Josef Pojar Transitivita znamená, že aplikace transformace na libovolný daný interval I 1 ho roztahuje

Rozměr: px
Začít zobrazení ze stránky:

Download "Josef Pojar 31.1.2007. Transitivita znamená, že aplikace transformace na libovolný daný interval I 1 ho roztahuje"

Transkript

1 Sférické kyvadlo Josef Pojar Teoretický úvod 1.1 Chaotický pohyb Abychom mohli klasifikovat chování systému jako chaotické musí systém vykazovat následující vlastnosti : musí být citlivý na počáteční podmínky musí být topologicky tranzitivní jeho periodické orbity musí být husté Citlivost k počátečním podmínkám znamená, že dvě blízké trajektorie ve fázovém prostoru se s rostoucím časem rozbíhají (exponenciálně). Jinak řečeno, malá změna v počátečních podmínkách vede po čase k velmi odlišnému výsledku. Systém se chová identicky pouze když jeho počáteční konfigurace je úplně stejná. Příkladem takové citlivosti je tzv. motýlí efek, kdy mávnutí motýlích křídel vyvolá jen nepatrné změny v atmosféře, které ale v průběhu času mohou vést až k tak dramatickým změnám, jako je výskyt tornáda. Mávnutí křídel motýla zde představuje malou změnu počátečních podmínek systému, která ale způsobí řetěz událostí vedoucí k rozsáhlým jevům, jako jsou tornáda. Kdyby motýl nemávl svými křídly, trajektorie systému by mohla být zcela odlišná. Transitivita znamená, že aplikace transformace na libovolný daný interval I 1 ho roztahuje až do doby, kdy překryje libovolný další daný interval I 2. Transitivita, husté periodické body a citlivost na počáteční podmínky se dají rozšířit na libovolný metrický prostor. 1.2 Atraktory a podivné atraktory Jedním způsobem vizualizace chaotického pohybu, nebo opravdu libovolného typu pohybu, je vytvoření fázového diagramu pohybu. V takovém diagramu je čas implicitní a každá osa reprezentuje jednu dimenzi stavu. Například někdo kreslí pozici kyvadla vůči jeho rychlosti. Kyvadlo v klidu bude zobrazeno jako bod a kyvadlo v periodickém pohybu bude nakresleno jako jednoduchá uzavřená křivka (viz obrázek 1). 1

2 Obrázek 1: Kyvadlo v periodickém pohybu Často je na fázových diagramech vidět, že většina stavových trajektorií se přibližuje a obmotává nějakou obecnou limitu. Systém končí ve stejném pohybu pro všechny počáteční stavy v oblasti okolo tohoto pohybu, téměř jako by byl systém k tomuto pohybu (trajektorii fázového prostoru) přitahován. Například jestliže připojíme ke kyvadlu tlumič (nebo jednoduše připustíme působení tíhové síly), bez ohledu na jeho počáteční pozici a rychlost se bude blížit ke klidovému stavu - nebo přesněji - dosáhne ho v limitě. Trajektorie ve fázovém diagramu budou všechny spirály, směřující ke středu, a nebudou již tvořit množinu oválů. Na obrázku 2 je vidět fázový prostor pro kyvadlo, když připouštíme působení tíhové síly. Tento bod ve středu - stav, kdy je kyvadlo v klidu - se nazývá atraktor. Atraktory jsou často spojeny s disipativnímu systémy, kde některý prvek (v našem případě tíhová síla) spotřebovává energii. Obrázek 2: Kyvadlo s tíhovou silou Takový atraktor můžeme nazývat bodovým atraktorem. Ne všechny atraktory jsou body. Některé jsou jednoduchými smyčkami, nebo složitějšími dvojitými smyčkami (pro ty je potřeba více než dva stupně volnosti). A některé jsou skutečnými fraktály: ty se nazývají 2

3 podivné atraktory, což jsou atraktory s velkolepými detaily a velkou složitostí. Systémy s atraktory ve tvaru smyčky vykazují periodický pohyb. Systémy se složitějšími rozdělenými smyčkami vykazují kvaziperiodický pohyb. A systémy s podivnými atraktory vykazují chaotické chování. 1.3 Fraktály Obecná definice: Fraktál je takový útvar, při jehož zvětšení dostaneme opět stejný obraz, bez ohledu na měřítko Fraktál je geometrický objekt, který má následující vlastnosti: je soběpodobný Znamená to, že pokud daný útvar pozorujeme v jakémkoliv měřítku, v jakémkoliv rozlišení, pozorujeme stále opakující se určitý charakteristický tvar. Má na první pohled velmi složitý tvar, ale je generován opakovaným použitím jednoduchých pravidel. Obrázek 3: Mandelbrotova množina Fraktály jsou nejsložitější geometrické objekty, které současná matematika zkoumá. Termín fraktál použil poprvé matematik Benoît Mandelbrot v roce Pochází z latinského fractus rozbitý. Podobné objekty byly známy v matematice již dlouho před tím, jako 3

4 například Van Kochova vločka. Ta vychází na svém počátku z rovnostranného trojúhelníku. Vždy o třetinu menší trojúhelníky se přidávají na obvod, doprostřed každé strany. Vzniklý útvar má jednu úžasnou vlastnost, a to nekonečný obvod. Obrázek 4: Van Kochova vločka 2 Sférické kyvadlo s magnety 2.1 Sférické kyvadlo s magnety obecně Obrázek 5: Sférické kyvadlo s několika magnety Obrázky 1 a 2 jsem nakreslil v matlabu. Řešil jsem počáteční úlohu pro diferenciální rovnici druhého řádu pro matenatické kyvadlo, kterou jsem převedl na soustavu dvou rovnic o dvou neznámých, y 1(t) = y 2 (t) y 2(t) = Ry 2 (t) + c sin y 1 (t) kde R je raálné číslo, které je rovno součinu ml. Reálné číslo m představuje hmotnost hmotného bodu a reálné číslo l délku závěsu kyvadla. Reálné číslo c je rovno součinu 4

5 mg, kde reálné číslo g představuje tíhovou sílu. Samozřejmě že toto není příliš zajímavá úloha a i výsledný pohyb kyvadla je celkem předpovídatelný. Ale je možné sestrojit kyvadlo (viz obrázek 5), které bude extrémě citlivé na počáteční podmínky. Stačí přidat třetí rozměr a několik magnetů na desku pod kyvadlo. Několik magnetů tedy umístíme na (nemagnetické) podložce do soustavy souředné a kyvadlo umístíme nad ní. Kyvadlo má na svém konci kovovou kuličku (místo hmotného bodu), která je v nějaké výšce nad podložkou. Síly, které působí na takto sestrojené kyvadlo jsou síla magnetická (působí na kovovou kuličku), síla tíhová a síla třecí v závěsu. Můžeme ještě uvažovat odpor vzduchu kuličky a také závěsu. Kyvadlo je v nějaké počáteční poloze, může začínat v klidu, nebo mu udělíme nějaké počateční zrychlení, udělá několik smyček díky tomu, že je přitahováno magnety a působí na něj tíhová síla, ale nakonec najde místo, kde se zataví. Bud to bude přímo nad jedním z magnetů, nebo někde mezi magnety. To záleží hlavně na tom, jak vysoko je kyvaldo nad deskou s magnety a jakou mají magnety sílu. I když jsou magnety dostatečně silné, aby si přitáhly kyvadlo a překovaly tak tíhovou sílu (v dalším textu budu již uvažovat pouze tuto situaci), může se při velice speciálních počátečních podmínkách stát to, že kyvadlo se nakonec zastaví někde mezi magnety. Toto řešení je pak velice nestabilní. Z toho je vidět, že řešit tuto úloho už bude docela zajímavé a výsledný pohyb kyvadla nebude triviální. Jak později ukáži na příkladech, pokud za určitých podmínek jen nepatrně změníme počáteční podmínky, pohyb kyvadla i jeho výsledná poloha může být velice odlišný a těžko předvídatelný. Tento pohyb se dá dokonce označit jako chaotický. Bude tím více chaotický, čím menší bude činitel útlumu (například třecí síla). 2.2 Speciální rovnice sférického kyvadla s magnety Namodelovat obecně pohyb tohoto kyvadla, popsat ho nějakou soustavou diferenciálních rovnic a tuto soustavu řešit je velice složitý úkol. Celou situaci si tedy značně zjednoduším. Magnety budou mít stejnou sílu, budou jen tři a budou umístěny do vrcholů rovnostranného trojúhelníka. Uvažujme kyvadlo, popsané již výše, ve výšce d nad deskou s magnety. Kyvalo bude mít nekonečně dlouhý závěs. To je samozřejmě nereálný požadavek, ale díky tomu se z d stane reálná konstanta a také vzdálenost kyvadla od magnetů se bude počítat jednodušeji. Přináší nám to ale jeden problém, na takto sestrojené kyvadlo by tíhová síla neměla žádný vliv, byla by vyrušena pevností závěsu. Kvůli tomu bude na kyvadlo působit jeho vlastní vratná síla kyvadla c, která nahradí sílu tíhovou. Bude to tedy konstantní síla, která směřuje do středu trojúhelníku, tvořeného magnety. Třesí sílu si označíme R. Znovu to bude reálná konstanta (můžeme si ji představit jakou výsledek po složení všech sil třecích a odporových působících na kyvadlo). Počet magnetů je s a pokud si desku s magnety představíme jako soustavu souřadnou, jsou umístěné v místech (x i, y i ). kde x i je x-ová souřadnice i-tého magnetu a y i je y-ová souřadnice i-tého magnetu. Soustava diferenciálních rovnic druhého řádu, která popisuje pohyb tohoto kyvadla je uvedena v Fractals for the Classroom: Complex Systems and Mandelbrot Set, str Vypadá takto: x (t) + Rx (t) + cx(t) s i=1 x i x(t) d2 + (x i x(t)) 2 + (y i y(t)) 23 = 0 5

6 a y (t) + Ry (t) + cy(t) s i=1 y i y(t) d2 + (x i x(t)) 2 + (y i y(t)) 23 = 0 Poznamenejme znovu, že kyvadlo má nekonečně dlouhý závěs. Výška d nad podložkou je tedy konstantní, při pohybu kyvadla se nemění. 3 Řešení 3.1 Jednodušší řešení Jako počáteční pomíky budeme uvažovat vždy nulovou počáteční rychlost (tedy x (0) = 0, y (0) = 0) a nějakou počáteční polohu různou od středu rovnostranného trojúhelníka tvořeného magnety. Obrázek 6 ukazuje, jak se mění x-ová a y-ová souřadnice (tedy jak se kyvadlo pohybuje) v čase t. Konstanty jsou: R=0.05, c=0.2, d=0.25. Počáteční podmínky jsou: x(0) = 2.5, y(0) = 2.5 Obrázek 6: x,y,t Na obrázku 7 je znázorněna ta samá situace, akorát osa x znázorňuje x-ovou souřadnici a osa y y-ovou souřadnici. Když zadám jiné počáteční podmínky, výsledek se bude hodně lišit. Je to vidět na obrázcích 7 a 8. Zde se nepatrně změnila počáteční poloha kyvadla. 6

7 Obrázek 7: x,y Obrázek 8: jiné počáteční podmínky 3.2 Složitější rěšení Obrázek 9: jiné počáteční podmínky Nyní si představme, že jsme soustavu vyřešily pro všechny body (představující počáteční polohu kyvadla) na desce (kruhová oblast). Tedy víme, kde se nakonec zastavilo kyvadlo, nad kterým magnetem se zastavilo, nebo jestli se zastavilo mezi nimy. Tady už připadá v úvahu jen možnost, kdy se kyvadlo zastaví nad středem trojúhelníku, tvořeným magnety (to vyplývá a toho, jak jsme si situaci zjednodušili). Při řešení soustavi přiřadíme každému 7

8 bodu desky barvu podle toho, kde se nakonec kyvadlo zastaví. Pokud to bude nad jedním z magnetů, bod, ze kterého jsme vyšli bude mít modrou, červenou, nebo zelenou barvu. Pokud se zastaví nad počátkem, bod, ze kterého jsme vyšli bude mít černou barvu. Samozřejmě že úlohu neřešíme pro úplně všecny body kruhové oblasti. Sestrojíme sít bodů s nějakou hustotou. Výpočet soustavy pro velké množství bodů je časově náročná záležitost, není tedy vhodné sestrojit sít zbytečně hustou. Pro již zadané konstanty máme řešení na obrázku 10. Obrázek 10: Ukázka složitějšího řešení 3.3 Změna konstant Nyní budeme měnit postupně konstanty R, c a d Změna R Budeme měnit konstantu R (tření) z hodnoty 0.02 do hodnoty 0.2. Na prvním obrázku můžeme vidět kolem každého magnetu malá pole stability, ale jinak je to velice náhodné. Poté se tyto náhodné oblast mění a vznikají v nich pole, která vypadají jako by byla vyplněna jednou barvou. Říká se jim Lakes of Wada a jsou zajímavá hlavně kvůli jejich fraktálním vlastnostem. Kdyby jsme naši sít zvolili dostatečně hustou, provedli výpočty a výsledný obrázek pořád přibližovali, tyto oblasti by vypadaly pořád velice podobně. Nakonec pár posledních obrázků je velice jednoduchých a odpovídají tomu, co by jsme 8

9 očekávali. Zvyšující se tření bere kyvadlu energiji a i jeho cesta je méně chaotická a samozřejmě i kratší. 9

10 10

11 11

12 12

13 3.3.2 Změna c Nyní budeme měnit c z hodnoty 0.01 na hodnotu 0.5. Můžeme sledovat dva hlavní efekty. Jeden je, že jak se tíha zvyšuje, spojená pole se rozpadají a jsou více náhodná. A druhý je, že to, že trajektorie kyvadla bude vést přímo do středu trojúhelníka a kyvadlo tam zůstane, se stává více pravděpodobné, i když je to velice nestabilní poloha. Nakonec se to stane velice pravděpodobným řešením. 13

14 14

15 15

16 16

17 17

18 3.3.3 Změna d Nakonec budeme měnit konstantu d (vzdálenost od podložky) od 0.1 do 0.7. Na začátku má obrázek několik velkých oblastí stability, několik Lakes of Wada oblastí, ale většinou je nahodný. Jak se d zvětšuje, velké oblasti stability se zmenšují a zakulacují a Lakes of Wada se také mění na menší oblasti stability. Nakonec se síla reprezentovaná konstantou c stane dominantní. 18

19 19

20 20

21 21

22 4 Závěr Snažil jsem se ukázat, že i řešení této úlohy, která byla značně zjednodušená je docela zajímavé a chování tohoto systému může být chaotické. Do budoucna bych se rád pokusil provedená zjednodušení odstranit, nebo je alespoň zmírnit a přiblížit se tak ke skutečnosti. Samozřejmě se tak i změní celá soustava diferenciálních rovnic, která by měla řešit tento problém. 22

Fraktály. Ondřej Bouchala, George Dzhanezashvili, Viktor Skoupý

Fraktály. Ondřej Bouchala, George Dzhanezashvili, Viktor Skoupý Fraktály Ondřej Bouchala, George Dzhanezashvili, Viktor Skoupý 19.6.2012 Abstrakt Tato práce se zabývá vlastnostmi a vykreslováním fraktálů. Popisuje fraktální dimenzi (soběpodobnostní a mřížkovou), dále

Více

Nelineární systémy a teorie chaosu

Nelineární systémy a teorie chaosu Martin Duspiva KOIF2-2007/2008 Definice Lineární systém splňuje podmínky linearita: f (x + y) = f (x) + f (y) aditivita: f (αx) = αf (x) Každý systém, který nesplňuje jednu z předchozích podmínek nazveme

Více

Dynamické systémy 4. Deterministický chaos. Ing. Jaroslav Jíra, CSc.

Dynamické systémy 4. Deterministický chaos. Ing. Jaroslav Jíra, CSc. Dynamické systémy 4 Deterministický chaos Ing. Jaroslav Jíra, CSc. Jednorozměrné mapy Jednorozměrné mapy (též známé jako diferenční rovnice) jsou matematické systémy, které modelují vývoj proměnné v čase

Více

Experimentální realizace Buquoyovy úlohy

Experimentální realizace Buquoyovy úlohy Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

RNDr. Martin Pivokonský, Ph.D.

RNDr. Martin Pivokonský, Ph.D. Jak souvisí fraktální geometrie částic s vodou, kterou pijeme? RNDr. Martin Pivokonský, Ph.D. Ústav pro hydrodynamiku AV ČR, v. v. i., Pod Paťankou 30/5, 166 12 Praha 6 Tel.: 233 109 068 E-mail: pivo@ih.cas.cz

Více

Fraktály. Kristina Bártová. Univerzita Karlova v Praze 9.prosince

Fraktály. Kristina Bártová. Univerzita Karlova v Praze 9.prosince Fraktály Kristina Bártová Univerzita Karlova v Praze 9.prosince 2008 kristinka.b@tiscali.cz Úvodní informace Fraktální geometrie je samostatná a dnes již poměrně rozsáhlá vědní disciplína zasahující

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles. 2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?

Více

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Václav Čibera 12. února 2009 1 Motivace Na obrázku 1 máme znázorněný mechanický systém, který může představovat

Více

Počítačové zobrazování fraktálních množin. J. Bednář*, J. Fábera**, B. Fürstová*** *Gymnázium Děčín **SPŠ Hronov ***Gymnázium Plasy

Počítačové zobrazování fraktálních množin. J. Bednář*, J. Fábera**, B. Fürstová*** *Gymnázium Děčín **SPŠ Hronov ***Gymnázium Plasy Počítačové zobrazování fraktálních množin J. Bednář*, J. Fábera**, B. Fürstová*** *Gymnázium Děčín **SPŠ Hronov ***Gymnázium Plasy *jurij.jurjevic@centrum.cz **icarosai@seznam.cz ***barborafurstova7@seznam.cz

Více

Derivace goniometrických funkcí

Derivace goniometrických funkcí Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2) Test a. Lučištník vystřelil z hradby vysoké 40 m šíp o hmotnosti 50 g rychlostí 60 m s pod úhlem 5 vzhůru vzhledem k vodorovnému směru. (a V jaké vzdálenosti od hradeb se šíp zabodl do země? (b Jaký úhel

Více

Fraktály a chaos. Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při

Fraktály a chaos. Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při Martin Šarbort 8.května 2006 Fraktály a chaos 1 Fraktály - základní pojmy 1.1 Úvod Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při přenosu signálu zjistil, že při

Více

Fraktální geometrie. Topologická a fraktální dimenze. Vypracovali: Jiří Thoma Jiří Pelc Jitka Stokučová

Fraktální geometrie. Topologická a fraktální dimenze. Vypracovali: Jiří Thoma Jiří Pelc Jitka Stokučová Fraktální geometrie Vypracovali: Jiří Thoma Jiří Pelc Jitka Stokučová Topologická a fraktální dimenze Fraktální (Hausdorffova - Besicovitchova) dimenze D udává míru nepravidelnosti geometrického útvaru.

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles. 5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

GRAVITAČNÍ POLE. Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí

GRAVITAČNÍ POLE. Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí GRAVITAČNÍ POLE Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí Přitahují se i vzdálená tělesa, například, z čehož vyplývá, že kolem Země se nachází gravitační pole

Více

4.2.9 Vlastnosti funkcí sinus a cosinus

4.2.9 Vlastnosti funkcí sinus a cosinus 4..9 Vlastnosti funkcí sinus a cosinus Předpoklady: 408 Grafy funkcí y = sin a y = cos, které jsme získali vynesením hodnot v minulé hodině. 0,5-0,5 - Obě křivky jsou stejné, jen kosinusoida je o π napřed

Více

Derivace goniometrických. Jakub Michálek,

Derivace goniometrických. Jakub Michálek, Derivace goniometrických funkcí Jakub Michálek, Tomáš Kučera Shrnutí Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech limitách, odvodí se také dvě důležité limity. Vypočítá

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH

Více

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8 Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Diferenciální rovnice

Diferenciální rovnice Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

1. Obyčejné diferenciální rovnice

1. Obyčejné diferenciální rovnice & 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Mechanika - kinematika

Mechanika - kinematika Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1)

Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1) 4 Řešení odezev dynamických systémů ve fázové rovině 4.1 Základní pojmy teorie fázové roviny Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice ( ) x+ F x, x = (4.1) kde F(

Více

ANOTACE vytvořených/inovovaných materiálů

ANOTACE vytvořených/inovovaných materiálů ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 IV/2 Inovace a

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

Mechanika tuhého tělesa

Mechanika tuhého tělesa Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný

Více

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE Slovo kvadrát vzniklo z latinského slova quadratus které znamená: čtyřhranný, čtvercový. Obsah čtverce se vypočítá, jako druhá mocnina délky

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a 4.. Funkce kotangens Zopakuj všechny části předchozí kapitoly pro funkci kotangens. c B a A b C Tangens a kotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá

Více

VEKTOR. Vymyslete alespoň tři příklady vektorových a skalárních fyzikálních veličin. vektorové: 1. skalární

VEKTOR. Vymyslete alespoň tři příklady vektorových a skalárních fyzikálních veličin. vektorové: 1. skalární VEKTOR Úvod Vektor je abstraktní pojem sloužící k vyjádření jistého směru a velikosti. S vektorovými veličinami se setkáváme například ve fyzice. Jde o veličiny, u nichž je rozhodující nejen velikost,

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá 4..4 Funkce tangens Předpoklady: 40 c B a A b C Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá cotgα = = a protilehlá Pokud chceme definici pro

Více

Husky KTW, s.r.o., J. Hradec

Husky KTW, s.r.o., J. Hradec Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika Téma: Goniometrie při měření výrobků Věk žáků: 15-16 let Časová dotace: Potřebné pomůcky,

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Rezonanční jevy na LC oscilátoru a závaží na pružině

Rezonanční jevy na LC oscilátoru a závaží na pružině Rezonanční jevy na LC oscilátoru a závaží na pružině M. Stejskal, K. Záhorová*, J. Řehák** Gymnázium Emila Holuba, Gymnázium J.K.Tyla*, SPŠ Hronov** Abstrakt Zkoumali jsme rezonanční frekvenci závaží na

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2 Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové

Více

Newtonův gravitační zákon. antigravitace

Newtonův gravitační zákon. antigravitace Newtonův gravitační zákon antigravitace O čem to bude Ukážeme si vlastnosti hypotetické látky pojmenované kavoritin, která dokáže odstínit gravitační pole. 2/47 O čem to bude Ukážeme si vlastnosti hypotetické

Více

Přechodné děje 2. řádu v časové oblasti

Přechodné děje 2. řádu v časové oblasti Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak

Více

Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá.

Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá. 4..0 Funkce tangens c B a A b C Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá cotgα = = a protilehlá Pokud chceme definici pro všechna x R nemůžeme

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Přednáška 1: Reálná funkce jedné reálné proměnné

Přednáška 1: Reálná funkce jedné reálné proměnné Přednáška : Reálná unkce jedné reálné proměnné Pojem unkce Deinice Reálnou unkcí jedné reálné proměnné rozumíme předpis y ( ) na jehož základě je každému prvku množiny D (zvané deiniční obor) přiřazen

Více

Fraktály. krásné obrázky v matematice

Fraktály. krásné obrázky v matematice Fraktály aneb krásné obrázky v matematice Mgr. Jan Šustek 22. 10. 2009 Grafy funkcí Grafy funkcí Mějme funkce f, g : [ 6, 6] R definované vztahy f(x) = 2 3 Jak vypadají jejich grafy? x 2 + x 6 x 2 + x

Více

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Úkoly měření: 1. Měření na digitálním osciloskopu a přenosném dataloggeru LabQuest 2. 2. Ověřte Faradayovy zákony pomocí pádu magnetu skrz trubici

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

Statika. fn,n+1 F = N n,n+1

Statika. fn,n+1 F = N n,n+1 Statika Zkoumá síly a momenty působící na robota v klidu. Uvažuje tíhu jednotlivých ramen a břemene. Uvažuje sílu a moment, kterou působí robot na okolí. Uvažuje konečné tuhosti ramen a kloubů. V našem

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy

Více

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj.

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. @121 12. Mocninné funkce a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. řekli: 1. Je-li exponent r přirozené číslo, může

Více

FUNKCE A JEJICH VLASTNOSTI

FUNKCE A JEJICH VLASTNOSTI PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic

Více

Úvod do chaotické dynamiky

Úvod do chaotické dynamiky Úvod do chaotické dynamiky R. Kolářová, Gymnázium Šternberk, raduska.kolarova@gmail.com J. Čeřovská, Gymnázium Česká Lípa, julinka.c@seznam.cz D. Kec, Gymnázium Jiřího Ortena, david.kec@email.cz J. Müller,

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

4. Práce, výkon, energie a vrhy

4. Práce, výkon, energie a vrhy 4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Fraktál Fraktální geometrie Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Fraktální geometrie se zabývá nepravidelností! s názvem přišel matematik B. Mandelbrot

Více