKÝCH ÍÍ DIJNÍ OPOR PRO DIJNÍ PROGRM KOMINONO FORMO DI Ladsla árta a Frantšek oukup rno 5 ree: únor 6 Obsah OH Úod...5. Cíle...5. Požadoané

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Fluidace Úvod: Úkol: Teoretický úvod:

Fluidace Úvod: Úkol: Teoretický úvod: Fluidace Úod: Fluidace je mechanická operace (hydro- nebo aeromechanická), při které se udržují tuhé částice e znosu tekuté (kapalné nebo plynné) fázi. Uplatňuje se energetice při spaloání uhlí, katalytických

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:

Více

Numerické výpočty ve světovém geodetickém referenčním systému 1984 (WGS84)

Numerické výpočty ve světovém geodetickém referenčním systému 1984 (WGS84) Numercké výpočty ve světovém geodetckém referenčním systému 984 (WGS84) prof. Mara Ivanovna Jurkna, DrSc. CNIIGAK, Moskva prof. Ing. Mloš Pck, DrSc. Geofyzkální ústav ČAV, Praha Vojenský geografcký obzor,

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů

Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: listopad 203 Klíčová slova: rezistor,

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 5

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 5 PŘEDNÁŠKA 5 π n * ρvk * d 4 n [ ] 6 d + s *0 v m [ mg] [ m] Metody stanovení jemnosti (délkové hmotnosti) vláken: Mikroskopická metoda s výpočtem jemnosti z průměru (tloušťky) vlákna u vláken kruhového

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5 Obsah Historický přehled 5 Plynný sta hmoty 8. Jednotky tlaku................ 8.. Použíané jednotky tlaku.......... 9.. Rozlišení oblastí akua podle tlaku...... 9. Staoá ronice................ 9.. Gay

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

Řešení Navierových-Stokesových rovnic metodou

Řešení Navierových-Stokesových rovnic metodou Řšní Navrovýc-Stoksovýc rovnc mtodou končnýc prvků Lbor Črmák prosnc 2009 Označní: Abstrakt Txt obsauj klasckou a varační formulac 2D-úloy nstlačtlnéo nstaconárnío proudění, pops prostorové dskrtzac mtodou

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava atedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 9. TRASFORMÁTORY. Princip činnosti ideálního transformátoru. Princip činnosti skutečného transformátoru 3. Pracovní

Více

Světlo elektromagnetické vlnění

Světlo elektromagnetické vlnění FYZIKA praconí sešit pro ekonomické lyceum Jiří Hlaáček, OA a VOŠ Příbram, 05 Sětlo elektromagnetické lnění Sětelné jey jsou známy od pradána. Ale až 9. století se podařilo íce proniknout k podstatě sětla

Více

Vlhký vzduch a jeho stav

Vlhký vzduch a jeho stav Vlhký vzduch a jeho stav Příklad 3 Teplota vlhkého vzduchu je t = 22 C a jeho měrná vlhkost je x = 13, 5 g kg 1 a entalpii sv Určete jeho relativní vlhkost Řešení Vyjdeme ze vztahu pro měrnou vlhkost nenasyceného

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Transformátor trojfázový

Transformátor trojfázový Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor

Více

Pracovní návod 1/5 www.expoz.cz

Pracovní návod 1/5 www.expoz.cz Pracovní návod 1/5 www.expoz.cz Fyzika úloha č. 14 Zatěžovací charakteristika zdroje Cíle Autor: Jan Sigl Změřit zatěžovací charakteristiku různých zdrojů stejnosměrného napětí. Porovnat je, určit elektromotorické

Více

Analýza chování servopohonů u systému CNC firmy Siemens

Analýza chování servopohonů u systému CNC firmy Siemens Analýza chování servopohonů u systému CNC frmy Semens Analyss and behavour of servo-drve system n CNC Semens Bc. Tomáš áčalík Dplomová práce 00 UTB ve Zlíně, Fakulta aplkované nformatky, 00 4 ABSTRAKT

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

Metody volby financování investičních projektů

Metody volby financování investičních projektů 7. meznárodní konference Fnanční řízení podnků a fnančních nsttucí Ostrava VŠB-T Ostrava konomcká fakulta katedra Fnancí 8. 9. září 00 Metody volby fnancování nvestčních projektů Dana Dluhošová Dagmar

Více

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření Časová hodnota peněz ve fnančním rozhodování podnku 1.1. Význam faktoru času a základní metody jeho vyjádření Fnanční rozhodování podnku je ovlvněno časem. Peněžní prostředky získané dnes mají větší hodnotu

Více

Základní definice el. veličin

Základní definice el. veličin Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický

Více

1.1 Usměrňovací dioda

1.1 Usměrňovací dioda 1.1 Usměrňovací dioda 1.1.1 Úkol: 1. Změřte VA charakteristiku usměrňovací diody a) pomocí osciloskopu b) pomocí soustavy RC 2000 2. Ověřte vlastnosti jednocestného usměrňovače a) bez filtračního kondenzátoru

Více

propustný směr maximální proud I F MAX [ma] 75 < 1... při I F = 10mA > 50... při I R = 1µA 60 < 0,4... při I F = 10mA > 60...

propustný směr maximální proud I F MAX [ma] 75 < 1... při I F = 10mA > 50... při I R = 1µA 60 < 0,4... při I F = 10mA > 60... Teoretický úvod Diody jsou polovodičové jednobrany s jedním přechodem PN. Dioda se vyznačuje tím, že nepropouští téměř žádný proud (je uzavřena) dokud napětí na ní nestoupne na hodnotu prahového napětí

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3 MĚŘENÍ Laboratorní cvičení z měření Měření na elektrických strojích - transformátor, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

194/2007 Sb. Vyhláška

194/2007 Sb. Vyhláška 194/2007 Sb. Vyhláška ze dne 17. července 2007, kterou se stanoví pravdla pro vytápění a dodávku teplé vody, měrné ukazatele spotřeby tepelné energe pro vytápění a pro přípravu teplé vody a požadavky na

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT. RNDr.František Pastuszek VODNÍ ZDROJE, a.s.

VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT. RNDr.František Pastuszek VODNÍ ZDROJE, a.s. VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT RNDr.František Pastuszek VODNÍ ZDROJE, a.s. EXPERT je soustavou kalkulátorů, které zjednodušují práci při zpracovávání hydrogeologických

Více

základní vzdělávání druhý stupeň

základní vzdělávání druhý stupeň Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Pavel Broža Datum 5. ledna. 2014 Ročník 8. a 9. Vzdělávací oblast Člověk a příroda Vzdělávací obor Fyzika Tematický okruh

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva Jiří Novák činnost technických poradců v oblasti stavebnictví květen 2006 Obsah Obsah...1 Zadavatel...2

Více

Anemometr s vyhřívanými senzory

Anemometr s vyhřívanými senzory Anemometr s vyhřívanými senzory Úvod: Přípravek anemometru je postaven na 0,5 m větrném tunelu, kde se na jedné straně nachází měřící část se senzory na straně druhé ventilátor s řízením. Na obr. 1 je

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva)

Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva) Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva) Byl sestaven zjednodušený matematický model pro dvojrozměrné (2D) simulace

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

Konverze kmitočtu Štěpán Matějka

Konverze kmitočtu Štěpán Matějka 1.Úvod teoretcký pops Konverze kmtočtu Štěpán Matějka Směšovač měnč kmtočtu je obvod, který přeměňuje vstupní sgnál s kmtočtem na výstupní sgnál o kmtočtu IF. Někdy bývá tento proces označován také jako

Více

Boltzmannův zákon. Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária Rakovská, mrakovska@ukf.sk. Praktický test teoretického zákona.

Boltzmannův zákon. Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária Rakovská, mrakovska@ukf.sk. Praktický test teoretického zákona. PROMOTE MSc POPIS TÉMATU FYZIKA 7 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Boltzmannův zákon Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

Vždy na Vaší straně. Uživatelská příručka. Thermolink P Thermolink RC

Vždy na Vaší straně. Uživatelská příručka. Thermolink P Thermolink RC Vždy na Vaší straně Užvatelská příručka Thermolnk P Thermolnk RC OBSAH ÚVOD 1 Základní dokumentace... 3 2 Označení CE... 3 INSTALACE 3 Instalace zařízení... 3 3.1 Seznam balení... 3 3.2 Uchycení... 3 4

Více

Školení CIUR termografie

Školení CIUR termografie Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie

Více

VLHKOST VE STŘEŠE JAKO ČASOVANÁ BOMBA

VLHKOST VE STŘEŠE JAKO ČASOVANÁ BOMBA VLHKOST VE STŘEŠE JAKO ČASOVANÁ BOMBA Petr Slanina Pro citování: Slanina, P. (2014). Vlhkost ve střeše jako časovaná bomba. In Zborník z bratislavského sympózia Strechy 2014 (pp. 42-48), Bratislava: STU

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Název společnosti: PUMPS-ING.BAKALÁR. Telefon: +421557895701 Fax: - Datum: - Pozice Počet Popis 1 MAGNA3 40-60 F. Výrobní č.

Název společnosti: PUMPS-ING.BAKALÁR. Telefon: +421557895701 Fax: - Datum: - Pozice Počet Popis 1 MAGNA3 40-60 F. Výrobní č. Pozice Počet Popis 1 MAGNA3 - F Výrobní č.: 97924267 Pozn.: obr. výrobku se může lišit od skuteč. výrobku MAGNA3 více než čerpadlo. Se svou bezkonkurenční účinností, obsáhlým výrobním programem, zabudovanými

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více