VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Faulta informačních technologií DIPLOMOVÁ PRÁCE Brno 2002 Igor Potúče

2 PROHLÁŠENÍ: Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Martina Fědora. Uvedl jsem všechny literární prameny a publiace, ze terých jsem čerpal. V Brně dne podpis

3 PODĚKOVÁNÍ: Děuji vedoucímu diplomové práce Ing. Martinu Fědorovi za velmi užitečnou metodicou pomoc a cenné rady při zpracování diplomové práce.

4 ABSTRAKT V této práci se zabývám sledováním pohybu objetů se stejným vzhledem v sevenci snímů. V úvodu je proveden rozbor metod pro sledování pohybu v obraze a identifiaci trajetorie pohybujícího se objetu. Je zde popsán algoritmus pro sledování trajetorií pohybujících se bodů, přičemž tyto objety mohou mizet, objevovat se na jiných místech, nebo může docházet jejich přerývání. Určování orespondencí mezi jednotlivými body je prováděno na záladě zpětného vyhodnocování vznilých hypotéz. Pro sledování trajetorií využívá algoritmus predice příští polohy objetu. Jao nástroj pro predici je zvolen Kalmanův filtr, terý je výhodný z hledisa své reurzivní strutury. Dále je zde popsán algoritmus pro spojování orespondujících trajetorií pomocí extrapolace hodnot. Na závěr je uvedeno zhodnocení popsaných algoritmů testovaných na vybraných sevencích. KLÍČOVÁ SLOVA Identifiace trajetorie, Kalmanův filtr, predice pohybu, určování orespondence objetů, prediční strom, zpětné vyhodnocování, extrapolace trajetorie, spojitost, segmentace obrazu.

5 ABSTRACT This paper describes the way to determine trajectory of moving simple objects - toens in a picture sequence. Modified Kalman filter is used to predict and identify their trajectory. Presented approach resolves trajectory ambiguities, a case when the number of toens is large and their speeds and accelerations vary. Correspondence problem is determined between two or more consecutive frames based on toens similarity. Traced objects may vanish, appear at a new position and/or mutually occlude each other. Bactracing is used to solve these problems. KEY WORDS Trajectory identification, target tracing, Kalman filter, movement prediction, motion correspondence problem, prediction trees, bactracing, continuity, picture segmentation.

6 OBSAH 1. ÚVOD PŘEHLED POUŽÍVANÝCH METOD SLEDOVÁNÍ VĚTŠÍHO MNOŽSTVÍ POHYBUJÍCÍCH SE OBJEKTŮ EXTRAKCE OBJEKTŮ Z OBRAZU PROBLÉMY PŘI EXTRAKCI OBJEKTŮ URČENÍ KORESPONDENCE PROBLÉMY KORESPONDENCE OBJEKTŮ KALMANŮV FILTR PRO PREDIKCI POLOHY APLIKACE KALMANOVA FILTRU NA POHYB OBJEKTŮ INICIALIZACE KALMANOVA FILTRU Kovarianční matice a matice chyb VÝPOČET ZLEPŠENÍ MAXIMÁLNÍ ODCHYLKA OD PREDIKOVANÉ HODNOTY VÝPOČET ZISKU A AKTUALIZACE STAVOVÉHO VEKTORU VÝPOČET KOVARIANČNÍ MATICE MANÉVROVACÍ MATICE POSTUP VÝPOČTU IDENTIFIKACE TRAJEKTORIE OHODNOCENÍ TRAJEKTORIÍ PŘIŘAZENÍ OBJEKTŮ HYPOTÉZÁM IMPLEMENTACE PREDIKCE PREDIKČNÍ STROM PROŘEZÁVÁNÍ STROMU ROZBOR PROBLÉMŮ MIZENÍ A OBJEVOVÁNÍ Objevení objetu Mizení objetu PROBLÉMY PŘI SLEDOVÁNÍ TRAJEKTORIÍ SPOJOVÁNÍ TRAJEKTORIÍ SPOJITOST IMPLEMENTACE SPOJENÍ TRAJEKTORIÍ PROBLÉMY PŘI EXTRAPOLACI ROZBOR A VYHODNOCENÍ CHOVÁNÍ ALGORITMŮ VLASTNOSTI PARAMETRŮ KALMANOVA FILTRU ODCHYLKY OD PREDIKOVANÉ HODNOTY VELIKOST PREDIKOVANÉ OBLASTI EXTRAPOLACE HODNOT...60

7 7.5. SEKVENCE POHYBU ČLOVĚKA ZÁVĚR SEZNAM POUŽITÉ LITERATURY SEZNAM PŘÍLOH...69

8 1. Úvod 1. Úvod V oblasti počítačového vidění se v posledních letech zaměřil výzum na vývoj efetivních postupů a algoritmů pro sledování pohybu objetů. Využití je v široé oblasti od systémů pro sledování dopravy, v letecém průmyslu při sledování pohybu letadel, v armádním průmyslu pro navádění střel, navádění satelitů nebo sledování miroorganismů pod mirosopem. Tyto systémy se snaží přebírat větší část zpracování a vyhodnocování dat. Z tohoto důvodu je laden velý důraz na vývoj efetivních algoritmů pro sledování pohybu. Existuje velé množství způsobů sledování pohybu, teré se navzájem od sebe liší vlastnostmi sledovaných obrazů, způsobem snímání obrazů, cílem sledování pohybu a dalšími aspety. Tyto techniy využívají apriorních znalostí při řešení onrétních úloh. Taové informace (např. předpoládaný tvar, veliost a prostorové uspořádání objetů, přípustný stupeň řivosti jejich hranic, znalosti o způsobu chování objetů apod.) slouží při zpracování obrazu jao omezující podmíny, případně jao vazby v optimalizaci. Jiným onceptem je rozsáhlé uplatňování heuristicých, intuitivně navržených postupů využívajících zušenost, v ombinaci s formalizovanými metodami. V této práci jsem se zaměřil na sledování pohybu objetů se stejným vzhledem. Cílem je identifiovat trajetorie znače připevněných na lidsém těle. Sledovanou sevencí je nasnímaný pohyb člověa jednou amerou. Značy jsou zobrazeny v sledované sevenci jao bílé pohybující se body. Hlavním a nejompliovanějším problémem je zde určování orespondencí mezi objety. Nicméně většina prací poládala problém určování orespondence za jednoduchý a využívala strategie nejbližšího následnía. V mnoha případech je vša tato strategie nedostačující, jeliož mohou vzniat mnohoznačná přiřazení. Při sledování objetů s odlišným vzhledem lze tento problém částečně řešit využitím techni zjištění vlastností pozorovaných objetů a jejich porovnáním. V případě, dy mají všechny pozorované objety stejný vzhled, musíme použít jiný postup. Při sledování a analýze pohybu objetů v obraze využívám pozorování v závislosti na něolia po sobě jdoucích snímcích. Tento způsob se používá většinou při sledování pohybu objetů ve 3D scéně snímané jednou amerou, ja je tomu i v našem případě. Součástí této metody je predice příští polohy objetu realizovaná pomocí Kalmanova filtru. Při pohybu objetů vša může dojít následujícím problémům, teré je nutné vyřešit. Objety se mohou - 9 -

9 1. Úvod při pohybu přerývat nebo mizet a objevovat se na jiných místech. Vlivem těchto problémů se zvyšuje náročnost a složitost algoritmů na určování vzájemných orespondencí. V této práci je proveden rozbor problémů, teré se vysytují při sledování trajetorií a popis jejich řešení. V úvodu jsou popsány techniy, využívané při sledování objetů. Další část práce je oncipována chronologicy v pořadí řešení problému sledování objetů. Na onci aždé apitoly jsou uvedeny problémy a jejich možná řešení, teré se vysytují u dané problematiy. Na závěr je provedeno vyhodnocení chování implementovaných metod a zhodnoceny výhody a nevýhody jejich použití. Tato práce navazuje jen na semestrální projet, ve terém byly rozebrány metody a postupy obecného sledování pohybu objetů a provedena apliace Kalmanova filtru na predici pohybu Přehled používaných metod Techniy detece pohybu můžeme rozdělit podle způsobu snímání obrazu na : Zpracování sterea tato metoda pracuje na principu stereovize. Zpracovává dvě sevence obrazů, snímané jao oddělené obrazy (levý a pravý) jedné snímané scény. Využívá pa drobné odlišnosti v obou obrazech. Tímto způsobem snímání zísáme třídimensionální obraz snímané scény. V současné době se používá sledování scény více než dvěma amerami. Zpracování jedné sevence snímů metoda zpracovává dva a více snímů zísané jednou amerou. Většinou snímy představují snímanou 3D scénu transformovanou na 2D obraz. Metody se mohou od sebe lišit způsobem práce s obrazem. Např. metody pracující s celým obrazem, jao je metoda detece ativity, terá je záladním elementem detece pohybu. Představuje jednoduše porovnání dvou snímů. Druhým typem jsou metody, teré vyhledají v obrazech jednotlivé objety, se terými dále pracují. U těchto techni je důležité vybrat vhodné parametry, podle terých se deteují objety v obraze. Objetové techniy jsou obecně méně citlivé na fotometricé změny v obrazech a jsou rychlejší při hledání orespondencí [17]. Jejich nevýhodou je nědy obtížné a časově náročné vyhledávání jednotlivých objetů. U objetových techni se využívá při hledání orespondencí různých vlastností : Podobnost objety sledované z různých míst mají podobné charateristiy

10 1. Úvod Jednoznačnost - jeden objet v jednom snímu má maximálně jeden obraz ve druhém snímu. Spojitost posunutí objetu mezi dvěma snímy se nemění soově, ale spojitě, tzn. objet (amera) se pohybuje po hladé řivce. Při hledání orespondencí využíváme různé techniy pro nalezení nejlepšího andidáta. U příznaových metod jsou obrazy předmětů reprezentovány n-rozměrnými vetory číselných příznaů. Každý vetor jednoznačně určuje bod v n-rozměrném obrazovém prostoru. Metody lasifiace pa vycházejí z předpoladu, že body obrazů předmětů jednotlivých tříd leží v obrazovém prostoru blízo sebe, neboli že v obrazovém prostoru vytvářejí shluy. Korelační techniy využívají porovnání obrazových funcí všech možných andidátů s obrazovou funcí původního objetu. Jao nejlepšího andidáta vybereme toho, jehož obrazová funce se shoduje nebo se nejvíce blíží obrazové funci původního objetu. Relaxační techniy procházejí všechny objety Ke aždé dvojici určí míru pravděpodobnosti, že objet p i z prvního obrazu a p j z druhého obrazu. p i oresponduje s objetem Následovně provádíme opravy těchto hodnot na záladě vlastností sousedních bodů. Metody dynamicého programování využívají rozdělení obrazů pomocí mřížy. Tu tvoříme proládáním příme v prvním obraze, teré odpovídají přímám v druhém obraze. Úolem je nalezení spojnice průsečíů, s minimálním ohodnocením na záladě podobnosti oolí. Dalším ritériem při sledování pohybu objetů je změna tvaru (vzhledu) v čase. Podle toho dělíme techniy na dvě záladní supiny : Sledování pevných objetů. Sledování proměnlivých objetů. U první supiny si objety zachovávají svůj tvar v čase během celé sevence snímů. U druhé supiny dochází při sledování pohybu e změně tvaru obrazu objetu. Nebere se vša v úvahu změna, terá je způsobena různou polohou objetu vůči ameře. Příladem první supiny je sledování objetů vybavení anceláře stůl, židle, počítač a jiné. Naopa příladem proměnlivých objetů mohou být obrysy pohybujícího se člověa nebo ontura pohybujících se rtů. p j

11 1. Úvod 1.2. Sledování většího množství pohybujících se objetů Problém sledování velého množství objetů je dán prostorovou blízostí pohybujících se objetů, přičemž musíme určit, teré objety náleží pozorovaným trajetoriím. Použití vybraných metod sledování pohybu objetů závisí na následujících schopnostech : Schopnost rozlišit mezi zísanými hodnotami sutečných objetů a chybami vznilými při extraci objetů. Schopnost určit správné orespondence mezi objety a spojit je do výsledných trajetorií. Rozlišujeme dva typy metod při zpracování trajetorií podle způsobu, jaým provádí zpracování zísaných dat : Hromadné zpracování : všechny pozorované objety zpracováváme společně, poud se nevysytuje mizení objetů, je tato technia ideální. Reurzivní zpracování : data zísaná při posledním zpracování budou použita atualizaci předchozích výsledů. Při sledování pohybu objetů se výzum zaměřil na nejdůležitější problém a to určování orespondencí. Jeliož při vyhodnocování orespondencí je zpracováváno velé množství andidátů, byly vyvinuty apliace algoritmů využívající statisticé zpracování dat. Apriorní znalosti použité ve statisticých modelech se neliší mezi různými objety. Tyto metody jsou citlivé na nastavení jednotlivých parametrů, např. u predice Kalmanovým filtrem. Výhodou těchto metod je využití sledování pohybu objetů v závislosti na něolia snímcích, což je důležité při sledování objetů se stejným vzhledem a při výsytu velého množství objetů v pozorované sevenci. Z tohoto důvodu vša vzniá početní závislost, terá s přibývajícími objety exponenciálně roste. Koncem 90. let byla zaměřena pozornost na dva algoritmy : Multiple hypothesis tracing (MHT) od D.B.Reida [9] a Joint probabilistic data-association filter (JPDAF) od Bar-Shaloma [5]. Ačoliv jsou tyto dva algoritmy odlišné zcela svou myšlenou, mají společné dvě části. První z nich je testování měření v pořadí vývoje asociační cenové matice. Nenulový vstup d, indiuje, že naměřená hodnota z i odpovídá i j cílovému objetu y i, de hodnota d, představuje cenu přiřazení z i objetu i j y i. Druhou částí je, že oba algoritmy potřebují výpočet všech legálních přiřazení. Každé přiřazení

12 1. Úvod nazýváme hypotézou, terá obsahuje cenu přiřazení. Tato cena je vypočtena z pravděpodobnostní hodnoty zísané v předchozích výpočtech. Algoritmus JPDAF provádí atualizaci filtru pro aždou dráhu založenou na spojené pravděpodobnosti asociace mezi poslední množinou měření a aždou trajetorií. Je vhodný pro sledování změti pohybujících se objetů. Dobrých výsledů se vša dá dosáhnout zanedbáním hypotéz s nízou pravděpodobností a výběrem množiny -nejlepších. Danchic a Newman [8] připustili, že nalezení nejlepších hypotéz lze formulovat jao lasicý problém lineárního přiřazení. Chang a Aggarwal [7] apliovali JPDA filtr na problém 3D reonstruci strutury v pohybové sevenci. Nicméně tento algoritmus je vhodný jen pro pevný počet objetů, terý zůstává zachován po celou dobu sevence. Zhang a Faugeras [1] použili Trac splitting filter od Smithe a Beuchlera, terý je podobný algoritmu MHT a terý využívá stromy a zpožděné vyhodnocení. Nicméně tato metoda dovoluje sdílení objetů v jednotlivých snímcích různými trajetoriemi, což bývá v mnoha případech nerealisticé. Racionálnější ta připadá přiřazení objetu vždy jen jedné trajetorii. Určování orespondencí se ta stává rozdělením jednotlivých objetů ve snímcích do disjuntních množin. Další možností, ja řešit problém určení orespondence, je využít heuristicé metody. Deterministicé algoritmy jsou mnohem jednodušší a obsahují méně parametrů. Místo funce hustoty pravděpodobnosti jsou použity valitativní heuristiy pohybu, teré jsou využívány odstranění možných trajetorií a identifiaci optimálních množin trajetorií. Využívají přitom valitativní popis jao vyhlazenost a tuhost pohybu nebo vzdálenost od optimální dráhy. Nejpoužívanějším známým algoritmem je greedy exchange algorithm, terý iterativně optimalizuje ritérium loálního vyhlazeného pohybu zprůměrňovaného přes všechny objety v sevenci. Výhodou tohoto algoritmu je jednoduché začlenění omezení jao je maximální rychlost nebo maximální odchyla od vyhlazeného pohybu, teré zvyšují valitu vyhodnocení. Chetveriov [10] provedl ve své práci shrnutí 5 algoritmů, teré využívají heuristicých metod pro určení trajetorií. Tyto algoritmy využívají vyhlazený pohyb jao předpolad pro ohodnocení cenové funce definované pro tři body ve třech po sobě jdoucích snímcích. Liší se od sebe svými schopnostmi řešit problémy mizení, objevování a přerývání objetů při pohybu, což je shrnuto v tabulce (Tab. 1.1 : Souhrn vlastností)

13 1. Úvod Algoritmus Schopnosti Samo inicializující Přerušení Zmizení Objevení Sethi & Jain SJ87 Salari & Sethi SS90 Rang. & Shah RS91 Hwang HW89 IPAN Tracer IP97 Tab. 1.1 : Souhrn vlastností Jednotlivé vlastnosti jsou ohodnoceny následovně : + vyjadřuje výsyt, - vyjadřuje absenci, ± omezená schopnost. Podrobnější porovnání těchto algoritmů naleznete v literatuře [10]. Obecný popis sledování pohybu objetů za použití predice je obsažen v literatuře od Faugerase [1]

14 2. Extrace objetů z obrazu 2. Extrace objetů z obrazu Prvním roem při sledování objetů v sevenci je extrace objetů z jednotlivých snímů. Cílem je deteovat všechny objety ve snímu a určit jejich polohu, popřípadě i další vlastnosti jao je obsah, řivost, textura apod. Jednou z nejpoužívanějších metod při rozdělení obrazu na objety je prahování viz. literatura [13], [14]. Prahování je účinný způsob segmentace pro scény obsahující předměty na onstantním pozadí. Výpočetně je nenáročné a vždy zachovává spojitost oblastí v uzavřených spojitých hranicích. Tato metoda odděluje objet od pozadí přidělením dvou hodnot jasů. Jedním jasem je interpretováno pozadí a druhým jasem objety v obraze. Pro rozdělení obrazu na dvě hodnoty je nutné znát prahovou hodnotu. V histogramu můžeme nalézt i dvě prahové hodnoty, podle terých rozdělíme obraz na dvě supiny objetů a pozadí. Najít pravidlo pro určení, zda je histogram bimodální, není jednoduché, protože neumíme vždy jednoznačně rozhodnout o významu loálních maxim a minim. Záladní postup při vyhledávání prahové hodnoty je následující : 1. Určíme minimální vzdálenost d pro jasové úrovně. 2. Najdeme dvě největší loální maxima v histogramu, teré jsou od sebe vzdálené nejméně d. 3. Mezi těmito maximy najdeme minimum, teré označíme jao práh. Jamile známe hodnotu prahu, můžeme převést obraz na dvouúrovňový sníme. Úrovním větším než práh přidělíme hodnotu L a úrovním menším než práh přidělíme hodnotu H. Nyní nám body označené jednou hodnotou představují extrahované objety a zbylé body představují pozadí, čímž jsme docílili oddělení objetů od pozadí. Prahování je účinné, mají-li sledované objety stejnou vnitřní úroveň barvy, terá se vša odlišuje od úrovně barvy pozadí. Liší-li se objety od pozadí jinou vlastností než úrovní barvy, např. texturou, je obvyle výhodné vhodnou operací převést tuto vlastnost na úroveň barvy. V dalším rou provádíme extraci objetů z obrazu. Existuje více způsobů ja zjistit polohu objetů a jejich vlastnosti, teré využijeme při určení orespondence objetů. Jedním z nich je procházet obraz po řádcích. Narazíme-li na bod o úrovni, terá nám představuje objet, spustíme z tohoto bodu semínový algoritmus testování. Tento algoritmus testuje oolní body zadaného bodu, zda patří objetu. Podle počtu testovaných bodů dělíme

15 2. Extrace objetů z obrazu algoritmy na testování 4-oolí nebo 8-oolí viz. obráze (Obr. 2.1 : Oolí bodu). Druhý algoritmus má výhodu v prohledávání i rohových bodů. 4-oolí 8-oolí Obr. 2.1 : Oolí bodu Výstupem semínového algoritmu je množina všech bodů patřící danému objetu, představovaného plochou bodů o dané úrovni. Z této množiny pa určíme souřadnice těžiště objetu zprůměrňováním souřadnic bodů objetu : x 1 = n T x i n i= 1 a y 1 = n T y i n i= 1, (2.1) de x i a y i jsou souřadnice bodů, teré připadly objetu a n představuje celový počet bodů objetu. Z těchto bodů pa můžeme dále zjistit obvod, obsah, tvar a jiné vlastnosti objetu, teré můžeme dále využít jao pomocný nástroj při určování orespondencí Problémy při extraci objetů Nasnímaný pohyb člověa je pořízen v temné místnosti, přičemž značy jsou nasvíceny ultrafialovým světlem z důvodu potlačení vlivu oolí a vyninutí znače. Značy po nasnímání amerou vša obsahují různé stupně odstínů bílé barvy a při nízém prahu se rozpadají, tzn. jejich orajové body vytvářejí samostatné objety. Při nastavení vysoého prahu vša v obraze přibývají chybné objety. Vliv na vzhled objetů mají i omprimované AVI sevence. Při omprimaci tvoří vyšší stupně odstínu barvy objetu rušivé oolí. Proto je výhodné práh nastavit ručně pro onrétní sevenci. Další problém při snímání pohybu vzniá nedoonalostí snímacího zařízení, dy rychle pohybující značy vytvářejí ve snímu protažený objet. Tento problém vzniá příliš dlouhou expozicí v jednotlivých snímcích viz. obráze (Obr. 2.2 : Rozmazání objetu rychlým pohybem)

16 2. Extrace objetů z obrazu Obr. 2.2 : Rozmazání objetu rychlým pohybem Nedošlo-li při rozmazání přerytí s jinými objety, je objet deteován jao jeden, i dyž má větší objem. Jeho těžiště vša může být vlivem rozmazání a zvětšení objemu posunuté. Dojde-li vša vlivem rozmazání e spojení objetů, nedoážeme rozlišit u olia objetů došlo e splynutí a jaým podílem působí rozmazaný objet. V apitole 5.7 je popsán problém při přerývání objetů, jehož řešením je detece splynutí pomocí objemu objetu. V tomto případě je vša metoda neúčinná a nedoážeme rozlišit na záladě objemu zda došlo rozmazání objetu či přerytí

17 3. Určení orespondence 3. Určení orespondence Při sledování pohybu objetů potřebujeme určit trajetorie, po terých se objety pohybují. Tyto trajetorie se sládají z poloh jednotlivých objetů v jednotlivých snímcích. V našem případě je problém určování orespondence zaměřen na případ, dy mají všechny sledované objety stejný vzhled. Z tohoto důvodu nemůžeme při určování orespondencí Sníme 1 Sníme 2 Sníme 3 Obr. 3.1 : Korespondence objetů využít vlastností objetů. Kdybychom předpoládali, že všech M objetů se bude vysytovat v n snímcích, byl by počet všech možných trajetorií roven ( M!) n 1. Mezi těmito trajetoriemi se nachází uniátní trajetorie, teré popisují sutečný pohyb objetů. Abychom mohli tyto trajetorie identifiovat, potřebujeme mít znalosti o pohybu objetů. Tyto znalosti zísáme z dosavadního chování objetu. Z poloh v jednotlivých snímcích jsme schopni vypočítat rychlost a zrychlení sledovaného objetu. Při sledování pohybu vycházíme většinou z předpoladu vyhlazeného pohybu objetů. Tímto předpoladem můžeme vyloučit trajetorie, teré z fyziálního hledisa nemají význam. Cílem je pa aždému objetu ve snímu t přiřadit jeho orespondující objet v následujícím snímu t+1 viz. obráze (Obr. 3.1 : Korespondence objetů). Pro pozorované objety vytvoříme stavový vetor pohybu a vybereme vhodný inematicý model, terý nejlépe popisuje jeho změny v čase viz.apitola 4.1. S pomocí zvolených modelů předpovíme polohu v následujícím snímu t+1 a vypočteme pravděpodobnost této předpovědi. Pravděpodobnost pa slouží určení oblasti olem předpověděné pozice X ) t+ 1 viz obráze (Obr. 3.2 : Prediovaná oblast). Oblast bývá většinou

18 3. Určení orespondence ruh o poloměru r. V této oblasti se mohou nacházet andidátní objety Y t+ 1. Z této množiny andidátů pa vybereme jednoho nejlepšího, terý bude reprezentovat orespondující objet X t+1. X t X ) t+1 r Y X t+ 1 t+ 1 Y t+1 Y t+1 Obr. 3.2 : Prediovaná oblast 3.1. Problémy orespondence objetů Během pohybu objetů v sevenci mohou nastat následující případy : Objety se mohou při pohybu vzájemně přerývat. Objety mohou v sevenci mizet a objevovat se na jiných místech. V sledované sevenci snímů se může pohybovat větší množství objetů, čímž vzniá problém víceznačného přiřazení. Chyby při snímání obrazu amerou objety mohou při rychlejším pohybu zanechávat stopu svého obrazu a tím vzniají ve snímcích lamně nové objety. Chyby při extraci objetů z obrazu. Pozorujeme-li projeci objetů z 3D scény ve 2D obraze mohou nastat případy, dy dojde přerytí sledovaných objetů jinými objety ve scéně. Situace mizení a objevování objetů je znázorněna na obrázu (Obr. 3.3 : Přerývání). Pozorovaným objetem je rotující rychle. Bod A je viditelný na všech třech snímcích na rozdíl od bodu B, terý je viditelný jen

19 3. Určení orespondence v prvním snímu, v druhém a třetím snímu je neviditelný. Bod C, terý není vidět na prvním a druhém snímu, se objeví až na třetím snímu. Sníme 1 Sníme 2 Sníme 3 B C A A A Obr. 3.3 : Přerývání Dalším typem přerytí, teré může nastat a není zobrazeno na obrázu je přerytí v případě, dy oba objety leží na stejné přímce procházející středem promítání. Na obrázu (Obr. 3.4 : Nejednoznačnost přiřazení objetů) jsou dva snímy, teré obsahují stejné objety. U těchto objetů nejsme schopni určit na záladě dvou snímů jejich orespondence a dochází tu problému nejednoznačnosti přiřazení. Tento problém můžeme vyřešit, máme-li dispozici větší počet snímů, de je pa orespondenci z ontextu možné vyvodit. Sníme 1 Sníme 2 Obr. 3.4 : Nejednoznačnost přiřazení objetů

20 3. Určení orespondence Vysytuje-li se v obraze příliš velé množství objetů, může dojít problému přeplnění. Existuje zde totiž velá pravděpodobnost výběru nesprávného andidáta, jeliož mohou být v tomto případě andidáti blízo u sebe. Řešením je vhodné nastavení parametrů použité pro predici a ta minimalizovat oolí prediované pozice objetu. Toto řešení vša nemusí být dostačující, a proto se využívá navíc zpožděného vyhodnocení, teré je popsáno v apitole 5. Další problémy se mohou vysytnout, jestliže je pohyb objetu nerovnoměrný, nebo se pohybuje ta rychle, že změna polohy mezi snímy je příliš velá. To způsobuje problémy při predici nové polohy objetu. Proto něteré metody požadují pro správnou predici polohy objetu vyhlazený pohyb s dostatečně malými rozdíly změny polohy při pohybu

21 4. Kalmanův filtr pro predici polohy 4. Kalmanův filtr pro predici polohy Kalmanův filtr je adaptivní filtr používaný modelování stavů disrétního dynamicého systému. Tato technia byla vyvinuta v 60tých letech filtraci šumu v eletricých signálech, ale později našla uplatnění i v sledování objetů v apliacích počítačového vidění. Výhodou tohoto filtru je jeho reurzivní strutura, přičemž jeho oeficienty se v aždém rou upravují na záladě dostupné informace ta, aby posytly optimální odhad budoucího stavu. Nový filtr v aždém rou vzniá opravou filtru z rou předcházejícího na záladě nově přišlé informace, aniž by bylo třeba pamatovat všechny předchozí hodnoty vstupních parametrů. U Kalmanova filtru můžeme využít stavové reprezentace, terá umožňuje vytvářet systémy vyšších řádů jao simultánně pracující soustavu vzájemně vázaných systémů prvního řádu Apliace Kalmanova filtru na pohyb objetů Pohyb objetu můžeme specifiovat polohou x(t), rychlostí v(t) a zrychlením a(t), což popíšeme následujícími diferenciálními rovnicemi : dx( t) v( t) = x& ( t) =, (4.1) dt dv( t) a( t) = v& ( t) =. (4.2) dt Pozice objetu a rychlost jsou uloženy ve stavovém vetoru. Tento vetor obvyle obsahuje první derivace jeho omponent. Abychom popsali pohyb objetu doonale i pro případ změny zrychlení, bude obsahovat stavový vetor polohu x, rychlost v a zrychlení a. x x = v x&. (4.3) a && x Vzhledem zvolenému stavovému vetoru použijeme následující rovnice, teré popisují pohyb objetu : x(t+t) = x(t) + v(t) * T + 1 at 2, (4.4) 2 v(t +T) = v(t) + a(t) * T. (4.5)

22 4. Kalmanův filtr pro predici polohy Pro naši soustavu přepíšeme rovnice pohybu následovně a dostaneme stavovou rovnici: ) ( ) ( ) ( ) ( t t T T t w x x + = Φ +, (4.6) + = ) ( ) ( ) ( ) ( ) ( ) ( * ) ( ) ( ) ( t w t w t w t x t x t x T T T T t x T t x T t x && & && &. (4.7) de T představuje ro vzorování, nebo-li časový úse mezi naměřenými hodnotami polohy objetu. Pro danou stavovou rovnici (4.6) a stavový vetor se třemi hodnotami (4.3) má rozšiřující matice tvar : = Φ ) ( 2 T T T T. (4.8) Naměřené hodnoty obvyle obsahují méně informace než stavový vetor. Při sledování pohybu objetu budeme mít dispozici jen informaci o jeho poloze x(t). Stavový vetor naměřených hodnot má vša stejný tvar jao stavový vetor využívající Kalmanův filtr. Z tohoto důvodu musíme provést transformaci vstupní polohy pro stavový vetor obsahující polohu, rychlost a zrychlení : ) ( ) ( ) ( t v t Hx t y + =. (4.9) Pro transformaci využijeme matici H, terá má pro náš případ tvar : 0) 0 = (1 H. (4.10) Po dosazení do rovnice (4.9) dostaneme : ( ) ) ( ) ( ) ( ) ( * ) ( t v t x t x t x t y + = && &, (4.11) přičemž měření je zresleno hodnotou v(t).

23 4. Kalmanův filtr pro predici polohy Předpoládáme-li, že v(t) a w(t) se chovají jao náhodný proces s charaterem bílého šumu s nulovou střední hodnotou, bude mít ovarianční matice tvar : T w( t) w( t) Q 0 ε =. (4.12) v( t) v( t) 0 R Matice Q představuje manévrovací šum : Matice R představuje šum měření : T [ ( ) w( t ] Q ( t) = E w t ). (4.13) T [ ( t) v( t ] R ( t) = E v ). (4.14) V další části budeme vyjadřovat hodnoty prvů v čase t pomocí indexů Inicializace Kalmanova filtru Na počátu sledování objetu (čas t = 0) máme dispozici hodnotu polohy objetu a tedy jeho stavový vetor. Nemáme žádné poznaty o chování objetu v předchozím čase, a proto musíme nastavit počáteční hodnoty matic šumů a Kalmanova zisu s ohledem na tuto sutečnost. V dalších rocích Kalmanova filtru se hodnoty postupně upraví. Při pozorování počátečního snímu máme dispozici informace jen o poloze objetu x(0), stavový vetor bude tedy vypadat následovně : x(0) 0 0. (4.15) Kovarianční matice a matice chyb Odhady chyb (nejistoty) udržujeme v ovarianční matici označené jao P. Matice tedy obsahuje ovariance naměřených a odhadnutých hodnot. Při inicializaci nastavíme hodnoty λ i na diagonále matice na velmi velá čísla, jeliož neznáme dosavadní chování sledovaného objetu. Velé hodnoty prvů ovarianční matice představují nedůvěru v naměřené hodnoty a filtr se ta bude přilánět značnou mírou prediovaným hodnotám

24 4. Kalmanův filtr pro predici polohy Nastavením dostatečně velých hodnot zajistíme předpolad, že změna polohy v příštím snímu bude malá. Počáteční ovarianční matice má pa následující tvar : r P = 0 λ1 0. (4.16) 0 0 λ 2 Diagonály představují disperze omponent stavového vetoru. Hodnota r 11 je chyba měření, tedy nepřesnost měřené polohy objetu. Každé měření může mít nějaou náhodnou chybu. Matice chyb měření je čtvercová matice, jejíž veliost je rovna počtu měřených hodnot. Tato matice obsahuje odhady chyb měřícího systému pro aždou měřenou hodnotu na rozdíl od ovarianční matice, terá obsahuje odhady chyb filtru. Pro naměřenou hodnotu polohy y určíme záladní chybu měření u. Tato chyba bude pro náš případ v jednotách určení polohy objetu. Matice měřeného šumu R bude mít pa hodnotu : 4.3. Výpočet zlepšení 2 [ r 11 ] [ u ] R = =. (4.17) Při výpočtu nové prediované hodnoty polohy a zjištění polohy objetu je potřeba vypočítat zlepšení, tedy rozdíl hodnot mezi prediovanou polohou a naměřenou polohou. Jestliže nemáme dispozici všechny naměřené hodnoty, teré obsahuje stavový vetor, musíme provést transformaci stavového vetoru pomocí matice H. Obecný vztah pro výpočet zlepšení má tvar : ~ Z = Y X. (4.18) de Y je stavový vetor měření a X ~ je prediovaný stavový vetor. V našem případě vypočteme zlepšení z naměřené polohy y a prediované polohy objetu x. z = x 1 x& tedy z = y x. (4.19) && x [ y ] [ 0 0] Zlepšení se mimo jiné využívá při určování poloměru prediované oblasti, či určení spouštění přidávání manévrovacího šumu e ovarianční matici

25 4. Kalmanův filtr pro predici polohy 4.4. Maximální odchyla od prediované hodnoty Při výpočtu prediované polohy ontrolujeme, zda je naměřená hodnota dostatečně blízo prediované hodnotě. Nědy totiž může dojít tomu, že naměřená hodnota má příliš velou odchylu od prediované, v taovém případě můžeme hodnotu extrapolovat a poračovat dál s extrapolovanou hodnotou nebo ji prohlásit za chybnou. Hodnotu prahu odchyly můžeme pevně zvolit pro všechny roy Kalmanova filtru, nebo ji adaptivně přizpůsobovat. Při adaptivním výpočtu využíváme nejistot obsažených v ovarianční matici. Jednou z možností ja vypočítat tuto odchylu je výpočet pomocí Mahalanobovy vzdálenosti [1] : d = ( y ~ Hx ~ ) P 1 ( y H~ x ). (4.20) Naměřené hodnoty, teré mají menší vzdálenost od prediované hodnoty než je vypočtená odchyla, spadají do množiny potencionálních výsledů viz.apitola Výpočet zisu a atualizace stavového vetoru V této fázi již máme vypočítané zlepšení a nyní je potřeba vypočítat Kalmanův zis, terý indiuje ja velou mírou ovlivňuje zlepšení odhad. Kalmanův zis je uložen v matici K se stejným počtem elementů jao stavový vetor. Hodnoty zisu jsou obvyle v rozmezí 0 až 1. V systému, de nemáme dispozici poaždé naměřenou hodnotu, jsou hodnoty zisu orespondující s nenaměřenými hodnotami během něolia prvních cylů větší než jedna. Tato vlastnost je závislá na počátečních hodnotách stavového vetoru [11]. Kalmanův zis vypočítáme podle následujícího vztahu : ~ T [ H P H + R ] 1 ~ T = P H K. (4.21) Pro zjednodušení výpočtu, si zjednodušíme vztah výpočtem inverzní matice pro náš daný případ. 1 p11 p12 p13 1 ~ [ ] 2 K = P + [ ] p 21 p 22 p 23 0 r11. (4.22) 0 p 31 p 32 p

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ Jan CHOCHOLÁČ 1 THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ BIO NOTE Jan CHOCHOLÁČ Asistent na Katedře dopravního managementu, maretingu

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

2. STAVBA PARTPROGRAMU

2. STAVBA PARTPROGRAMU Stavba partprogramu 2 2. STAVBA PARTPROGRAMU 2.1 Slovo partprogramu 2.1.1 Stavba slova Elementárním stavebním prvem partprogramu je tzv. slovo (instruce programu). Každé slovo sestává z písmene adresy

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Využití expertního systému při odhadu vlastností výrobků

Využití expertního systému při odhadu vlastností výrobků Vužití epertního sstému při odhadu vlastností výrobů ibor Žá Abstrat. Článe se zabývá možností ja vužít fuzz epertní sstém pro popis vlastností výrobu. Důvodem tohoto přístupu je možnost vužití vágních

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Vysokorychlostní železnice úspěchy a výzvy

Vysokorychlostní železnice úspěchy a výzvy Vysoorychlostní železnice úspěchy a výzvy Dr. Gunter Ellwanger, ředitel pro vysoorychlostní železnice, Mezinárodní železniční unie Vysoorychlostní vlay přiláaly na železnici nové cestující především na

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

SPOTŘEBITELSKÝ ÚVĚR. Při rozhodování o splátkové společnosti se budeme řídit výší RPSN. Pro nákup zboží si zvolíme. Dl = >k=0

SPOTŘEBITELSKÝ ÚVĚR. Při rozhodování o splátkové společnosti se budeme řídit výší RPSN. Pro nákup zboží si zvolíme. Dl = >k=0 Úloha 4 - Koupě DVD reoréru SPOTŘEBITELSKÝ ÚVĚR Mlaá roina si chce poříit DVD reorér v honotě 9 900,-Kč. Má možnost se rozhonout mezi třemi splátovými společnosti, teré mají násleující pomíny: a) První

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Úpravy úlohy DE1 v systému LABI.

Úpravy úlohy DE1 v systému LABI. Úpravy úlohy DE v systému LABI. Edit problem DE in system LABI Bc. Daniel Kašný Diplomová práce 200 ABSTRAKT Tato práce se zabývá úpravou úlohy DE v systému LABI, terá byla vytvořena pro výuové účely

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Certifikace účetní profese v ČR

Certifikace účetní profese v ČR Certifiace účetní profese v ČR DVA STUPNĚ KVALIFIKACE V OBORU ÚČETNICTVÍ A FINANCE INS TITUT SVAZU ÚČETNÍCH, A.S. Obsah Co je Certifiace účetní profese v ČR... 1 Kdo může vstoupit do certifiace... 2 Kontaty,

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

APLIKACE NÁSTROJE PASW SPSS 18.0 BASE V TRŽNÍ

APLIKACE NÁSTROJE PASW SPSS 18.0 BASE V TRŽNÍ Úvod a záměr práce APLIKACE NÁSTROJE PASW SPSS 18.0 BASE V TRŽNÍ SEGMENTACI Autor: Mgr. Ing. David Vít Faulta eletrotechnicá ČVUT v Praze, atedra eonomiy, manažerství a humanitních věd 1. Úvod a záměr

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové č Čs čas fyz 6 () 67 Tepelné záření v teoreticých i experimentálních úlohách MEZINÁRODNÍ FYZIKÁLNÍ OLYMPIÁDY Jan Kříž, Ivo Volf, Bohumil Vybíral Ústřední omise Fyziální olympiády, Univerzita Hradec Králové,

Více

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel Změna velikosti obrázku Převzorkování pomocí filtrů Ačkoliv jsou výše uvedené metody mnohdy dostačující pro běžné aplikace, občas je zapotřebí dosáhnout lepších výsledků. Pokud chceme obrázky zvětšovat

Více

Projekt Obrázek strana 135

Projekt Obrázek strana 135 Projekt Obrázek strana 135 14. Projekt Obrázek 14.1. Základní popis, zadání úkolu Pracujeme na projektu Obrázek, který je ke stažení na http://java.vse.cz/. Po otevření v BlueJ vytvoříme instanci třídy

Více

Václav Cempírek 1 1. ZÁKLADNÍ FAKTORY OVLIVŇUJÍCÍ LOGISTICKÁ ZAŘÍZENÍ

Václav Cempírek 1 1. ZÁKLADNÍ FAKTORY OVLIVŇUJÍCÍ LOGISTICKÁ ZAŘÍZENÍ NÁVRH PARAMETRŮ LOGISTICKÝCH CENTER, DIMENZOVÁNÍ TECHNICKÝCH PROSTŘEDKŮ A ZAŘÍZENÍ THE ARGUMENTS CONCEPT OF LOGISTIC CENTRE, DIMENSOINING OF TECHNICAL INSTRUMENT AND DEVICE Václav Cempíre 1 Anotace:Příspěve

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Tiskové sestavy. Zdroj záznamu pro tiskovou sestavu. Průvodce sestavou. Použití databází

Tiskové sestavy. Zdroj záznamu pro tiskovou sestavu. Průvodce sestavou. Použití databází Tiskové sestavy Tiskové sestavy se v aplikaci Access používají na finální tisk informací z databáze. Tisknout se dají všechny objekty, které jsme si vytvořili, ale tiskové sestavy slouží k tisku záznamů

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Úvod do mobilní robotiky NAIL028

Úvod do mobilní robotiky NAIL028 md at robotika.cz http://robotika.cz/guide/umor08/cs 11. listopadu 2008 1 2 PID Sledování cesty Modely kolových vozidel (1/5) Diferenční řízení tank b Encoder Motor Centerpoint Motor Encoder Modely kolových

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Dekompoziční analýza příjmové nerovnosti v České republice

Dekompoziční analýza příjmové nerovnosti v České republice Deompoziční analýza příjmové nerovnosti v Česé republice Zdeňa MALÁ, Gabriela ČERVENÁ, Czech University of Life Sciences in Prague i Abstract The paper focuses on an analysis of income inequality of population

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

viagps 3.0 Black edition Uživatelská příručka

viagps 3.0 Black edition Uživatelská příručka viagps 3.0 Black edition Uživatelská příručka Obsah 1. Úvod..... 4 2. Navigace k cíli... 6 3. Navigace... 8 4. Náhled a editace trasy... 9 4.1. Jak změnit cíl cesty nebo přidat průjezdové body... 9 4.2.

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

Dokumentace k semestrální práci z předmětu PT

Dokumentace k semestrální práci z předmětu PT Dokumentace k semestrální práci z předmětu PT Vypracovali: Eva Turnerová (A08B0176P) Martin Dlouhý (A08B0268P) Zadání Zadání: Firma Mistr Paleta, syn a vnuci rozváží palety po celé České republice. Počet

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Automatická segmentace slov s pomocí nástroje Affisix Michal Hrušecký, Jaroslava Hlaváčová Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Motivace Při zpracování přirozeného jazyka nikdy nemůžeme mít

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

MS Excel 2007 Kontingenční tabulky

MS Excel 2007 Kontingenční tabulky MS Excel 2007 Kontingenční tabulky Obsah kapitoly V této kapitole se seznámíme s nástrojem, který se používá k analýze dat rozsáhlých seznamů. Studijní cíle Studenti budou umět pro analýzu dat rozsáhlých

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK Úloha č. 11 ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK ÚKOL MĚŘENÍ: 1. Zjistěte činný, jalový a zdánlivý příon, odebíraný proud a účiní asynchronního motoru v závislosti na zatížení motoru. 2. Vypočítejte výon,

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ ON MENTAL MODELS FORMALIZATION THROUGH THE METHODS OF PROBABILISTIC LINGUISTIC MODELLING Zdeňka Krišová, Miroslav

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

Stručný manuál k ovládání programu STATISTICA. Mgr. Petra Beranová

Stručný manuál k ovládání programu STATISTICA. Mgr. Petra Beranová Stručný manuál k ovládání programu STATISTICA Mgr. Petra Beranová Copyright StatSoft CR s.r.o. 2008, 1. vydání 2008 StatSoft CR Podbabská 16 CZ-160 00 Praha 6 tel.: +420 233 325 006 fax: +420 233 324 005

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít 0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ as e studiu apitoly: 30 minut Cíl: Po prostudování této apitoly budete umt použít záladní pojmy ombinatoriy vztahy pro výpoet ombinatoricých úloh - 6 - 0.1 Kombinatoria

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

1. Průběh funkce. 1. Nejjednodušší řešení

1. Průběh funkce. 1. Nejjednodušší řešení 1. Průběh funkce K zobrazení průběhu analytické funkce jedné proměnné potřebujeme sloupec dat nezávisle proměnné x (argumentu) a sloupec dat s funkcí argumentu y = f(x) vytvořený obvykle pomocí vzorce.

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více