E. Hulicius: 12NT (Polovodičové) nanotechnologie, FJFI, Cukrovarnická 10, zasedačka v budově A, 2015, čtvrtek 15:50 (4 hod.): 1.10., 8.10.,

Rozměr: px
Začít zobrazení ze stránky:

Download "E. Hulicius: 12NT (Polovodičové) nanotechnologie, FJFI, Cukrovarnická 10, zasedačka v budově A, 2015, čtvrtek 15:50 (4 hod.): 1.10., 8.10., 12.11."

Transkript

1 E. Hulicius: 12NT (Polovodičové) nanotechnologie, FJFI, Cukrovarnická 10, zasedačka v budově A, 2015, čtvrtek 15:50 (4 hod.): 1.10., 8.10., exkurse, F. Novotný: Kvantové kovové tečky, Troja, posluchárna bude upřesněna : a a na konec na FJFI. Exkurse 4 hodiny.: od 15:50 do laboratoří MOVPE, MBE a dalších ve FZÚ AV ČR, v.v.i. v Cukrovarnické 10, Praha 6: Polovodičové epitaxní technologie MBE a MOVPE, prof. E. Hulicius + dr. V. Novák, Elektronová-a foto-litografie -dr. V. Jurka/dr. K. Olejník, Nanocharakterizace, AFM a STM -dr. A. Fejfar, Nanodiamanty, příprava vlastnosti, aplikace - dr. A. Kromka. Volno: ; nanotechnologie ZK: před-termíny či ve FZÚ.. od co nejdříve; (15:45)

2 9. Polovodičové (nano)heterostruktury Polovodičové heterostruktury, využití kvantově-rozměrových vlastností nanostruktur, důvody zavádění, materiály.

3 Polovodičové heterostruktury, využití kvantově-rozměrových vlastností nanostruktur, důvody zavádění, materiály Polovodiče, monokrystaly nejen, ale hlavně Proč vzniká krystal? Souvislost krystalové mřížky a vlastností materiálu. (Obr.) Jaká je role defektů? Typy poruch, jejich koncentrace, vliv na součástky. (bodové defekty, dislokace, stacking faults, dvojčatění,...)

4 Bravaisovy mříže Dá se dokázat (např. systematickým vyšetřováním možných způsobů vrstvení rovinných mříží), že existuje pouze 14 různých prostorových mříží. Nazývají se také Bravaisovy mříže podle autora prvního úplného odvození (r. 1850). Jejich rozdělení do krystalových soustav je uvedeno v tabulce a graficky. krystalová soustava triklinická (trojklonná) monoklinická (jednoklonná) ortorombická (rombická, kosočtverečná) tetragonální (čtverečná) kubická (izometrická) hexagonální (šesterečná) trigonální (romboedrická, klencová) minimální symetrie žádná jedna 2četná osa podél c tři 2četné osy podél a, b, c jedna 4četná osa podél c čtyři3četné osy podél tělesových úhlopříček krychle jedna 6četná osa podél c jedna 3četná osa podél hexagon. Buňky

5 Krystalická mřížka, pásová energetická struktura elektronů aděr Středoškolská pásová struktura, pásy v k prostoru, (Brillouinova zóna, příméanepřímé polovodiče, p-n přechod, heterostruktura, kvantová jáma, hustota stavů elektronů). Obr. pásové struktury Si a GaAs Obr. Státnicové otázky

6

7 Krystalická mřížka, pásová energetická struktura elektronů aděr Středoškolská pásová struktura, pásy v k prostoru, (Brillouinova zóna, příméanepřímé polovodiče, p-n přechod, heterostruktura, kvantová jáma, hustota stavů elektronů). Obr. pásové struktury Si a GaAs Obr. Státnicové otázky

8 Principy elektronických součástek Jevy v polovodičích: Pásová struktura polovodičů, hustota stavů, efektivní hmotnost, přímý a nepřímý polovodič. Statistika elektronů a děr ve vodivostním a valenčním pásu, Fermiho hladina, vliv příměsí. Poissonova rovnice, rovnice kontinuity, difúzní a vodivostní proud, pohyblivost. Boltzmanova kinetická rovnice, rozptylové mechanismy. Generační a rckombinační mechanismy, doba života, difúní rovnice. Přechod p-n: oblast prostorového náboje, rozložení koncentrace nositelů náboje, intenzity elektrického pole, potenciálu, difúzní napětí, Shockleyho rovnice VA charakteristiky, injekce a extrakce nositelů náboje, injekční účinnost. Bariérová a difúzní kapacita. Průraz tunelový, lavinový, jejich teplotní závislost. Heteropřechody, rozměrové kvantování, elektron v kvantové jámě, hustota stavů v 2D, 1D a OD polovodiči, rezonanční tunelování, transport elektronů v supermřížce. Dioda, výkonová dioda PIN, varikap, Zenerova dioda, tunelová dioda. Kontakt kov-polovodič - kvalitativní popis dějů v: usměrňující a neusměrňující kontakt, VA charaktcristika, Schottkyho dioda. Propustné a závěrné vlastnosti, porovnání s pn přechodem. Teplotní vlastnosti. Struktura MIS - kvalitativní popis dějů ve: slabá a silná inverze, pásový modely, reálná struktura MIS, vliv náboje v oxidu a na rozhraní. Bipolární tranzistor: funkce, zbytkové proudy, průrazné napětí, charakteristiky, zapojení SB, SC, SE a jejich vlastnosti, ss pracovní bod a jeho nastavení, parametry h a y, náhradní obvody, kmitočtové a teplotní vlastnosti. Spínací aplikace. Vliv povahy zátěže, první a druhý průraz. Unipolární tranzistor: JFET. MESFET, MOSFET, DMOS. Indukovaný a zabudovaný kanál. Vlastnosti, charakteristiky, parametry. Základní zapojení, ss pracovní bod a jeho nastavení, parametry, kmitočtové a teplotní vlastnosti. Jevy krátkého kanálu MOSFET.

9 Vícevrstvé součástky: diak, tyristor, charakteristiky a parametry. GTO. Optoelektronické součástky: Fotoelektrický jev, fotovodivost, spontánní a stimulovaná emise, absorpce. elektroluminiscence, katodoluminiscence. Optické vláknové a planární vlnovody: princip funkce, materiálově-technologické řešení, základní vlastnosti. Polovodičové zdroje záření a detektory: princip funkce, materiálové a konstrukční řešení, základní vlastnosti a parametry. Optické přenosové systémy: základní principy, konstrukční komponenty, dosahované parametry. Optické vláknové senzory: základní principy, vlastnosti. Vysokofrekvenční a kvantově vázané polovodičové součástky - principy činnosti, aplikace: RTD, MESFET, HEMT - modulační dotace, HBT, HET - překmitový jev, jednoelektronový tranzistor- Coulombovská blokáda, laser s kvantovou jámou, polovodičový fotonásobič. Šum (typy, š. pasivní součástky, přechodu PN, FET, BJT). Modely součástek statický, pro malý, velký signál, nf., vf. včetně základních modelů používaných v simulačních programech. Trendy technologie submikronových integrovaných obvodů na křemíku, pokroky ve zvyšování hustoty, integrace ULSI, GSI. Ultrafialová, rentgenová, elektronová, iontová litografie. Konstrukce submikronového tranzistoru - potlačení jevu krátkého kanálu a horkých elektronů. Technologie propojování a víceúrovňové metalizace. Multičipové moduly. Jazyky HDL. Prostředky syntézy: simulace a verifikace návrhu IO. Pasivní součástky diskrétní a integrované. Základní konstrukce a parametry. Frekvenční a teplotní vlastnosti. Mikrosystém, mikrosenzor a mikroaktuátor - charakteristické vlastnosti (citlivost, nelinearita, atd.), principy činnosti (elektrostatické, piezoelektrické, magnetické, tepelné, optické, mechanické. atd.).

10 Vhodné a užívané prvky, sloučeniny a materiály Elementární polovodiče: křemík,křemík, křemík, (germanium, selen, diamant), ale... často mají nepřímé přechody, E g a n lze měnit jen málo, Sloučeninové polovodiče: A III B V - GaAs, InP, GaSb,... A II B VI - CdTe, CdSe,... A IV B IV -GeSi, A III X B III (1-X) C V -AlGaAs, A III X B III (1-X) C YV D (1-Y)V - GaInAsSb,

11 Materiály

12 Sloučeninové polovodiče II.B III.A IV.A V.A VI.A 2 B C N O 3 Al Si P S 4 Zn Ga Ge As Se 5 Cd In Sn Sb Te 6 Hg Tl Pb Bi Po

13

14 Závislost šířky zakázaného pásu na mřížkové konstantě vybraných polovodičových materiálů

15 Zopakování obecných informací o: Pásové struktuře

16 Vznik pásové struktury

17 Pásová struktura v k-prostoru První aproximace poruchového počtu, bez započtení spinorbitální interakce První aproximace poruchového počtu, se započtením spinorbitální interakce Druhá aproximace poruchovéh počtu, se započtením spinorbitální interakce

18

19 Struktury, heterostruktury, nanostruktury a fajnovosti (materiálové inženýrství) Homogenní struktury P-N přechody: Na těch je založena elektronika, zde pár zajímavých příkladů: Jednoduché, relativně účinné, nepříliš drahé: - LED GaAs:Si amfoterní legování; - polovodičové solární články (hlavně Si); Semiizolační - legovaná (vodivá) - silně legovaná (velmi vodivá) vrstva. Objemový krystal (bulk) - oddělovací vrstva (epitaxní buffer) funkční epitaxní vrstva - (postupné zlepšování krystalografické kvality) Monokrystalická - polykrystalická - amorfní vrstva (nebo obráceně).

20 Heterogenní struktury (heterostruktury) - "klasické" Zdaleka ne pouze heterogenní P-N přechody, ale lze připravovat skoky, či pozvolné přechody šířky zakázaného pásu, indexu lomu a tak účinně miniaturizovat. Obr ze Sci. Am Přechody I., II. (a III.) typu Obr Napnuté přechody Obr

21

22

23 Heterogenní struktury (heterostruktury) - "klasické" Zdaleka ne pouze heterogenní P-N přechody, ale lze připravovat skoky, či pozvolné přechody šířky zakázaného pásu, indexu lomu a tak účinně miniaturizovat. Obr ze Sci Am Přechody I., II. a III. typu Obr Napnuté přechody Obr

24 Heteropřechody: (a) = b - prvního typu (b) = a - druhého typu (c) - třetího typu

25 Heterostruktury prvního typu mohou být velmi různé

26 D:\Storage\Eda\NSE\pr_25.jpg

27 D:\Storage\Eda\NSE\pr_32.jpg

28 Heterogenní struktury (heterostruktury) - "klasické" Zdaleka ne pouze heterogenní P-N přechody, ale lze připravovat skoky, či pozvolné přechody šířky zakázaného pásu, indexu lomu a tak účinně miniaturizovat. Obr ze Sci Am Přechody I., II. a III. typu Obr Napnuté přechody Obr

29 Napnutá a relaxovaná mřížka

30

31

32 Kvantově rozměrové struktury - Nanostruktury - "kvantové" Zmenšení jednoho, nebo více rozměrů v heterostruktuře na úroveň srovnatelnou s vlnovou délkou elektronu (od desetin do desítek nanometrů) Kvantové jámy Kvantové dráty Kvantové tečky Obr schéma, hustoty stavů, hladiny Vytváření nových "umělých" typů pásových struktur - supermřížky (rozdíl mezi supermřížkou a mnohonásobnou kvantovou jámou), kaskádové lasery

33 hustoty stavů

34

35

36

37

38 "Fajnovosti" - řešení problému heteropřechodů II. typu - QD InAs v GaAs na Si - fulereny (fullerens, také buckyballs C 60 ) (podle R. Buckminstera Fullera architekta, který stavěl podobné kopule) - kaskádové lasery - nanocívky - spinotronika

39

40 "Fajnovosti" - řešení problému heteropřechodů II. typu - QD InAs v GaAs na Si - fulereny (fullerens, také buckyballs C 60 ) (podle R. Buckminstera Fullera architekta, který stavěl podobné kopule) - kaskádové lasery - nanocívky - spinotronika

41 QD InAs/GaAs na Si

42 "Fajnovosti" - řešení problému heteropřechodů II. typu - QD InAs v GaAs na Si - fulereny (fullerens, také buckyballs C 60 ) (podle R. Buckminstera Fullera architekta, který stavěl podobné kopule) - kaskádové lasery - nanocívky - spinotronika

43

44

45 "Fajnovosti" - řešení problému heteropřechodů II. typu - QD InAs v GaAs na Si - fulereny (fullerens, také buckyballs C 60 ) (podle R. Buckminstera Fullera architekta, který stavěl podobné kopule) - kaskádové lasery - nanocívky - spinotronika

46 11. Kaskádové lasery a lasery se strukturou typu W Souboj těchto dvou typů struktury o reálnou aplikaci jako zdroje laserového záření ve střední infračervené oblasti, kde je mnoho možností uplatnění v medicíně, ekologii, komunikacích i ve vojenství. Přiklad aktuálního, dosud nerozhodnutého špičkového aplikovaného výzkumu, kterého se přednašeč aktivně účastní.

47

48 Základní způsoby generace záření ve (střední) infračervené oblasti

49 Tunable Emission Over a Wide Spectral Range Conduction band schematic of GaInAs/ AlInAs quantum cascade laser lattice matched to InP. Cross sectional schematic of laser waveguide structure. Photograph of a self-contained prototype quantum cascade laser pointer realised at CQD. Demonstrated single mode emission from quantum cascade lasers spanning both atmospheric windows.

50 M. Razeghi, Center for Quantum Devices, Northwestern Univ., Evanston Uncooled Infrared (5-12 m) Quantum Cascade Lasers Lasers operating in the mid- and far-infrared (5-12 m) spectral region are desirable for many applications. Up until recently, the only such laser technologies available were based on bulky gas or solid-state lasers as well as cryogenically cooled semiconductor lasers. One of the most exciting projects at the Center for Quantum Devices (CQD) is uncooled infrared quantum cascade lasers (QCLs), which, being a semiconductor laser, is inherently compact and will help eliminate the need for bulky and unreliable cryogenic cooling. This translates to a smaller, cheaper, system with a longer lifetime and less maintenance. Besides our current records with respect to threshold current density and high peak power, we have recently demonstrated the highest power continuous wave QCLs at room temperature.

51 Distributed Feedback (DFB) Quantum Cascade Lasers

52 High Performance Lasers Operating at Room Temperature 75 period waveguide core Cavity: 3 mm x 25 m Cross section image of a buried-ridge QCL laser. Cross section image of a Au electroplated QCL. Electrical and optical characteristics of a typical 9 m quantum cascade laser operating in pulsed mode at room temperature. Peak output power of 2.5 W is the highest power for a quantum cascade laser in these conditions.

53 Highest average power QCL. Comparison of groups >4 m

54 M. Razeghi, Center for Quantum Devices, Northwestern Univ., Evanston Uncooled Infrared (5-12 m) Quantum Cascade Lasers Lasers operating in the mid- and far-infrared (5-12 m) spectral region are desirable for many applications. Up until recently, the only such laser technologies available were based on bulky gas or solid-state lasers as well as cryogenically cooled semiconductor lasers. One of the most exciting projects at the Center for Quantum Devices (CQD) is uncooled infrared quantum cascade lasers (QCLs), which, being a semiconductor laser, is inherently compact and will help eliminate the need for bulky and unreliable cryogenic cooling. This translates to a smaller, cheaper, system with a longer lifetime and less maintenance. Besides our current records with respect to threshold current density and high peak power, we have recently demonstrated the highest power continuous wave QCLs at room temperature.

55 "Fajnovosti" - řešení problému heteropřechodů II. typu - QD InAs v GaAs na Si - fulereny (fullerens, také buckyballs C 60 ) (podle R. Buckminstera Fullera architekta, který stavěl podobné kopule) - kaskádové lasery - nanocívky - spinotronika

56

57 "Fajnovosti" - řešení problému heteropřechodů II. typu - QD InAs v GaAs na Si - fulereny (fullerens, také buckyballs C 60 ) (podle R. Buckminstera Fullera architekta, který stavěl podobné kopule) - kaskádové lasery - nanocívky - spinotronika

58

59 Je tedy možné spojováním různých materiálů realizovat potřebné funkční součástky (tranzistory, LEDky a lasery, detektory a sluneční články,...) s lepšími parametry. Lze i vytvářet nejen nové materiály zadaných vlastností (složité, v přírodě neexistující ternární či kvaternání či ještě složitější sloučeniny), ale i nahrazovat je kombinací napnutých binárních systémů s lepšími a kontrolovatelnými vlastnostmi. Lze také konstruovat struktury a součástky (hlavně na bázi nanostruktur) s novými vlastnostmi (supermřížky, CL lasery, molekulární elektronika, nanoroboty (nanobots), QW, QWr(?), QD součástky, některé fotonické krystaly, fotoelektrochemické cely,...). (Pomíjím mezi polovodiče nepatřící biologické aplikace nanočástic, katalýzu pomocí zlatých nano částic, nanomechaniku, většinu fulerémových struktur, nanobarvy, nanotextilie,...)

60 Příklady součástek, které jsou založeny na neklasických (neintuitivních) kvantových fyzikálních jevech Snad nejstarší příklad je tunelová dioda. Příklady a heterodimensionální struktury pro součástky Obr. + (3) Rezonanční tunelování. Obr. Tranzistory HEMT a další, například jednoelektronové tranzistory Obr. Kvantový etalon ohmu na základě kvantového Hallova jevu. Projekt MÚ, FEL a FZÚ (P. Svoboda) Polovodičové lasery, (ty s QW a QD dvojnásobně). Povídání o postupném i skokovém zlepšování parametrů se zaváděním nových struktur. Obr B 1.4.

61

62 Heterodimensional Device Technologies

63 Příklady součástek, které jsou založeny na neklasických (neintuitivních) kvantových fyzikálních jevech Snad nejstarší příklad je tunelová dioda. Rezonanční tunelování. Obr. Tranzistory HEMT a další, například jednoelektronové tranzistory Obr. Kvantový etalon ohmu na základě kvantového Hallova jevu. Projekt MÚ, FEL a FZÚ (P. Svoboda) Polovodičové lasery, (ty s QW a QD dvojnásobně). Povídání o postupném i skokovém zlepšování parametrů se zaváděním nových struktur.

64

65

66 Příklady součástek, které jsou založeny na neklasických (neintuitivních) kvantových fyzikálních jevech Snad nejstarší příklad je tunelová dioda. Rezonanční tunelování. Obr. Tranzistory HEMT a další, například jednoelektronové tranzistory Obr. Kvantový etalon ohmu na základě kvantového Hallova jevu. Projekt MÚ, FEL a FZÚ (P. Svoboda) Polovodičové lasery, (ty s QW a QD dvojnásobně). Povídání o postupném i skokovém zlepšování parametrů se zaváděním nových struktur.

67

68

69 Příklady součástek, které jsou založeny na neklasických (neintuitivních) kvantových fyzikálních jevech Snad nejstarší příklad je tunelová dioda. Rezonanční tunelování. Obr. Tranzistory HEMT a další, například jednoelektronové tranzistory Obr. Kvantový etalon ohmu na základě kvantového Hallova jevu. Projekt MÚ, FEL a FZÚ (P. Svoboda) Polovodičové lasery, (ty s QW a QD dvojnásobně). Povídání o postupném i skokovém zlepšování parametrů se zaváděním nových struktur.

70 Kvantový normál odporu

71 Kvantový normál odporu

72 Kvantový normál odporu

73

74 Příklady součástek, které jsou založeny na neklasických (neintuitivních) kvantových fyzikálních jevech Snad nejstarší příklad je tunelová dioda. Rezonanční tunelování. Obr. Tranzistory HEMT a další, například jednoelektronové tranzistory Obr. Kvantový etalon ohmu na základě kvantového Hallova jevu. Projekt MÚ, FEL a FZÚ (P. Svoboda) Polovodičové lasery a LEDky, (ty s QW a QD dvojnásobně). Povídání o postupném i skokovém zlepšování parametrů se zaváděním nových struktur. Obr B 1.4.

75 Děkuji za pozornost.

76 Příště: LD Laser Diode Laserová dioda a LED Light Emitting Diode

77 10. Polovodičové lasery (LD) a světlo emitující diody (LED) Povídání o postupném i skokovém zlepšování parametrů se zaváděním nových nanostruktur kvantové jámy a tečky. V LD a v LED jsou dnes aplikovány velmi zajímavé nanostruktury, jejichž podrobnější popis může studentům pomoci pochopit i princip jiných nanostruktur.

78 Historie

79 1907(!) - První elektroluminiscenční dioda - SiC, H.J. Round (c) (Znovuobjeveno Losevem v r. 1928) Destriau - LED z ZnS Welker - A III B V (GaAs) Lasery (RCA, GE, IBM, MIT) léta - Rozvoj epitaxních technologií léta - Zavedení heterostruktur a kvantových jam (nanotech.) Vyřešení degradace laserů i diod (bezdislokační substráty).

80 Aplikace LED levné, účinné, nestárnoucí žárovky a další zdroje záření další zvyšování účinnosti; levná bílá, (laditelnost její barevnosti); úspory energie rozšiřování vlnových délek (?),... LD : klas. lasery = analogie elektronky : tranzistory? rozšiřování vlnových délek (!); další zvyšování účinnosti (?), výkonu (!); mnohobarevné čipy; paralelní optické komunikace ladění barevnosti ; laserová spektroskopie jednofotonové zdroje pro QK, QC,... ; životnost, cena,

81 Spektrální oblasti a aplikace Z hlediska spektrálního můžeme rozdělit aplikace i materiály na: (Tab 1.1.). Hlavní proud oblasti: (obr. aplikací) viditelná a blízká infračervená Jsou to materiály dnes většinou dobře zvládnuté z důvodů historických i technologických. Stále zůstává prostor na zlepšování parametrů, i zavádění nových struktur (kvantové tečky), převratný break through ale neočekávám. Přiléhající oblasti ultrafialová (nitridy, diamant,...? větší hustota optických pamětí, biomedicínské aplikace, ) střední infračervená

82 Definice spektrálních oblastí: (Tab 1.1.). Vztahy mezi uvedenými veličinami vlnovou délkou, energií E, frekvencí f a vlnočtem : m 1.24/E (ev), f (THz) = 300 / m (cm -1 ) = / m Wavelength ( m) Energy (ev) Frequency (THz) Wavenumber (cm -1 ) Visible Near Infrared (NIR) Mid Infrared (MIR) Far Infrared (FIR or THz) mm Wave > < < <10

83 Definice spektrálních oblastí: (Tab 1.1.). Z hlediska spektrálního můžeme rozdělit aplikace i materiály na: Hlavní proud oblasti: (obr. aplikací) viditelná a blízká infračervená Jsou to materiály dnes většinou dobře zvládnuté z důvodů historických i technologických. Stále zůstává prostor na zlepšování parametrů, i zavádění nových struktur (kvantové tečky), převratný break through ale neočekávám. Přiléhající oblasti ultrafialová (nitridy, diamant,...? větší hustota optických pamětí, biomedicínské aplikace, ) střední infračervená

84 Příklady aplikací optoelektroniky ve viditelné oblasti

85

86

87

88

89

90

91 Definice spektrálních oblastí: (Tab 1.1.). Z hlediska spektrálního můžeme rozdělit aplikace i materiály na: Hlavní proud oblasti: (obr. aplikací) viditelná a blízká infračervená Jsou to materiály dnes většinou dobře zvládnuté z důvodů historických i technologických. Stále zůstává prostor na zlepšování parametrů, i zavádění nových struktur (kvantové tečky), převratný break through ale neočekávám. Přiléhající oblasti ultrafialová (nitridy, diamant, ZnO,...? větší hustota optických pamětí (zápisu), biomedicínské aplikace, opracovávání povrchu,... ) střední infračervená

92 Střední infračervená oblast elektromagnetického záření, která se obvykle definuje od2do20μm, je pro optoelektroniku velmi zajímavá nejen z hlediska aplikací: Detekce, přesné a citlivé měření koncentrací různých látek (hlavně atmosférických polutantů, ale i různých průmyslových plynů) laserovou absorpční spektroskopií; v lékařství - diagnostika - složení dechu, i terapie - aktivace léků IČ zářením, které pronikne dost hluboko; "free space" komunikace (atmosférické okno); konverze optické energie na elektrickou (termofotovoltaika); ve vojenství atmosférické okno pro laserové zbraně; detektory, citlivá termovize; detekce výbušnin, jedů a pod.; ostraha v 2. IČ oblasti Historicky první aplikačně zaměřené práce zdrojích v (blízké) MIR oblasti byly podníceny pracemi na fluoridových vláknech s ještě nižším absolutním útlumem než mají křemenná vlákna (vlákna Dianov, FIAN; lasery - FIAN, GIREDMET, )

93 Závislost šířky zakázaného pásu na mřížkové konstantě vybraných polovodičových materiálů

94 In 1-x Ga x As y P 1-y Rovnice pro parametry kvaternárního polovodiče obecně ( = lineární kombinace parametrů binárních sloučenin): p(x,y) = (1-x)(1-y)p InP + (1-x)yp InAs +xyp GaAs + x(1-y)p GaP Vztah pro mřížkovou konstantu kvaternárního polovodiče : a(x,y) = x y xy Vztah pro šířku zakázaného pásu kvaternárního polovodiče : E g (x,y) = x y x y xy x 2 y xy x 2 y 2

95 .

96

97

98 Střední infračervená oblast je zajímavá i z hlediska nejmodernějšího materiálového inženýrství a nanotechnologií - vzhledem k využití kvantových jevů v nových součástkách: "W" struktury heteropřechodů II. typu - omezení nežádoucí Augerovy rekombinace; kaskádové lasery patrně současné nejsložitější polovodičové součástky; vlnová délka se mění geometrií, architekturou struktury negativní luminiscence pozoruhodný jev s zajímavými aplikacemi;

99 Jak se vyrábějí: MOVPE (odhad: 95%)

100

101

102

103

104

105 LED Light Emitting Diode

106 1907(!) - První elektroluminiscenční dioda - SiC, H.J. Round (c) (Znovuobjeveno Losevem v r. 1928) Destriau - LED z ZnS Welker - A III B V (GaAs) Lasery (RCA, GE, IBM, MIT) léta - Rozvoj epitaxních technologií léta - Zavedení heterostruktur (NC 2000) a QW (nanotech.) Vyřešení degradace laserů i diod (bezdislokační substráty!) tá léta Modré GaN LED na Al 2 O 3 (NC 2014)

107 Rekombinace a propustné napětí

108 Elektroluminiscenční materiály

109 Heteropřechody zase jinak

110 (a) - jáma (past) pro elektrony a díry (nikoliv ale kvantová) (b) kvantová jáma s elektronovými hladinami

111 LED struktura s trojnásobnou kvantovou jámou a vrstvou blokující elektrony

112 Emisní spektrum LED?

113 Hlavní problém LED je dostat světlo ven!!

114 Jak to řešit?

115 Heterostruktura má efekt i v LED nejen vymezí rekombinační oblast, a...?

116 ?... je i průhledná, ale

117 ... teď jen něco udělat s tvarem -

118 a vnější účinnost se hned vylepší.?

119 A co kontakty...

120 ... i jejich geometrie je důležitá.

121 Někdy vadí absorbující podložka.?

122 Anrireflexní pokrytí zvyšuje účinnost, někdy i životnost.

123 Zrcadla, která odráží světlo ven se dají vytvořit i ve struktuře.

124 Ale pozor na životnost a pnutí.

125 Barvy mají pro aplikaci zásadní důležitost. Řeší se to nejen materiálem (složením ternárních i kvaternárních sloučenin), ale v případě nanostruktur i jejich rozměry a geometrií. Viditelná a blízká IČ oblast je dnes již převážně komerční záležitost. Střední a vzdálená IČ i ulrafialová oblast jsou předmětem intenzivního výzkumu.

126 Zlepšování účinnosti LED v čase:

127 Modré diody, proč tak pozdě, historie, cesta k bílé.

128 Bílé diody

129 Dvoubarevné diody (jednočipové!)

130 I LED-ky mohou mít rezonátory

131 Kolik stojí lumen?

132 Spektrální citlivost oka (a LED vlastnosti)

133 LD Laser Diode Laserová dioda Polovodičové lasery je to téměř synonymum, ale ne úplně.

134 Laser jako prvek se zpětnou vazbou. Pásová struktura jednoduchý p-n přechod, injekce elektronů. Laserový čip hetrorostruktura, vlnovod, rezonátor. Vlnovod.

135

136 Pásová struktura a index lomu. Proužková geometrie a vlnovod. Tvar výstupního optického svazku.

137 Typy laserových rezonátorů

138 Proužková geometrie. Vymezení: - kontaktem. - kontaktem a odleptáním -příčným p-n přechodem - kontaktem, odleptáním, p-n přechodem a další epitaxí

139 Spontánní a stimulovaná emise Zisk a ztráty v závislosti na energii fotonů, pro různé koncentrace elektronů v aktivní oblasti. Laserování začíná na dlouhovlnné straně spektra (absorpce).

140 Pomocí heteropřechodů se vymezí oblast kde vznikne inverze populace nositelů náboje

141 a i vznikne vlnovod:

142 Watt/Ampérová (vlastně Watt/Wattová) charakteristika, účinnost, diferenciální účinnost, diferenciální kvantová účinnost.

143 Prahová proudová hustota Jth Stavová rovnice dn/dt = J/ed G(n)S n/τ n, e = koncentrace elektronů, d = tloušťka aktivní oblasti, G = zisk, S = optická hustota, τ = doba života elektronů, τ = doba života fotonů je pod prahem redukována na a v rovnovážném stavu (d/dt =0) je dn/dt = J/ed n/τ n = J τ/ed Když koncentrace elektronů n vzrůstá k prahové koncentraci nth je možné vyjádřit prahovou proudovou hustotu: Jth =ednth /τ Prahovou koncentraci elektronů nth je možné vyjádřit nth = 1/Γgτ + n0 Γ = je optický vazební faktor, g = koeficient diferenciálního zisku. Pak je Jth = ednth /τ = ed/τ (1/Γgτ + n0) Zavedeme A = edn0 /τ a B = ed/τ (1/Γgτ )

144 Tloušťka aktivní oblasti v dvojité heterostruktuře vymezuje nenjen oblast kde vzniká inverze populace nositelů náboje, ale i určuje vlnovod x = podíl Al v AlGaAs bariéře

145 Výstup světla z vlnovodu Fabryho-Perrotův rezonátor: R = reflektivita; T = transmitivita P = optický výkon; L = délka rezon.

146 Teplotní závislost prahové proudové hustoty laseru Čím tepleji, tím později začíná laserování a také se (většinou) zhoršuje účinnost. Zjevná je rozdílná materiálová závislost. Empiricky zjištěná závislost prahové proudové hustoty na teplotě je: Jth = Jth0exp(Tj/T0) Tj = teplota aktivní oblasti. T0 = charakteristická teplota, indikující závislost Jth na teplotě. T0 může být pro různé teplotní oblasti různé (Eg = f(t)). Tc = bod zlomu.

147 Spolupráce FEL ČVUT a FZÚ AV ČR: Optical Power [a.u.] InAs layers S L ~7.9 nm 25 C 30 C 40 C 50 C 60 C 70 C 80 C 90 C 100 C Current Threshold Density [A/cm 2 ] Ls T 0 ~ 90 K T 0 ~ 160 K 0,5 0,4 0,3 0,2 0,1 Differential Quantum Efficiency 0,0 0,2 0,4 0,6 0,8 1,0 Current density [ka cm -2 ] The temperature variations of the dependence of laser optical output power on excitation current density for lascer with 7 InAs layers and thickness of S L ~7.9 nm. 10 0, Temperature [K] Temperature dependence of threshold current density and differential quantum efficiency for laser with 5 InAs layers.

148 Vnější rezonátor (a) podstatně zlepšuje monochromatičnost (b), ale poněkud se ztrácí výhoda miniaturnosti a kompaktnosti, je lépe řešit to uvnitř struktury (c). (c)

149 Řešení problémů prostorové koherence miniaturních polovodičových laserů (Far-fields). (Je to jejich obecný problém.)

150 Podobně jako u LED je viditelná a blízká IČ oblast převážně průmyslová záležitost. Příprava LD pro střední a vzdálenou IČ i ultrafialovou oblast je velkou výzvou pro badatele. Často je také důležité nahradit stávající typy LD novými s výrazně lepšími parametry. Kvantové jámy (QW) Heteropřechody druhého typu Struktury s napnutými vrstvami Kvantové tečky (QD)

151

152 Závěr LED levné, účinné, nestárnoucí žárovky a další další zvyšování účinnosti; levná bílá, (laditelnost její barevnosti); úspory energie rozšiřování vlnových délek (?),... LD : klas. lasery = analogie elektronky : tranzistory? rozšiřování vlnových délek (!); další zvyšování účinnosti (?), výkonu (!); mnohobarevné čipy; paralelní optické komunikace ladění barevnosti ; laserová spektroskopie jednofotonové zdroje pro QK, QC,... ; životnost, cena,

153 POLOVODIČOVÉ nanotechnologie XII Naše výsledky v oboru struktur pro polovodičové lasery

154 Podobně jako u LED je viditelná a blízká IČ oblast převážně průmyslová záležitost. Příprava LD pro střední a vzdálenou IČ i ultrafialovou oblast je velkou výzvou pro badatele. Často je také důležité nahradit stávající typy LD novými s výrazně lepšími parametry. Kvantové jámy (QW) Heteropřechody druhého typu Struktury s napnutými vrstvami Kvantové tečky (QD)

155 GaAs: buffer 230 nm AlGaAs-n typ 570 nm AlGaAs 400 nm GaAs 150 nm AlGaAs 320 nm AlGaAs-p typ 570 nm GaAs 700 nm GaAs:Te substrate SPSLS 12x (InAs / GaAs)

156 Srovnání laserů s ternární a supermřížkovou (MQW) aktivní oblastí Ternární InGaAs QW laser InAs/GaAs laser se supermřížkou Optical Power [a.u.] Intensity EL I ex =2 A I ex =2.25 A I ex =2.5 A I ex =3 A T=300 K Emission Energy [ev] T 0 = 109 K laser A 25 o C 40 o C 50 o C 60 o C 70 o C 80 o C 85 o C Optical Power [ W] Intensity PL EL I ex =0.46A T=300K Emission Energy [ev] T 0 = 126 K laser B 25 C 35 C 45 C 55 C 65 C 75 C 85 C Current Density [A/cm 2 ] Current Density [A/cm 2 ]

157 Vlastnosti laserů s MQW v aktivní oblasti

158 Podobně jako u LED je viditelná a blízká IČ oblast převážně průmyslová záležitost. Příprava LD pro střední a vzdálenou IČ i ultrafialovou oblast je velkou výzvou pro badatele. Často je také důležité nahradit stávající typy LD novými s výrazně lepšími parametry. Kvantové jámy (QW) Heteropřechody druhého typu Struktury s napnutými vrstvami Kvantové tečky (QD)

159

160 Podobně jako u LED je viditelná a blízká IČ oblast převážně průmyslová záležitost. Příprava LD pro střední a vzdálenou IČ i ultrafialovou oblast je velkou výzvou pro badatele. Často je také důležité nahradit stávající typy LD novými s výrazně lepšími parametry. Kvantové jámy (QW) Heteropřechody druhého typu Struktury s napnutými vrstvami Kvantové tečky (QD)

161 Výhody KT Hustota stavů ve tvaru delta funkcí snížení nezářivé rekombinace (Auger a IVBA) Nižší prahová proudová hustota v laserech s KT Lepší teplotní stabilita prahového proudu Snížení nezářivé rekombinace na zrcadlech KT umožňují dosáhnout emitované vlnové délky 1.3 m v systémech InAs/GaAs

162 Proč jsou KT tak intenzivně studovány? KJ KT Hustota stavů v objemovém polovodiči, kvantové jámě a kvantové tečce (E) 3D 2D 0D E 1 E 2 E 3 E 4 E

163 Stranski-Krastanowův mód růstu Vysoce napnuté struktury: rozdíl v mřížkových konstantách kolem 7% InAs GaAs

164 Charakterizace a diagnostika epitaxního růstu a nanostruktur Mikroskopie meziatomárních sil AFM (Atomic Force Microscopy) Je vhodná i pro nevodivé vzorky. Nepožadujeme-li atomární rozlišení, je to relativně malá aparatura (ceny od 2 do 10 MKč) Rastrovací tunelová mikroskopie STM (Scanning Tunneling Microscopy) Je zapotřebí vzorky alespoň trochu vodivé. Dává atomární rozlišení, ceny podle vybavení od 0,5 do 20 MKč)

165 Zdroj:

166 TEM AFM 7 vrstev KT, oddělovací vrstvy 7.5 nm 3 vrstvy KT, oddělovací vrstvy 3.7 nm

167 3 QD TEM 7 QD 7 QW

168 Kvantové tečky

169 Technologie přípravy: MOVPE 7. GaAs krycí vrstva 6. GaAs oddělovací vrstva 5. Přerušení růstu 30 s 4. InAs napnutá vtstva (1.4 ML) 3. GaAs podklad. vrstva 500 o C 2. GaAs podklad. vrstva 650 o C 1. GaAs substrát GaAs vrstvy: Prekursory TMGa a AsH 3, celk. tlak 70 hpa, celk. průtok 8 l/min, teplota 650 o C a 500 o C, poměr V/III 150 a 43. InAs vrstvy: 50 ml/min H 2 /TMIn, poměr V/III 85, čas růstu 9 s, přerušení růstu 30 s.

170 KT překryté InGaAs Původní KT KT překrytá GaAs KT překrytá InGaAs

171 Dosažená vlnová délka FL InAs/InGaAs KT

172 FL InAs/GaAs KT překrytých InGaAs InGaAs 23% In I PL (arb.u.) E PL (ev) 1508B bez ternaru 1524B 13%In I* B 23%In 1526B 6%In I*35 InAs GaAs Základní stav: 0.86 ev 1.44 m 1. excitovaný stav: 0.93 ev 1.3 m

173 AFM picture of InAs/GaAs QDs

174 GaAs: buffer 230 nm AlGaAs-n typ 570 nm AlGaAs 400 nm GaAs 150 nm GaAs 150 nm AlGa As 320 nm AlGaAs-p typ 570 nm GaAs 700 nm GaAs:Te substrate SPSLS 12x (InAs / GaAs)

175 Our diagnostic methods: Nanocharacterisation - STM, AFM, TEM, Photo and electroluminescence, Magnetophotoluminescence, Transport, Photovoltaic absorption measurement, Photocurrent spectroscopy, were used as the characterisation methods for the studying of parameters and optimisation of growth.

176 Naše výsledky a výstupy

177 MOVPE laboratory co-operations in ) ČVUT Praha - FEL 2) VUT Brno - FStavební 3) Montpellier University, France 4) NanoPLUS, Germany 5) VŠCHT Praha - FCHI - ÚFCH 6) EMF Limited, UK 7) ÚFCH AVČR Praha 8) MU Brno - PřF - ÚFPF 9) EU SAV Bratislava Slovakia 10) Budapešť, Hungary 11) FTI A.F.Ioffe St. Petersburg Russia 12) MFF UK Praha 13) ÚRE AVČR Praha 14) Univ. Porto, Portugal 15) S-Y-S University, Kao-Shung, Taiwan Red = MidInfrared, (Partly) Blue - other cooperations (QD mainly)

178 Current results of the MOVPE laboratory, red = midinfra B Publications in the Refereed Scientific Journals in 2005/2006 (9 x z 16) [1] Pavel Hazdra, Jan Voves, Eduard Hulicius and Jiří Pangrác, Optical characterisation of MOVPE grown δ-inas layers, in GaAs, phys. stat. sol. (c) 2 (2005) ) ČVUT Praha - FEL [2] Chobola Z., Juránková V., Vaněk J., Hulicius E., Šimeček T., Alibert C. Rouillard Y., Werner. R, Noise spectroscopy measurement of 2.3 µm CW GaSb based laser diodes, Elektronika 1 (2005), pp.70-73, Poland ISSN ) VUT Brno - FStavební, 3) Montpellier University, France, 4) NanoPLUS, Germany [3] M. Fulem, K. Růžička, V. Růžička, T. Šimeček, E. Hulicius J. Pangrác, J. Becker, J. Koch, A. Salzmann, Vapour pressure of Di-tert-butylsilan, J. of Chemical and Engineering Data C 50 (2005) ) VŠCHT Praha - FCHI - ÚFCH, 6) EMF Limited, UK [4] S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, GaSb based lasers operating near 2.3 μm for high resolution absorption spectroscopy, Spectrochimica Acta Part A 61 (2005) ) ÚFCH AVČR Praha, Montpellier University, France, NanoPLUS, Germany [5] M. Fulem, K. Růžička, V. Růžička, T. Šimeček, E. Hulicius, and J. Pangrác, Vapour pressure measurement of metal organic precursors used for MOVPE, in press in J. Chem. Therm. (2005) VŠCHT Praha - FCHI - ÚFCH, [6] K. Kuldova; V. Krapek, A. Hospodkova, O. Bonaventurova-Zrzavecka, J. Oswald, E. Hulicius, J. Humlicek, Photoluminescence and magnetophotoluminescence of circular and elliptical InAs/GaAs quantum dots, in print, Mat. Sci. Eng. C, (2005) 8) MU Brno - PřF - ÚFPF [7] P. Hazdra, J. Voves, Hulicius, J. Pangrác, and Z. Šourek, Ultrathin InAs and Modulated InGaAs Layers in GaAs Grown by MOVPE Studied by Photomodulated Reflectance Spectroscopy, in print Appl. Surf. Science (2005) ČVUT Praha - FEL [8] František Dubecký, Eduard Hulicius, Secondo Franchi, Andrea Perďochová-Šagátová, Bohumír Zaťko, Pavel Hubík, Enos Gombia, Pavel Boháček, Jirka Pangrác, and Vladimír Nečas, Performance study of radiation detectors based on semi-insulating GaAs with P+ homo- and heterojunction blocking electrode, in print in Nuclear Instruments and Methods (2005) 9) EU SAV Bratislava Slovakia, 10) Budapešť Hungary [9] S. Civiš, V. Horká, J. Cihelka, T. Šimeček, E. Hulicius, J. Oswald, J. Pangrác, A. Vicet, Y. Rouillard, A. Salhi, C. Alibert, R. Werner and J. Koeth, Room temperature diode laser spectroscopy of near 2.3 µm, Apl. Phys. B 81 (2005) ÚFCH AVČR Praha, Montpellier University, France, NanoPLUS, Germany [10] J. Oswald, J. Pangrác, E. Hulicius, T. Šimeček, K. D. Moiseev, M.P. Mikhailova, and Yu.P. Yakovlev, Luminescence of type II broken gap P-Ga0.84In0.16As0.22Sb0.78/p-InAs heterostructures with high mobility electron channel at the interface, J. Appl. Phys. 98 (2005) 11) FTI A.F.Ioffe St. Petersburg Russia [11] K.D. Moiseev, A.P. Astakhova, G.G. Zebrya, M.P. Mikhailova, Yu.P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrác, K. Melichar, and T. Šimeček, Electroluminescence of AlSb/InAsSb/AlSb quantum well heterostructure grown by MOVPE, sent to Appl Phys Lett. (2005) FTI A.F.Ioffe St. Petersburg Russia [12] D. Kindl, P. Hubík, J. Krištofik, J.J. Mareš, E. Hulicius1, J. Pangrác, K. Melichar, Z. Výborný, and J. Toušková, Transport-controlling deep defects in MOVPE grown GaSb, sent to Semiconductor Science and Technology, (2006) 12) MFF UK Praha [13] A.Hospodková, K. Kuldová, E. Hulicius, J. Oswald, J. Pangrác, J. Zeman, V. Křápek, J. Humlíček, Luminescence and magnetophotoluminescence of vertically stacked InAs/GaAs quantum dot structures, sent to Phys Rev. B (2006) MU Brno - PřF - ÚFPF [14] K.D. Moiseev, A.P. Astakhova, G.G. Zebrya, M.P. Mikhailova, Yu.P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrác, K. Melichar, and T. Šimeček, Qauntum well InAsSbP/InAsSb/AlAsSb laser heterostructures grown by combined MOVPE technology, prepared for Appl Phys Lett. (2006) FTI A.F.Ioffe St. Petersburg Russia [15] V. Křápek, K. Kuldová, J. Humlíček, A.Hospodková, J. Oswald, J. Pangrác, K. Melichar, E. Hulicius, Shape of InAs/GaAs quantum dot structures, AFM, prepared for APL (2006) MU Brno - PřF - ÚFPF [16] E. Samochin, H.H. Huang, J. Toušková, E. Hulicius, L-W. Tu, J. Pangrác, K. Jurek, I. Drbohlav, Model of transport in heavily strained InAs/GaAs quantum dot structures, prepared for Mat. Res and Eng. (2006) 12) MFF UK Praha, 15) S-Y-S University, Kao-Shung, Taiwan

179 Current results D Papers at the International Conferences [67] P.Hazdra, J.Voves, E.Hulicius, J.Pangrác and Z.Šourek, Ultrathin InAs and modulated InGaAs layers in GaAs grown by MOVPE studied by photomodulated reflectance spectroscopy, Proc. of MRS meeting, Strasbourg , p. P-18/32 [68] M.Fulem, K.Růžička, V.Růžička, T.Šimeček, E.Hulicius, J.Pangrác, Naphthalene as a Reference Material for Vapour Pressure Measurement, Thermodynamics th-8th April 2005, Sesimbra, Portugal, Proc P. 12 [69] M.Fulem, K.Růžička, V.Růžička, T.Šimeček, E.Hulicius, J.Pangrác, Reliable extrapolation of vapour pressure data using simultaneous multi-property correlation for TMGa and TMAl, EW MOVPE XI, Lausane, June 6-8th 2005, Proc. p [70] A. Hospodková, V. Křápek, O. Bonaventurova, K. Kuldová, J. Pangrác, E. Hulicius, J. Oswald, T. Šimeček, Modification InAs/GaAs quantum dot shape in vertically correlated structures, EW MOVPE XI, Lausane, June 6-8th 2005, Proc. p [71] L. Dózsa, P. Hubik, A.L. Tóth, A. Pongrácz, E. Hulicius, A.A. Koós, Nanostrucure in In0.2Ga0.8As/GaAs quantum well structure, Hungarian Nanotechnolgy Symposium 2005, HUNS 2005, March, 2005., Budapest, Hungary, ISBN , Proc p. 52 [72] K.D. Moiseev, E.V. Ivanov, G.G. Zegrya, M.P. Mikhailova, Yu.P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, K. Melichar, T. Simecek, Room-temperature electroluminiscence of InAsSbP/InAsSb/AlAsSb qauntum wells grown by MOVPE, presented at NGS-12, 2005, Toulouse, France [73] J. Cihelka, V. Horká, S. Civiš, T. Šimeček, E. Hulicius, J. Oswald, J. Pangrác, A. Vicet, Y. Rouillard, A. Salhi, C. Alibert, R. Werner, and J. Koeth, Laser diode photoacoustic spectroscopy near 2.3 μm, MIOMD VII conference, Lancaster 2005, Proc. p. 62 [74] K. Moiseev, K.D. Moiseev, E.V. Ivanov, G.G. Zegrya, M.P. Mikhailova, Yu.P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, K. Melichar, T. Simecek, Electroluminescence AiSb/InAsSb/AlSb quantum well heterostructure grown by MOVPE, MIOMD VII conference, Lancaster 2005, Proc. p. 51 [75] L. Dózsa, P. Hubik, A.L. Tóth, A. Pongrácz, E. Hulicius, A.A. Koós, J. Oswald, NOrange-peel effect in InGaAs/GaAs anostrucure in In0.2Ga0.8As/GaAs quantum well structure, Hungarian Nanotechnolgy Symposium 2005, HUNS 2005, March, 2005., Budapest, Hungary, ISBN ISBN , Proc. p [76] F. Dubecky, [77] E. Hulicius, A. Hospodková, K. Kuldová, V. Křápek, J. Humlíček, J. Pangrác, J. Oswald, K. Melichar, and T. Šimeček, Characterization of MOVPE prepared InAs/GaAs quantum dots, accepted for Mezinárodní konference "Nanovědy, nanotechnologie a nanomateriály", NANO 05, , Brno, VUT, Fak. stroj. inž., Abstr. booklet p. 29 [78] K.Kuldová, J. Oswald, E. Hulicius, A. Hospodková, J. Pangrác, and K. Melichar, InAs/GaAs Quantum Dots with Long Wavelength Emission, accepted for Mezinárodní konference "Nanovědy, nanotechnologie a nanomateriály", NANO 05, , Brno, VUT, Fak. stroj. inž., Abstr. booklet p. 104 ==================================================== E Papers at the National Conferences [62] P.Hazdra, J,Voves, E.Hulicius, J.Pangrác, Ultrathin MOVPE Grown InAs Layers in GaAs Characterized by Photomodulated Reflectance Spectroscopy, Workshop 2005, Prague February 7-11, 2005 [63] J. Pangrác, J. Walachová, J. Vaniš, E. Hulicius, PROSTOROVĚ ROZLIŠENÁ BALISTICKÁ ELEKTRONOVÁ EMISNÍ SPEKTROSKOPIE BEES NA JEDNOTLIVÝCH KVANTOVÝCH TEČKÁCH InAs/GaAs UZAVŘENÝCH V AlGaAs/GaAs HETEROSTRUKTUŘE, NANOTEAM Kick-off meeting Brno,

180 MOVPE projects 2005/2006 EC Gas laser analysis by infrared spectr. (GLADIS) Cost RTD IST ( ) GAČR Kvantově rozměrné, napnuté polovodičové struktury připravené technologií MOVPE (garant postdoktorandského grantu - A Hospodková) 202/02/D069 ( ) GAČR Kvantové tecky s dlouhovlnnou emisí (projekt J.Oswalda)-202/03/0413 ( ) GAAV Mechanismus zářivé rekombinace v subnanometrových InAs/GaAs laserových strukturách (spoluřešitel je FEL ČVUT) A ( ) GAČR Měření tenze par organokovů (spoluřešitel prof. V. Růžičky)- 203/04/0484 ( ) EC Network of Excelence NoE - Photonic Integrated Components and Circuits (epix) - (koordinátor pracoviště přidruženého partnera č. 10) - ( ) GAČR Emise z kvantových teček (účast na projektu J.Pangráce)- 202/05/... ( ) GAČR Kvantové tečky - příprava, PL, teorie Oswald/Munzar/Hazdra- 202/06/... ( ) GAČR Kvantové tečky příprava, tvar, teorie, Krapek/Hospodková - 202/06/... ( ) EU STREP NEMIS ?? (Evaluace bodu, (23 práh), ale ) MŠMT Centrum CARDINAL ??

181 EU projekty, týkající se MID IR oblasti Control of Enviromental Pollution by Tunable Diode Laser Absorption Spectroscopy in the Spectral Range 2-4 µm ERB 3512 PL * (COP 813) ( ) Actaris SAS, DE, Schlumberger Industries SA, FR, University of Montpellier, FR, Thales, FR, Nanoplus, DE, Gaz de France, FR,, Gas Natural, ES, Omnisens, CH Advanced Room Temperature Mid-infrared Antimony-based Lasers by MOVPE (ADMIRAL) ERB INCO COPERNICUS 20CT97*BRITE/EURAM III-BRPR-CT ( ) EPICHEM, Bramborough, UK, AIXTRON, Aachen, Germany, RWTH, Aachen, Germany, UM2 University of Montpellier, France Gas Laser Analysis by Infra-red Spectroscopy (GLADIS) IST ( ) UM2 University of Montpellier, France, Ioffe Physicotechnical Institute St. Petersburg, Russia, Fraunhofer Institute, Garmisch-Partenkirchen, Germany, Institute of Electron Technology, Warsaw, Poland, IBSG, St. Petersburg, Russia

182 Historicky první aplikačně zaměřené práce zdrojích v (blízké) MIR oblasti byly podníceny pracemi na fluoridových vláknech s ještě nižším absolutním útlumem než mají křemenná vlákna (Dianov FIAN). Ternární a kvaternární sloučeniny na bázi Sb (FIAN (GIREMET), později FTI, Bel Lab., Kobayashi, ) - vše LPE Ale, Jiné aplikace viz úvod. Naše první práce: (můj první kontakt antimonidy a MIR lasery byl v letech 1976/77, ale,..) V osmdesátých letech ve FTI Ioffe spolupráce již možná byla.

183 The NEMIS project aims at the development and realisation of compact and packaged vertical-cavity surface-emitting semiconductor laser diodes (VCSEL) for the µm wavelength range and to demonstrate a pilot photonic sensing system for trace gas analysis using these new sources. The availability of electrically pumped VCSELs with their low-cost potential in this wavelength range that operate continuously at or at least near room-temperature and emit in a single transverse and longitudinal mode (i. e. single-frequency lasers) is considered a basic breakthrough for laser-based optical sensing applications. These devices are also modehop-free tuneable over a couple of nanometers via the laser current or the heatsink temperature. They are therefore ideal and unmatched sources for the spectroscopic analysis of gases and the detection of many environmentally important and/or toxic trace-gases, which is a market in the order of 10 million Euro today with an expected increase into several 100 million Euro with the availability of the new VCSELs

184

185 Optical Power [a.u.] C 50 C Excitation Current [ma] 0-10 EL Intensity [db] T=25 C T=50 C T=70 C I ex =70 ma Wavelength [nm]

186 Intensity (arb.u.) T = 60 C, I = ma T = 60 C, I = ma T = 52.7 C, I = ma T = 52.7 C, I = ma T = 46.4 C, I = ma T = 44.1 C, I = ma T = 44.1 C, I = ma T = 34.8 C, I = ma T = 34.8 C, I = ma T = 22.2 C, I = ma T = 22.2 C, I = ma T = 40.7 C, I = ma T = 34.8 C, I = ma T = 22.2 C, I = ma EL Intensity [arb. units] Absorption measurement CONDITIONS Ageing: T A =50 C, I A =100 ma Measuring: T M =25 C, I M =60 ma Ageing time [hours]

187 Methane Ethane x 10 Butane x 10 Intensity(a.u.) Wavenumber(cm -1 )

188 Growth and properties of InAs/In x Ga 1-x As/GaAs quantum dot structures E. Hulicius 1, J. Oswald 1, J. Pangrác 1, J. Vyskočil 1,3, A. Hospodková 1, K. Kuldová 1, K. Melichar 1, T. Šimeček 1, T. Mates 1, V. Křápek 4, J.Humlíček 4, J. Walachová 2, J. Vaniš 2, P. Hazdra 3, and M. Atef 3 MOVPE laboratory 1 Institute of Physics AS CR, v. v. i., Cukrovarnická 10, , Prague 6, Czech Republic 2 Institute of Photonics and Electronics AS CR, v. v. i., Chaberská 57, Prague 8, Czech Republic 3 CTU - FEE, Technická 2, , Prague 6, Czech Republic 4 MU - PřF, Kotlářská 2, Brno, Czech Republic

189 Vertically correlated structures Lateral shape of InAs/GaAs quantum dots in vertically correlated structures We found ways to control the energy difference between PL transitions by adjusting properly the spacer thickness, the number of QD layers, and the growth conditions (e.g. V/III ratio). We also found an efficient way to control the emission wavelength by changing the number of QD layers. A. Hospodková, E. Hulicius. J. Oswald, J. Pangrác, T. Mates, K. Kuldová, K. Melichar, and T. Šimeček, Properties of MOVPE InAs/GaAs quantum dots overgrown by InGaAs, J. Cryst. Growth, 298 (2007),

190 Spacer thickness Vertically correlated structures 1.8 QD elongation a/b circular QD [-110] b [110] a Blue = InAs Yellow = GaAs Spacer thickness [nm] Energy difference [mev] 70 E PL intensity [a.u.] Energy [ev] Spacer thickness [nm] J. Cryst. Growth 298 (2007)

191 Kvantové tečky

192 Magnetophotoluminescence, elongation Elongation of InAs/GaAs QD determined from magnetophotoluminescence measurements We use magnetophotoluminescence for determination of the lateral anisotropy of buried quantum dots. While the calculated shifts of the energies of higher radiative transitions in magnetic field are found to be sensitive to the lateral elongation, the shift of the lowest transition is determined mainly by the exciton effective mass. This behavior can be used for determining both the effective mass and the elongation fairly reliably from spectra displaying at least two resolved bands. V. Křápek, K. Kuldová, J. Oswald, A. Hospodková, E. Hulicius, J. Humlíček, Elongation of InAs/GaAs quantum dots from magnetophotoluminescence measurements, Appl. Phys. Lett. 89 (2006)

193 Magnetophotoluminescence, elongation Fig. 1 MPL energies calculated for a) circular and b), c) elongated QDs. Parameters used in the calculations: m* = 0:045m 0, ħ x = 100 mev, a) ħ y = 100meV (L = 1:0), b) ħ y = 150meV (L = 1:5), c) ħ y = 200meV (L = 2:0). The energies of the lowest transition at zero field were set to 1.1 ev (corresponding to the vertical confinement energy). Appl. Phys. Lett. 89 (2006)

194 Magnetophotoluminescence, elongation Fig. 2 Energy of the lowest MPL transition against magnetic field for elongated QDs. The experimental values (squares) and calculated energies with parameters ħ x = 100 mev, ħ y going from 100meV (thinner lines) to 200meV (thicker lines), and effective masses 0:03m 0 (dashed), 0.04m 0 (dotted), 0.05m 0 (dash dotted), 0.06m 0 (dash dot dotted), indicated by the arrows. The best agreement with the experimental data has been obtained for ħ y = 160meV and m* = 0.045m 0 (thick solid line). Appl. Phys. Lett. 89 (2006),

195 Magnetophotoluminescence, elongation Fig. 3 Energy of the first higher MPL transition against magnetic field for elongated QDs. The experimental values (squares) and calculated energies with parameters ħ x = 100 mev, m* going from 0.045m 0 (thinner lines) to 0.05m 0 (thicker lines), and ħ y values of 100meV (dashed), 120meV (dotted), 140meV (dash dotted), 160meV (dash dot dotted), 180meV (short dashed), 200meV (short dotted). The best agreement with the experimental data has been obtained for ħ y = 160meV and m* = 0.045m 0 (thick solid line). Appl. Phys. Lett. 89 (2006),

23.2., 9.3., 23.3., 13.4., 27.4.; 18.5. ZK

23.2., 9.3., 23.3., 13.4., 27.4.; 18.5. ZK POLOVODIČOVÉ nanotechnologie 12PN, ve FZÚ AV ČR, v. v. i., Cukrovarnická 10, letní sem. od 16.2. 2015, pondělí (14:30) (18:00) 23.2., 9.3., 23.3., 13.4., 27.4.; 18.5. ZK Eduard Hulicius hulicius@fzu.cz

Více

Jiří Oswald. Fyzikální ústav AV ČR v.v.i.

Jiří Oswald. Fyzikální ústav AV ČR v.v.i. Jiří Oswald Fyzikální ústav AV ČR v.v.i. I. Úvod Polovodiče Zákládní pojmy Kvantově-rozměrový jev II. Luminiscence Si nanokrystalů III. Luminiscence polovodičových nanostruktur A III B V IV. Aplikace Pásová

Více

Preparation of semiconductor nanomaterials 2014/2015

Preparation of semiconductor nanomaterials 2014/2015 Preparation of semiconductor nanomaterials 2014/2015 (prof. E. Hulicius, FZÚ AV ČR, v.v.i.,) 11. Semiconductor lasers (LD). Lesson about fluent and step parameter LDs (and LEDs) improving due to introduction

Více

E. Hulicius: 12NT (Polovodičové) nanotechnologie, FJFI, Cukrovarnická 10, zasedačka v budově A, 2014, pondělí 15:30/45 18:50 (4 hod.): 22.9., 29.9.

E. Hulicius: 12NT (Polovodičové) nanotechnologie, FJFI, Cukrovarnická 10, zasedačka v budově A, 2014, pondělí 15:30/45 18:50 (4 hod.): 22.9., 29.9. nanotechnologie E. Hulicius: 12NT (Polovodičové) nanotechnologie, FJFI, Cukrovarnická 10, zasedačka v budově A, 2014, pondělí 15:30/45 18:50 (4 hod.): 22.9., 29.9., 20.10. a 1.12.- exkurse, viz www.fzu.cz/~hulicius

Více

Preparation of semiconductor nanomaterials

Preparation of semiconductor nanomaterials Studijní program:nanotechnologie Studijní obor: Nanomateriály (organizuje prof. J. Šedlbauer, FPP TU v Liberci) Preparation of semiconductor nanomaterials 2014/2015 (prof. E. Hulicius, FZÚ AV ČR, v.v.i.,)

Více

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA) Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO

Více

1. Zdroje a detektory optického záření

1. Zdroje a detektory optického záření 1. Zdroje a detektory optického záření 1.1. Zdroje optického záření výkon a jeho časový průběh spektrální charakteristika a její stabilita v čase koherenční vlastnosti 1.1.1. Tepelné zdroje velmi malá

Více

Nanocon 1, Rožnov, 2009

Nanocon 1, Rožnov, 2009 nanotechnologie Nanocon 1, Rožnov, 2009 Nanostruktury pro optoelektroniku souboj kaskádových laserů a struktur typu W o reálnou aplikaci jako zdroj laserového záření v blízké infračervené oblasti Eduard

Více

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů

Více

Optoelektronika. Zdroje. Detektory. Systémy

Optoelektronika. Zdroje. Detektory. Systémy Optoelektronika Zdroje Detektory Systémy Optoelektronika Optoelektronické součástky využívají interakce záření a elektricky nabitých částic v polovodičích. 1839 E. Becquerel - Fotovoltaický jev 1873 W.

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Polovodičové zdroje fotonů Přehledový učební text Roman Doleček Liberec 2010 Materiál vznikl v rámci projektu ESF

Více

Polovodičové senzory. Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy

Polovodičové senzory. Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy Polovodičové senzory Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy Polovodičové materiály elementární polovodiče Elementární

Více

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA)

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA) Polovodičové diody varikap, usměrňovací dioda, Zenerova dioda, lavinová dioda, tunelová dioda, průrazy diod Polovodičové diody (diode) součástky s 1 PN přechodem varikap usměrňovací dioda Zenerova dioda

Více

Fotonické nanostruktury (nanofotonika)

Fotonické nanostruktury (nanofotonika) Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Fotonické nanostruktury (alias nanofotonika)

Fotonické nanostruktury (alias nanofotonika) Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (alias nanofotonika) Jan Soubusta 27.10. 2017 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5.

Více

Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna

Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna Tato otázka přepokládá znalost otázky č. - polovodiče. Doporučuji ujasnit

Více

Preparation of semiconductor nanomaterials

Preparation of semiconductor nanomaterials Nanotechnologie Studijní program: Studijní obor: Nanomateriály (organizuje prof. J. Šedlbauer, FPP TU v Liberci) Preparation of semiconductor nanomaterials 2013/2014 (prof. E. Hulicius, FZÚ AV ČR, v.v.i.,)

Více

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D.

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D. Napěťový průraz polovodičových přechodů Zvyšování napětí na přechodu -přechod se rozšiřuje, ale pouze s U (!!) - intenzita elektrického pole roste -překročení kritické hodnoty U (BR) -vzrůstu závěrného

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny. Polovodičové lasery Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny. Energetické hladiny tvoří pásy Nejvyšší zaplněný pás je valenční, nejbližší vyšší energetický pás dovolených

Více

VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných

Více

11. Polovodičové diody

11. Polovodičové diody 11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako

Více

ELEKTRONICKÉ SOUČÁSTKY

ELEKTRONICKÉ SOUČÁSTKY ELEKTRONICKÉ SOUČÁSTKY VZORY OTÁZEK A PŘÍKLADŮ K TUTORIÁLU 1 1. a) Co jsou polovodiče nevlastní. b) Proč je používáme. 2. Co jsou polovodiče vlastní. 3. a) Co jsou polovodiče nevlastní. b) Jakým způsobem

Více

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické). PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost

Více

Dioda - ideální. Polovodičové diody. nelineární dvojpól funguje jako jednocestný ventil (propouští proud pouze jedním směrem)

Dioda - ideální. Polovodičové diody. nelineární dvojpól funguje jako jednocestný ventil (propouští proud pouze jedním směrem) Polovodičové diody: deální dioda Polovodičové diody: struktury a typy Dioda - ideální anoda [m] nelineární dvojpól funguje jako jednocestný ventil (propouští proud pouze jedním směrem) deální vs. reálná

Více

Blue-light LED, modrá

Blue-light LED, modrá Blue-light LED, modrá je dobrá Jan Soubusta Společná laboratoř optiky UP a FZÚ AVČR Obsah přednášky Nobelova cena Laureáti za fyziku 2014 Historický přehled Co je to LED? Výhody LED? Nobelova cena za fyziku

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Optoelektronika Přednáška č. 8 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Optoelektronika 1 Optoelektronika zabývá se přeměnou elektrické

Více

volno na konzultace či samostudium , příprava na Mikuláše a na Vánoce.

volno na konzultace či samostudium , příprava na Mikuláše a na Vánoce. nanotechnologie E. Hulicius: 12NT (Polovodičové) nanotechnologie, FJFI Od 3.10. 2018, čtvrtek, pak pondělí od 15:30/45+ 4 hod. Eduard Hulicius: https://www.fzu.cz/~hulicius/ ve FZÚ Cukrovarnická 10, budova

Více

Elektrické vlastnosti pevných látek

Elektrické vlastnosti pevných látek Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více

Fyzika pevných látek. doc. RNDr. Jan Voves, CSc. Fyzika pevných látek Virtual Labs OES 1 / 4

Fyzika pevných látek. doc. RNDr. Jan Voves, CSc. Fyzika pevných látek Virtual Labs OES 1 / 4 Garant předmětu: doc. RNDr. Jan Voves, CSc. voves@fel.cvut.cz Otevřené Elektronické Systémy Fyzika pevných látek Virtual Labs OES 1 / 4 Čím se zde bude zabývat? Obecné základy fyziky pevných látek Základy

Více

Středoškolská odborná činnost 2005/2006. Kvantové tečky

Středoškolská odborná činnost 2005/2006. Kvantové tečky Středoškolská odborná činnost 2005/2006 Obor 02 fyzika Kvantové tečky Autor: Adam Janečka Mendelovo gymnázium, Opava, příspěvková org. Komenského 5, 746 01 Opava, 4. ročník Konzultant práce: Ing. Jiří

Více

Optoelektronika. Katedra fyzikální elektroniky FJFI ČVUT

Optoelektronika. Katedra fyzikální elektroniky FJFI ČVUT Optoelektronika Katedra fyzikální elektroniky FJFI ČVUT Letní semestr 2017-2018, 26. února - 18. května 2018, 2 (z+zk), pro bakalářské obory FE, LASE a magisterský obor 2IT Pondělí 11.0 1.15 přednášky:

Více

Studijní opora pro předmět Technologie elektrotechnické výroby

Studijní opora pro předmět Technologie elektrotechnické výroby Studijní opora pro předmět Technologie elektrotechnické výroby Doc. Ing. Václav Kolář Ph.D. Předmět určen pro: Fakulta metalurgie a materiálového inženýrství, VŠB-TU Ostrava. Navazující magisterský studijní

Více

FEKT VUT v Brně ESO / P5 / J.Boušek 3 FEKT VUT v Brně ESO / P5 / J.Boušek 4

FEKT VUT v Brně ESO / P5 / J.Boušek 3 FEKT VUT v Brně ESO / P5 / J.Boušek 4 Využití vlastností polovodičových přechodů Oblast prostorového náboje elektrické pole na přechodu Propustný směr difůze majoritních nosičů Závěrný směr extrakce minoritních nosičů Rekombinace na přechodu

Více

Mikroskopie se vzorkovací sondou. Pavel Matějka

Mikroskopie se vzorkovací sondou. Pavel Matějka Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití

Více

Charakteristiky optoelektronických součástek

Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Optoelektronické polovodičové součástky

Optoelektronické polovodičové součástky Optoelektronické polovodičové součástky směr převodu energie optická na elektrickou elektrická na optickou solární články fotodetektory LED LASER Mechanizmy absorpce a emise fotonů mezipásové přechody

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

FEKT VUT v Brně ESO / P9 / J.Boušek 1 FEKT VUT v Brně ESO / P9 / J.Boušek 2. Uzemněné hradlo - závislost na změně parametrů

FEKT VUT v Brně ESO / P9 / J.Boušek 1 FEKT VUT v Brně ESO / P9 / J.Boušek 2. Uzemněné hradlo - závislost na změně parametrů Unipolární tranzistory Řízení pohybu nosičů náboje elektrickým polem: FET [Field - Effect Transistor] Proud přenášen jedním typem nosičů náboje (unipolární): - majoritní nosiče v inverzním kanálu - neuplatňuje

Více

11-1. PN přechod. v přechodu MIS (Metal - Insolator - Semiconductor),

11-1. PN přechod. v přechodu MIS (Metal - Insolator - Semiconductor), 11-1. PN přechod Tzv. kontaktní jevy vznikají na přechodu látek s rozdílnou elektrickou vodivostí a jsou základem prakticky všech polovodičových součástek. v přechodu PN (který vzniká na rozhraní polovodiče

Více

Využití fotonických služeb e-infrastruktury pro přenos ultrastabilních optických frekvencí

Využití fotonických služeb e-infrastruktury pro přenos ultrastabilních optických frekvencí Využití fotonických služeb e-infrastruktury pro přenos ultrastabilních optických frekvencí Ondřej Číp, Martin Čížek, Lenka Pravdová, Jan Hrabina, Václav Hucl a Šimon Řeřucha (ÚPT AV ČR) Josef Vojtěch a

Více

ELEKTRONICKÉ PRVKY 7 Výkonové a spínací aplikace tranzistorů 7.1 Ztrátový výkon a chlazení součástky... 7-1 7.2 První a druhý průraz bipolárního

ELEKTRONICKÉ PRVKY 7 Výkonové a spínací aplikace tranzistorů 7.1 Ztrátový výkon a chlazení součástky... 7-1 7.2 První a druhý průraz bipolárního Bohumil BRTNÍK, David MATOUŠEK ELEKTRONICKÉ PRVKY Praha 2011 Tato monografie byla vypracována a publikována s podporou Rozvojového projektu VŠPJ na rok 2011. Bohumil Brtník, David Matoušek Elektronické

Více

Fotovodivost. Destička polovodiče s E g a indexem lomu n 1. Dopadající záření o intenzitě I 0 a hν E g. Do polovodiče pronikne záření o intenzitě:

Fotovodivost. Destička polovodiče s E g a indexem lomu n 1. Dopadající záření o intenzitě I 0 a hν E g. Do polovodiče pronikne záření o intenzitě: Fotovodivost Destička polovodiče s E g a indexem lomu n 1. Dopadající záření o intenzitě I 0 a hν E g. Do polovodiče pronikne záření o intenzitě: Vznikne g párů díra elektron. Přírůstek koncentrace a vodivosti:

Více

Emise vyvolaná působením fotonů nebo částic

Emise vyvolaná působením fotonů nebo částic Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Neřízené polovodičové prvky

Neřízené polovodičové prvky Neřízené polovodičové prvky Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Neřízené polovodičové spínače neobsahují

Více

Mikroskopie rastrující sondy

Mikroskopie rastrující sondy Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor

Více

Projekt Pospolu. Polovodičové součástky diody. Pro obor M/01 Informační technologie

Projekt Pospolu. Polovodičové součástky diody. Pro obor M/01 Informační technologie Projekt Pospolu Polovodičové součástky diody Pro obor 18-22-M/01 Informační technologie Autorem materiálu a všech jeho částí je Ing. Petr Voborník, Ph.D. Polovodičová součástka je elektronická součástka

Více

VY_32_INOVACE_ENI_2.MA_13_Nekoherentní zdroje záření

VY_32_INOVACE_ENI_2.MA_13_Nekoherentní zdroje záření Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ENI_2.MA_13_Nekoherentní zdroje záření Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl

Více

A8B32IES Úvod do elektronických systémů

A8B32IES Úvod do elektronických systémů A8B32IES Úvod do elektronických systémů 29.10.2014 Polovodičová dioda charakteristiky, parametry, aplikace Elektronické prvky a jejich reprezentace Ideální dioda Reálná dioda a její charakteristiky Porovnání

Více

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií

E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií Polovodiče To jestli nazýváme danou látku polovodičem, závisí především na jejích vlastnostech ve zvoleném teplotním oboru. Obecně jsou to látky s 0 ev < Eg < ev. KOV POLOVODIČ E g IZOLANT Zakázaný pás

Více

Glass temperature history

Glass temperature history Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Elektronické a optoelektronické součástky

Elektronické a optoelektronické součástky Garant předmětu: prof. Ing. Pavel Hazdra, CSc. hazdra@fel.cvut.cz Otevřené Elektronické Systémy Virtual Labs OES 1 / 4 Čím se zde bude zabývat? Principy činnosti struktur užívaných k ovládání elektronů

Více

Učební osnova předmětu ELEKTRONIKA

Učební osnova předmětu ELEKTRONIKA Učební osnova předmětu ELEKTRONIKA Obor vzdělání: 2-1-M/002 Elektrotechnika Forma vzdělávání: denní studium Ročník kde se předmět vyučuje: druhý, třetí Počet týdenních vyučovacích hodin ve druhém ročníku:

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

2.3 Elektrický proud v polovodičích

2.3 Elektrický proud v polovodičích 2.3 Elektrický proud v polovodičích ( 6 10 8 10 ) Ωm látky rozdělujeme na vodiče polovodiče izolanty ρ ρ ( 10 4 10 8 ) Ωm odpor s rostoucí teplotou roste odpor nezávisí na osvětlení nebo ozáření odpor

Více

MŘÍŽKY A VADY. Vnitřní stavba materiálu

MŘÍŽKY A VADY. Vnitřní stavba materiálu Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.

Více

Otázky pro samotestování. Téma1 Sluneční záření

Otázky pro samotestování. Téma1 Sluneční záření Otázky pro samotestování Téma1 Sluneční záření 1) Jaká je vzdálenost Země od Slunce? a. 1 AU b. 6378 km c. 1,496 x 10 11 m (±1,7%) 2) Jaké množství záření dopadá přibližně na povrch atmosféry? a. 1,60210-19

Více

elektrony v pevné látce verze 1. prosince 2016

elektrony v pevné látce verze 1. prosince 2016 F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1

Více

Charakterizace koloidních disperzí. Pavel Matějka

Charakterizace koloidních disperzí. Pavel Matějka Charakterizace koloidních disperzí Pavel Matějka Charakterizace koloidních disperzí 1. Úvod koloidní disperze 2. Spektroskopie kvazielastického rozptylu 1. Princip metody 2. Instrumentace 3. Příklady použití

Více

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 8. Nelineární obvody nesetrvačné dvojpóly 1 Obvodové veličiny nelineárního dvojpólu 3. 0 i 1 i 1 1.5

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Optické vlastnosti

Více

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated

Více

Otázky pro samotestování. Téma1 Sluneční záření

Otázky pro samotestování. Téma1 Sluneční záření Otázky pro samotestování Téma1 Sluneční záření 1) Jaká je vzdálenost Země od Slunce? a. 1 AU b. 6378 km c. 1,496 x 10 11 m (±1,7%) 2) Jaké množství záření dopadá přibližně na povrch atmosféry? a. 1,60210-19

Více

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25.2.2013 11.3.2013 Příprava Opravy

Více

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá

Více

Anihilace pozitronů v polovodičích

Anihilace pozitronů v polovodičích záchyt pozitronů ve vakancích mechanismy uvolnění vazebné energie: 1. tvorba páru elektron-díra 2. ionizace vakance 3. emise fononu záchyt pozitronů ve vakancích nábojový stav vakance: 1. záporně nabitá

Více

Využití infrastruktury CESNET pro distribuci signálu optických atomových hodin

Využití infrastruktury CESNET pro distribuci signálu optických atomových hodin Využití infrastruktury CESNET pro distribuci signálu optických atomových hodin Ondřej Číp, Martin Čížek, Lenka Pravdová, Jan Hrabina, Břetislav Mikel, Šimon Řeřucha a Josef Lazar (ÚPT AV ČR) Josef Vojtěch,

Více

Studentské projekty FÚUK 2013/2014

Studentské projekty FÚUK 2013/2014 Studentské projekty FÚUK 2013/2014 Měření propustnosti tenké ITO desky a kalibrace osvětlení Konzultant: Mgr. Jakub Zázvorka (zazvorka.jakub@gmail.com) Tenké filmy polovodičového materiálu ITO ( oxid india

Více

r W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes.

r W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes. r. 1947 W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes. 2.2. Polovodiče Lze je definovat jako látku, která má elektronovou bipolární vodivost, tj.

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů

FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů (elektrony nebo díry) pracují s kanálem jednoho typu vodivosti

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Unipolárn rní tranzistory Přednáška č. 5 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Unipolárn rní tranzistory 1 Princip činnosti

Více

ELEKTRONICKÉ SOUČÁSTKY

ELEKTRONICKÉ SOUČÁSTKY TEMATICKÉ OKRUHY ELEKTRONICKÉ SOUČÁSTKY 1. Základní pojmy fyziky polovodičů. Pásová struktura její souvislost s elektronovým obalem atomu, vliv na elektrickou vodivost materiálů. Polovodiče vlastní a nevlastní.

Více

Měření na unipolárním tranzistoru

Měření na unipolárním tranzistoru Měření na unipolárním tranzistoru Teoretický rozbor: Unipolární tranzistor je polovodičová součástka skládající se z polovodičů tpu N a P. Oproti bipolárnímu tranzistoru má jednu základní výhodu. Bipolární

Více

Vybrané spektroskopické metody

Vybrané spektroskopické metody Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky

Více

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se

Více

Polovodičové detektory

Polovodičové detektory Polovodičové detektory vodivostní pás záchytové nebo rekombinační centrum valenční pás Polovodičové detektory pn přechod díry p typ n typ elektrony + + + depleted layer ~ 100 m Polovodičové detektory pn

Více

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové

Více

Chování látek v nanorozměrech

Chování látek v nanorozměrech Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje

Více

RŮST POLOVODIČOVÝCH HETEROSTRUKTUR METODOU ORGANOKOVOVÉ EPITAXE Z PLYNNÉ FÁZE

RŮST POLOVODIČOVÝCH HETEROSTRUKTUR METODOU ORGANOKOVOVÉ EPITAXE Z PLYNNÉ FÁZE RŮST POLOVODIČOVÝCH HETEROSTRUKTUR METODOU ORGANOKOVOVÉ EPITAXE Z PLYNNÉ FÁZE Eduard Hulicius Fyzikální ústav AV ČR v. v. i. Praha 1 Úvod Polovodičové heterostruktury a zvláště nanostruktury co nejdokonalejší

Více

Proč by se průmysl měl zabývat výzkumem nanomateriálů

Proč by se průmysl měl zabývat výzkumem nanomateriálů Proč by se průmysl měl zabývat výzkumem nanomateriálů Měření velikost částic Jak vnímat nanomateriály Pigmenty x nanopigmenty Nové vlastnosti? Proč se věnovat studiu nanomateriálů Velikost (cm) 10-1000

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9. Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné

Více

Proč elektronový mikroskop?

Proč elektronový mikroskop? Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.05 Integrovaná střední škola technická Mělník, K učilišti 2566,

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

TechoLED H A N D B O O K

TechoLED H A N D B O O K TechoLED HANDBOOK Světelné panely TechoLED Úvod TechoLED LED světelné zdroje jsou moderním a perspektivním zdrojem světla se širokými možnostmi použití. Umožňují plnohodnotnou náhradu žárovek, zářivkových

Více

Základní typy článků:

Základní typy článků: Základní typy článků: Články z krystalického Si c on ta c t a ntire fle c tio n c o a tin g Tenkovrstvé články N -ty p e P -ty p e Materiály a technologie pro fotovoltaické články Nové materiály Gratzel,

Více

Metody charakterizace

Metody charakterizace Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:

Více