TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ

Rozměr: px
Začít zobrazení ze stránky:

Download "TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ"

Transkript

1 TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ Gunnar Kűnzel, Mlosla Lnda Abstract V příspěku jsou uedeny analoge elčn a parametrů př transportu lhkost zorkem materálu e formě desky a elektrckém obodu. Uedená analoge umožňuje řešt staconární nestaconární ýměnu lhkost přes jednoduchou nebo složenou stěnu. Je ukázán přechod od úlohy šíření lhkost zolační desce s rozloženým parametry k úloze šíření lhkost se soustředěným parametry a na tomto základě je dán analytcký pops nestaconárních procesů šíření lhkost ploché desce. S použtím Laplaceoy transformace je možno získat přenosoé funkce, určující základní dynamcké charakterstcky ploché desky (stěny). Získané přenosoé funkce procesu šíření lhkost pak umožňují proést analýzu a syntézu systémů automatcké regulace lhkost prostředí MATLAB Smulnk. Úod V mezích platnost lneární teore jsou procesy přenosu lhkost analogcké procesům elektrckém obodu. Vzhledem k tomu, že teore elektrckých obodů je zkoumána mnohem hlouběj než procesy transportu lhkost a mnohé typy procesů četně nestaconárních jsou popsány analytcky, je možné na základě metody analoge použít analytcký pops elektrckých procesů. V tab. I. jsou uedeny tyto analoge. Materál a metody Staconární proces přenosu přes plochou ronoběžnou stěnu (desku). Př staconárním (ustáleném) procesu přenosu desce nedochází k akumulac předáané lhkost, (elektrckého napětí); na hrancích desky jsou zadány hodnoty koncentrace c (U). V elektrckém obodu podle Ohmoa zákona I U U ΔU () R R Obrázek a,b) Rozložení elektrckého napětí a koncentrace lhkost př staconárním procesu. Př přenosu lhkost a zadání tlaku odních par p, p na hrancích desky dostaneme I. Fcků zákon následujícím taru: p p p p p Δp q P. P. P. P. () b b b b

2 kde q hmotnostní tok lhkost [kg/s] P koefcent přenosu lhkost [s], b [m] tloušťka stěny, S [m ] plocha desky, p [Pa] tlak odních par čas τ [s] Tabulka Analoge elčn a parametrů přenosu lhkost a elektrckého obodu Vlhkost přenášená hmotnost lhkost M [kg] hmotnostní tok lhkost q [kg.s] q rozdíl tlaku odních par p [Pa] rozdíl koncentrace lhkost C [kg.m 3 ] C h. p dm dτ koefcent průnku (přenosu) lhkost P [s] dfuzní propustnost koefcent h [s.m - ] koefcent šíření lhkost tělese, materálu, zduchu koefcent dfuze D [m.s - ] P D h lhkostní odpor ploché desky R [m - s - ] R b b P. S h. D. S S [plocha] čas τ [s] Elektrcký obod přenášený náboj Q e [A.s] elektrcký proud I [A] dqe I dt rozdíl napětí U [V] U [V] měrná odost σ [Ω - m - ] [m - ] měrná objemoá kapacta C [F.m - 3 ] nebo měrná porchoá kapacta, zhledem k tomu, že náboje objemu jsou rozloženy na porchu σ [ m. s C ] elektrcký odpor ploché stěny b R σ. S [ Ω] b σ. S kde R [ Ω] b [m] tloušťka stěny, σ [Ω -.m - ] koefcent měrné elektrcké odost materálu stěny S [m ] plocha stěny. Př zadání koncentrace lhkost porchoých rstách s ohledem na ztah c h.p, dostaneme I. Fcků zákon e taru

3 P S c c c c Δc q.. D. D. D. h b b b b Zaedeme elčnu R, která se analog nazýá lhkostní odpor ploché desky [m - s - ] R b b P. S h. D. (3) S Proto platí na základě () a (3), že p q.r C q.r.h Měřcím přístroj je obtížné měřt koncentrac lhkost porchoé rstě, protože je podél tloušťky rozložena neronoměrně. Hodnotu c se daří změřt přímým metodam pouze pro materál, nacházející se ronoážném stau s okolním zduchem, u něhož máme hodnotu tlaku odních par p pro ronoážný sta koncentrace lhkost c hp. 3 Výsledky a dskuze Případ - Staconární přenos přes složenou paralelní stěnu (desku) V tomto případě procesu přenosu desce také nedochází akumulac lhkost, ale tok lhkost postupně prochází několka lhkostním (elektrckým) odpory. V elektrckém obodu je n ΔU U U 6 I. R I.( Rk + R + Rk + R + Rk ) kde R k, R k, R k, kontaktní odpory na hrancích a mez rstam desky [Ω] b R σ S. R b σ S. (4) Obrázek a) Rozložení elektrckého napětí př staconárním procesu přenosu elektřny přes složenou plochou desku. Obrázek b) Přenos tlaku odních par př staconárním procesu přenosu lhkost přes složenou plochou desku.

4 Př přenosu lhkost přes složenou stěnu (desku) na jejchž hrancích jsou zadány hodnoty tlaku odních par p, získáme dle analoge ronc: n Δp p p3 q. R q.( Rk + RIII + RIIIII + RIIIIV + R kiv kde R k I, R k IV lhkostní odpory na hrancích I, IV. [m - s - ] ) (5) R II III lhkostní odpor místě styku, R b IIIII p. ; S R b IIIIV p. jsou lhkostní odpory rste složené stěny (desky) [m - s - ] S Na obr. je styk mez rstam záměrně zobrazen zětšen příslušném místě. V reálných konstrukcích zduchoá mezera styku zásí na mnoha faktorech, např. na mkrogeometr hrančních porchů II a III. V případě, že mezeře chybí lepdlo nebo jná pená ložka mez porchy II a III- se zde bude nacházet malé množstí zduchu s tlakem odních par p. Vzhledem k tomu, že dfuze plynu (zduchu) probíhá as 5 8 x rychlej než e trdém tělese, tlak odních par u porchů II a III bude praktcky stejný, což je dět na obr. b. (úsek p -p ), To znamená, že místě styku mez rstam (za přítomnost malého množstí zduchu) nedochází k úbytku tlaku odních par př přenosu přes stěn hmotnostního toku q, tj. místě styku je lhkostní odpor praktcky roen nule (e sronání s lhkostním odpory pených částí složené desky). Proto R IIIII Ze stejných příčn jsou lhkostní odpory Rka RkIIIIV na hrancích I a IV také rony nule. (e sronání s RIII a R IIIIV ) Vzhledem k těmto zjednodušením platí Δp p p n b b q. R + q. (6) p. S p. S Pro přenos tlaku lboolné rstě pak platí na základě předchozí ronce že Δp Δp. R q. R (7) n R Př řešení úlohy přenosu lhkost přes složenou desku, na jejchž hrancích I a IV nejsou zadány tlaky p a p 3 odních par, ale koncentrace lhkost c I porchoé rstě I a c IV porchoé rstě IV pro složené desky z různých materálů nelze získat rozložení koncentrací podél tloušťky, protože koefcenty h a h jsou různé. Pro řešení takoé úlohy je třeba přejít od koncentrace na hrancích k tlakům odních par p dle ztahu c c p N a (8) h hm c, c N, koncentrace lhkost e zduchu, e rstě materálu a s yužtím ztahů (6), (7) najít rozložení tlaku a koncentrace. Přtom e stěnách z různých materálů zóně styku dochází ke změně koncentrace (z obr. 3).

5 Obrázek 3 Rozložení koncentrace př staconárním procesu přenosu lhkost přes složenou plochou desku (stěnu) Případ - Nestaconární ýměna lhkost tenké stěně a metodka řešení těchto úloh Analoge uedené tab. lze použít pro pops nestaconárních procesů. Nestaconární ýměnu lhkost mnohých prků aparatury je možno yšetřoat prním přblížení jako nestaconární ýměnu lhkost ploché desky (pohlcující lhkost) s okolním prostředím. Řešení dané úlohy probíhá podle následujících kroků: ) Je yšetřena dfuze lhkost ploché desce na základě klascké teore []; pro každou zónu desky (stěny) získané analytcké záslost koncentrace hmotnostního toku přenášené hmoty lhkost na čase, doolují určt lboolný z těchto parametrů. Ošem tyto analytcké záslost neyhoují pro nženýrské ýpočty an pro formulac teore řízení lhkost. ) Je proedeno přblížení (aproxmace) přesných záslostí s cílem jejch získání e formě modelů, hodných pro použtí teor systémů automatcké regulace. Je dána analýza shody přesných záslostí a přblžných modelů. 3) Je ukázán přechod od úlohy šíření lhkost s rozloženým parametry k úloze šíření lhkost se soustředěným parametry a na tomto základě je dán analytcký pops nestaconárních procesů šíření lhkost ploché desce. S použtím Laplaceoy transformace je možno získat přenosoé funkce, určující základní dynamcké charakterstcky ploché desky (stěny) 4) Získané přenosoé funkce procesu šíření lhkost pak umožňují proést analýzu a syntézu systémů automatcké regulace lhkost. Box s proudícím zduchem kolem aparatury Počáteční podmínky: objem zduchu boxu V, počáteční absolutní lhkost zduchu boxu a, aparatura untř boxu (obr. 4) zhledem k pohlcení lhkost je ekalentní ploché desce s plochou S, tloušťkou b, koefcentem dfuze lhkost D a koefcentem šíření lhkost materálu stěny h M.

6 Obrázek 4 Aparatura untř boxu s proudícím zduchem Obtékání se ede zduchem s objemoým tokem q a absolutní lhkostí a, přtom zduch boxu má koncentrac lhkost ronou a. Je třeba určt změnu absolutní lhkost zduchu záslost na čase boxu. Jestlže a < a, pak obtékání ede k ysušoání zduchu boxu a ysušoání aparatury. Jestlže a < a, dochází ke zlhčoání zduchu untř boxu zlhčení aparatury (např. př natékání lhkého zduchu zenku. Př obtékání (proudění) zduch do boxu postupuje přes stupní štěrbnu a ystupuje přes ýstupní štěrbnu. Př mísení zduchu se jeho lhkost mění a důsledku toho se mění lhkost aparatuře. Výsledkem šech těchto procesů bude postupná změna jak lhkost zduchu untř boxu, tak koncentrace lhkost e stěnách aparatury. Základní ronce procesu ýměny lhkost dostaneme př uažoané blanc lhkost e zduchu untř boxu. q. a dt + q dt q adt V da (9).. Na leé straně ronce předstauje prní člen množstí lhkost, postupující s obtékajícím zduchem, druhý člen množstí lhkost ystupující z aparatury př jejím sušení a třetí člen množstí lhkost, odcházející e ytékajícím toku zduchu, praá strana ronce popsuje změnu lhkost, obsažené objemu zduchu V. Z ronce 9 po transformac dostaneme q V da a + a () q q dt Zapíšeme ronc 9 Laplaceoých obrazech, přtom a konst., q konst. a V V +. q(. s. +. a s q q q Velčna q ( má tar hm hm. a s h h Ts q (. () h. R Ts + m b kde T je lhkostní časoá konstanta aparatury (ekalentní desky) D Zaedeme elčnu N q () V (3) kde N [s] časoá konstanta obtékání objemu př toku q obtékajícího zduchu

7 U ( a ( (4) sw ( kde [ T( a + ka ) + N a ] s a [ T( k + ) + N] + U ( N. T. a s + + (5). W ( NTs + s (6) k h. D. h M m (7) q. hm. R h q. b. h Známe-l přenos 4, proedeme zpětnou Laplaceou transformac a určíme orgnál τ ) U () W () U ( s ) s. Wʹ ( s. τ s. τ + e + e (8) U ( s ) s Wʹ ( s ) V úlohách obtékání budou parametry T, N a k ždy kladné, proto kořeny s, s budou ždy reálným záporným čísly. Tomu odpoídá τ ) jako součet dou klesajících exponencálních křek obr. 5 a obr. 6. t ,5.,3. τ ) 5,8. + 3,64. e + 6,39. e (9) t 4 4,8. 4,. τ ) 5,. + 6,9. ( e ) + 3,8. ( e ) () t t Obrázek 5 Záslost a (τ ) př obtékání boxu s aparaturou prní aranta. Obrázek 6 Záslost a (τ ) př obtékání boxu s aparaturou druhá aranta.

8 Čas τ r dosažení ronoážného stau lhkost tj. čas obtékání, průběhu kterého lhkost zduchu aparatury boxu bude ronoáze s lhkostí obtékaného zduchu a, yhouje ronc τ 3 r s () mn kde s mn -je nejmenší z kořenů s nebo s. S použtím blokoého schématu Laplaceoých obrazech sestaíme operátoroé formě ronce procesu ýměny lhkost př lboolném a a též a f (τ ). Výše uedená ronce je yšetřoána pouze pro a konst. Obr. 7. Blokoé schéma procesu obtékání zduchu boxu s aparaturou. S uažoáním nenuloé počáteční podmínky dostaneme: a ( + a ( ( + N Na () a c Ts h m hm.. a ) q hm. R Ts + s h h ( s (3) k q. R. h (4) a pak a (.( Ts + ) + N. T. as + k. T. a N. Ts + [ T( k + ) + N] s + + N. a Ronce 5 je obecnější než ronce, protože platí pro lboolné a (τ ) tedy pro lboolnou lhkost a konst., z ronce 5 obdržíme ronc 4. V blokoém schématu se yskytuje přenos W N ( (6) Ns + V tomto případě e struktuře podle obr. 7 máme časoé konstanty, mající l na dynamku změn a (τ ): -časoá konstanta T charakterzuje dfuz lhkost e stěně aparatury. -časoá konstanta N charakterzuje mísení obtékajícího zduchu se zduchem objemu V. V mnoha reálných úlohách je T >> N, proto takoých případech je možno l N zanedbat. (5) 4 Záěr V referátu je naznačena možnost použtí fyzkální analoge mez staconárním nestaconárním transportem lhkost e zorku daného materálu a mez jednoduchým elektrckým obodem. Tato analoge umožňuje formuloat a řešt staconární nestaconární přenos lhkost přes jednoduchou a složenou stěnu (desku). Pomocí uedené metodky je řešen problém absolutní lhkost

9 aparatury,umístěné boxu s proudícím zduchem. Výpočty byly proedeny prostředí MATLAB Smulnk. Získané přenosoé funkce Laplaceoě tranformac umožňují proést analýzu a systézu automatcké regulace lhkost. Poděkoání Poznatky prezentoané tomto článku byly získány př řešení grantu CIGA ČZU Praze č. 3; 3/33/33 Parametrcké hodnocení lhkostních lastností materálů. Lteratura [] IGUMNOV, N. I., Vlagoobmen prborach apparatach, Mašnostrojene, 4, Moska [] MANN, H., Využtí počítače př elektrotechnckých nárzích, SNTL/Alfa, 984, Praha [3] PAZOUREK, J., Smulace bologckých systémů, Grada, 99, Praha Ing. Gunnar Künzel, Česká zemědělská unerzta Praha, Techncká fakulta, katedra elektrotechnky a automatzace, Kamýcká 9, 65 Praha 6 Suchdol Ing. Mlosla Lnda, Česká zemědělská unerzta Praha, Techncká fakulta, katedra elektrotechnky a automatzace, Kamýcká 9, 65 Praha 6 Suchdol

Elektrický proud Q 1 Q 2 Q 3

Elektrický proud Q 1 Q 2 Q 3 Elektrcký proud tomto odstac lastně jž opouštíme elektrostatcké pole, protože elčnu elektrcký proud zaádíme stuac, kdy elektrcké náboje prostoru nejsou nehybné, ale ykazují nějaký pohyb. íme jž, že jednou

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

VLIV SLUNEČNÍHO ZÁŘENÍ NA VĚTRANÉ STŘEŠNÍ KONSTRUKCE

VLIV SLUNEČNÍHO ZÁŘENÍ NA VĚTRANÉ STŘEŠNÍ KONSTRUKCE VLIV SLUNEČNÍHO ZÁŘENÍ N VĚTRNÉ STŘEŠNÍ KONSTRUKCE ZÁKLDNÍ PŘEDPOKLDY Konstrukce douplášťoých ětraných střech i fasád ke sé spráné funkci yžadují tralé ětrání, ale případě, že proedeme, zjistíme, že ne

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

DYNAMICKÝ MODEL TERMOSTATU S PEVNÝM TEPLONOSNÝM MEDIEM

DYNAMICKÝ MODEL TERMOSTATU S PEVNÝM TEPLONOSNÝM MEDIEM DYNAMICKÝ MODEL ERMOSAU S PEVNÝM EPLONOSNÝM MEDIEM Gunnar Kűnzel, Miloslav Linda Abstract V referátu je uvedena analýza sestavy maloobjemového termostatu s vysokým činitelem stabilizace. Uvažovaný thermostat

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

1.8.9 Bernoulliho rovnice

1.8.9 Bernoulliho rovnice 89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry TRANSPORT VODNÍ PÁRY PORÉZNÍM PROSTŘEDÍM: Ve vzduchu obsažená vodní pára samovolně difunduje do míst s nižším parciálním tlakem až

Více

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v A1B15EN kraty Příklad č. 1 V soustaě na obrázku je označeném místě trojfázoý zkrat. rčete: a) počáteční rázoý zkratoý proud b) počáteční rázoý zkratoý ýkon c) nárazoý proud Řešení: 1) olíme ztažný ýkon;

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert Numerické řešení 2D stlačitelného proudění s kondenzací Michal Seifert Úkoly diplomové práce Popsat matematické modely proudící tekutiny Popis numerických metod založených na metodě konečných objemů Porovnání

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

Laboratorní cvičení L4 : Stanovení modulu pružnosti

Laboratorní cvičení L4 : Stanovení modulu pružnosti Laboratorní cvčení L4 Laboratorní cvčení L4 : Stanovení modulu pružnost 1. Příprava Modul pružnost statcký a dynamcký (kap. 3.4.2., str. 72, str.36, 4) Měření statckého modulu pružnost (kap. 5.11.1, str.97-915,

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

Kinetická teorie plynů

Kinetická teorie plynů Kinetická teorie plynů 1 m 3 při tlaku 10 5 Pa teplotě o C obsahuje.,5 x 10 5 molekul při tlaku 10-7 Pa teplotě o C obsahuje.,5 x 10 13 molekul p>100 Pa makroskopické choání, plyn se posuzuje jako hmota

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry Transport vodní páry porézním prostředím: Tepelná vodivost vzduchu: = 0,0262 W m -1 K -1 Tepelná vodivost izolantů: = cca 0,04 W

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

Popis měřeného předmětu: Zde bude uvedeno - základní parametry diod - zapojení pouzdra diod - VA charakteristika diod z katalogového listu

Popis měřeného předmětu: Zde bude uvedeno - základní parametry diod - zapojení pouzdra diod - VA charakteristika diod z katalogového listu Laboratorní cvičení č.8 Název: Měření A charakteristiky diod Zadání: Změřte voltampérovou charakteristiku usměrňovací diody (v propustném a závěrném směru), zenerovy diody ( v závěrném směru)a led diody

Více

1. M ení místních ztrát na vodní trati

1. M ení místních ztrát na vodní trati 1. M ení místních ztrát na odní trati 1. M ení místních ztrát na odní trati 1.1. Úod P i proud ní tekutiny potrubí dochází liem její iskozity ke ztrátám energie. Na roných úsecích potrubních systém jsou

Více

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ DYNAMICKÉ MODUY PRUŽNOSTI NÁVOD DO CVIČNÍ D BI0 Zkušebnctví a technologe Ústav stavebního zkušebnctví, FAST, VUT v Brně 1. STANOVNÍ DYNAMICKÉHO MODUU PRUŽNOSTI UTRAZVUKOVOU IMPUZOVOU MTODOU [ČSN 73 1371]

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB -TU Ostrava PŘEHODOVÝ DĚJ VE STEJNOSMĚNÉM EL. OBVODU zapnutí a vypnutí sériového členu ke zdroji stejnosměrného napětí Návod do

Více

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

Měření vlastností stejnosměrných tranzistorových zesilovačů

Měření vlastností stejnosměrných tranzistorových zesilovačů ysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. 6 Měření vlastností stejnosměrných tranzistorových zesilovačů Datum měření:

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

Základy vakuové techniky

Základy vakuové techniky Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní

Více

Hydraulické odpory třecí odpory místní odpory třecí odpory laminární proudění turbulentní proudění

Hydraulické odpory třecí odpory místní odpory třecí odpory laminární proudění turbulentní proudění Hyrauické oory Při rouění reáných tekutin znikají násekem iskozity hyrauické oory, tj. síy, které ůsobí roti ohybu částic tekutiny. Hyrauický oor ři rouění zniká zájemným třením částic rouící tekutiny

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

2.6. Vedení pro střídavý proud

2.6. Vedení pro střídavý proud 2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

1. Okrajové podmínky pro tepeln technické výpo ty

1. Okrajové podmínky pro tepeln technické výpo ty 1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t Dilatae času 1 Na kosmiké lodi zdalujíí se od Země ryhlostí,1 probíhal určitý děj, který podle měření účastníků letu tral jednu hodinu Jak dlouho trá tento děj pro pozoroatele na Zemi? Je možné, aby děj

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Výpočtové nadstavby pro CAD

Výpočtové nadstavby pro CAD Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nverzta Tomáše Bat ve líně LABOATOÍ CČEÍ ELETOTECHY A PŮMYSLOÉ ELETOY ázev úlohy: ávrh dělče napětí pracoval: Petr Luzar, Josef Moravčík Skupna: T / Datum měření:.února 8 Obor: nformační technologe Hodnocení:

Více

TRANZISTOROVÝ ZESILOVAČ

TRANZISTOROVÝ ZESILOVAČ RANZISOROÝ ZESILOAČ 301-4R Hodnotu napájecího napětí určí vyučující ( CC 12). 1. Pro zadanou hodnotu I C 2 ma vypočtěte potřebnou hodnotu R C a zvolte nejbližší hodnotu rezistoru z řady. 2. Zvolte hodnotu

Více

Typ UCE0 (V) IC (A) PCmax (W)

Typ UCE0 (V) IC (A) PCmax (W) REDL 3.EB 11 1/13 1.ZADÁNÍ Změřte statické charakteristiky tranzistoru K605 v zapojení se společným emitorem a) Změřte výstupní charakteristiky naprázdno C =f( CE ) pro B =1, 2, 4, 6, 8, 10, 15mA do CE

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

PROCESNÍ INŽENÝRSTVÍ cvičení 5

PROCESNÍ INŽENÝRSTVÍ cvičení 5 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 5 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

VÝPOČET VELIKOSTNÍCH PARAMETRŮ KOMPOSTÁREN NA ZPEVNĚNÝCH PLOCHÁCH THE SIZE PARAMETER CALCULATION OF COMPOST PLANTS LOCALIZED ON COMPACTED AREAS

VÝPOČET VELIKOSTNÍCH PARAMETRŮ KOMPOSTÁREN NA ZPEVNĚNÝCH PLOCHÁCH THE SIZE PARAMETER CALCULATION OF COMPOST PLANTS LOCALIZED ON COMPACTED AREAS VÝPOČET VELIKOSTNÍCH PARAMETRŮ KOMPOSTÁREN NA ZPEVNĚNÝCH PLOCHÁCH THE SIZE PARAMETER CALCULATION OF COMPOST PLANTS LOCALIZED ON COMPACTED AREAS ALTMANN VLASTIMIL ), PLÍVA PETR 2) ) Česká zemědělská unverzta

Více

K Mechanika styku kolo vozovka

K Mechanika styku kolo vozovka Mechanika styku kolo ozoka Toto téma se zabýá kinematikou a dynamikou kola silničních ozidel. Problematika styku kolo ozoka má zásadní ýznam pro stanoení parametrů jízdy silničních ozidel, neboť má li

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Základní pojmy elektrotechniky Přednáška č. 1 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Základní pojmy elektrotechniky 1 Elektrotechnika:

Více

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO,KOUNICOVA16 METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady Třída : K4 Název tématu : Metodický list z elektroenergetiky řešené příklady

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

x p [k]y p [k + n]. (3)

x p [k]y p [k + n]. (3) STANOVENÍ VLASTNOSTÍ ELEKTROAKUSTICKÝCH SOUSTAV POMOCÍ PSEUDONÁHODNÝCH SIGNÁLŮ 1 Úod Daid Bursík, František Kadlec ČVUT FEL, katedra radioelektroniky, Technická 2, Praha 6 bursikd@feld.cut.cz, kadlec@feld.cut.cz

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní

Více

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ Zadání: 1. Stanovte oxygenační kapacitu a procento využití kyslíku v čisté vodě pro provzdušňovací porézní element instalovaný v plexi válci následujících rozměrů:

Více

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6)

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6) 1. Stavebn energetcké vlastnost budov Energetcké chování budov v zním období se v současné době hodnotí buď s pomocí průměrného součntele prostupu tepla nebo s pomocí měrné potřeby tepla na vytápění. 1.1.

Více

i β i α ERP struktury s asynchronními motory

i β i α ERP struktury s asynchronními motory 1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází

Více

Projekt - Voltmetr. Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha. A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1

Projekt - Voltmetr. Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha. A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1 Projekt - Voltmetr Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1 Náplň Projekt Voltmetr Princip převodu Obvodové řešení

Více

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému III. TERMODYNAMIKA PROUDÍCÍCH PLYNŮ A PAR Termodynamika plynů a par sleduje změny stau látek za předpokladu, že jsou látky klidu, nebo že li rychlosti proudění látky má zanedbatelný li na změnu termodynamického

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Laboratoře TZB. Ing. Daniel Adamovský, Ph.D. Katedra TZB, fakulta stavební, ČVUT v Praze

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Laboratoře TZB. Ing. Daniel Adamovský, Ph.D. Katedra TZB, fakulta stavební, ČVUT v Praze ČESKÉ YSOKÉ UČENÍ TECHNICKÉ PRAZE Fakulta stavbní Laboratoř TZB Cvční č. 3 Stanovní účnnost výměníku ZZT Ing. Danl Adamovský, Ph.D. Katdra TZB, fakulta stavbní, ČUT v Praz Praha 2011 Evropský socální fond

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpoklady: 713 Je dán ronoběžnostěn LMNOPR. R O P N M L Jeho objem umíme spočítat stereometrikým zorem: V = S. p Ronoběžnostěn je také určen třemi ektory a, b a R O P b N M a L jeho

Více

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits Techncká 4, 66 07 Praha 6 MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electrc Parameter Measurement n PWM Powered Crcuts Martn Novák, Marek Čambál, Jaroslav Novák Abstrakt: V

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček

TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček TERMOFYZIKÁLNÍ VLASTNOSTI Radek Vašíček Základní termofyzikální vlastnosti Tepelná konduktivita l (součinitel tepelné vodivosti) vyjadřuje schopnost dané látky vést teplo jde o množství tepla, které v

Více

Modelování a simulace regulátorů a čidel

Modelování a simulace regulátorů a čidel Modeloání a simulace regulátorů a čidel. Modeloání a simulace PI regulátoru Přenos PI regulátoru je yjádřen následujícím ztahem F( p) = ( + p ) p V Simulinu je tento blo obsažen nihoně prů. Bohužel použití

Více

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r.

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. L A B O R A T O Ř O B O R U CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. Ústav organcké technologe (111) Ing. J. Trejbal, Ph.D. budova A, místnost č. S25b Název práce : Vedoucí práce: Umístění práce: Rektfkace

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

VY_32_INOVACE_AUT-2.N-11-MERENI A REGULACE. Střední odborná škola a Střední odborné učiliště, Dubno

VY_32_INOVACE_AUT-2.N-11-MERENI A REGULACE. Střední odborná škola a Střední odborné učiliště, Dubno Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_AUT-2.N-11-MERENI A REGULACE Střední odborná škola a Střední odborné učiliště, Dubno Ing. Jiří

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

Tepelně vlhkostní posouzení

Tepelně vlhkostní posouzení Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

Katedra materiálového inženýrství a chemie ZÁKLADNÍ FYZIKÁLNÍ VLASTNOSTI STAVEBNÍCH MATERIÁLŮ VE VAZBĚ NA IZOLAČNÍ VLASTNOSTI

Katedra materiálového inženýrství a chemie ZÁKLADNÍ FYZIKÁLNÍ VLASTNOSTI STAVEBNÍCH MATERIÁLŮ VE VAZBĚ NA IZOLAČNÍ VLASTNOSTI Katedra materiálového inženýrství a chemie ZÁKLADNÍ FYZIKÁLNÍ VLASTNOSTI STAVEBNÍCH MATERIÁLŮ VE VAZBĚ NA IZOLAČNÍ VLASTNOSTI Izolační vlastnosti (schopnosti) stavebních materiálů o o o o vnitřní struktura

Více

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém

Více

TECHNICKÉ ODSTŘELY A JEJICH ÚČINKY

TECHNICKÉ ODSTŘELY A JEJICH ÚČINKY TECHNICKÉ ODSTŘELY A JEJICH ÚČINKY Přednáška č.2 2. Přednáška Technické odstřely Při rozpojování pevných hornin, ale i zpevněných zemin a stavebních hmot, zůstávají trhací práce stále jediným efektivním

Více

přechodová (Allen) 0,44 ξ Re Poznámka: Usazování v turbulentní oblasti má omezený význam, protože se částice usazují velmi rychle.

přechodová (Allen) 0,44 ξ Re Poznámka: Usazování v turbulentní oblasti má omezený význam, protože se částice usazují velmi rychle. Nerušené usazoání kuloých a nekuloých ástic Úod: Měřením rychlostí nerušeného usazoání oěřujeme platnost ronic pro ýpoet usazoacích rychlostí ástic různé elikosti a taru nebo naopak ronic pro ýpoet elikosti

Více

Zadání úlohy: Schéma zapojení: Střední průmyslová škola elektroniky a informatiky, Ostrava, příspěvková organizace. Třída/Skupina: / Měřeno dne:

Zadání úlohy: Schéma zapojení: Střední průmyslová škola elektroniky a informatiky, Ostrava, příspěvková organizace. Třída/Skupina: / Měřeno dne: Číslo úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Název úlohy: Zobrazení hysterézní smyčky feromagnetika pomocí osciloskopu Spolupracovali ve skupině.. Zadání úlohy: Proveďte zobrazení hysterezní

Více

pracovní list studenta RC obvody Měření kapacity kondenzátoru Vojtěch Beneš

pracovní list studenta RC obvody Měření kapacity kondenzátoru Vojtěch Beneš Výstup RVP: Klíčová slova: pracovní list studenta RC obvody Vojtěch Beneš žák porovná účinky elektrického pole na vodič a izolant kondenzátor, kapacita kondenzátoru, nestacionární děj, nabíjení, časová

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí

Více

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i. Odborná skupna Mechanka kompoztních materálů a konstrukcí České společnost pro mechanku s podporou frmy Letov letecká výroba, s. r. o. a Ústavu teoretcké a aplkované mechanky AV ČR v. v.. Semnář KOMPOZITY

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

Únik plynu plným průřezem potrubí

Únik plynu plným průřezem potrubí Únik plynu plným průřezem potrubí Studentská vědecká konference 22. 11. 13 Autorka: Angela Mendoza Miranda Vedoucí práce: doc. Ing. Václav Koza, CSc. Roztržení, ocelové potrubí DN 300 http://sana.sy/servers/gallery/201201/20120130-154715_h.jpg

Více

Západočeská univerzita v Plzni Fakulta strojní. Semestrální práce z Matematického Modelování

Západočeská univerzita v Plzni Fakulta strojní. Semestrální práce z Matematického Modelování Západočeská univerzita v Plzni Fakulta strojní Semestrální práce z Matematického Modelování Dynamika pohybu rakety v 1D Vypracoval: Pavel Roud Obor: Technologie obrábění e mail:stu85@seznam.cz 1 1.Úvod...

Více

Tepelně vlhkostní mikroklima. Vlhkost v budovách

Tepelně vlhkostní mikroklima. Vlhkost v budovách Tepelně vlhkostní mikroklima Vlhkost v budovách Zdroje vodní páry stavební vlhkost - vodní pára vázaná v materiálech v důsledku mokrých technologických procesů (chemicky nebo fyzikálně vázaná) zemní vlhkost

Více