Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí"

Transkript

1 Fakulta staební ČVUT Praze Katedra hydrauliky a hydrologie Předmět HYA K4 FS ČVUT Hydraulika potrubí Doc. Ing. Aleš Halík, CSc., Ing. Tomáš Picek PhD. K4 HYA Hydraulika potrubí 0

2 DRUHY PROUDĚNÍ V POTRUBÍ Rozdělení dle časoého hlediska proudění ustálené (Q f(t), f(t).....) proudění neustálené pomalu proměnné (Qf(t), f(t), pf(t)...) typický příklad zásoboání pitnou odou e odárenských soustaách (Q záisí na elikosti odběrů, rozložení spotřeby průběhu dne). ýpočet praxi nárh potrubí pro nejíce nepřízniý sta pomocí ýpočetních postupů ustáleného proudění proudění neustálené rychle proměnné náhlá změna průtoku potrubí důsledek odní ráz rychléšíření tlakoých změn příčina odního rázu objemoá stlačitelnost kapalin typický příklad náhlé zastaení turbín, čerpadel, uzáěrů K4 HYA Hydraulika potrubí

3 Rozdělení proudění uzařených profilech dle působících sil tlakoé proudění dominantní li tlakoého gradientu, nezáleží na sklonu potrubí typické příklady - proudění pitné ody e odárenských soustaách - proudění ody e spodních ýpustích přehrad K4 HYA Hydraulika potrubí

4 proudění s olnou hladinou dominantní li objemoých (graitačních sil), proudění záisí na sklonu dna typický příklad doufázoé proudění e stokoých systémech K4 HYA Hydraulika potrubí 3

5 ZÁKLADNÍ VÝPOČETNÍ PRINCIPY USTÁLENÉHO TLAKOVÉHO PROUDĚNÍ V POTRUBÍ aplikace zákona zachoání mechanické energie ronice Bernoulliho pro ustálené proudění skutečné kapaliny (azkost ν 0) aplikace zákona zachoání hmoty ronice spojitosti pro ustálené D proudění náhrada skutečného rozdělení rychlosti u příčném průřezu profilu střední průřezoou rychlostí K4 HYA Hydraulika potrubí 4

6 BERNOULLIHO ROVNICE PRO USTÁLENÉ PROUDĚNÍ SKUTEČNÉ KAPALINY p α p α h + + h g g + + g g ρ ρ Z Z ztráty mechanické energie ZZ t +Z m Z t ztráty třením Z m ztráty místní K4 HYA Hydraulika potrubí 5

7 ZTRÁTY TŘENÍM ronoměrné ustálené proudění 0, D konst. t Z t i E L [m] ztráta třením i E [ ] hydraulický sklon sklon čáry energie Z t λ L D g [m] Δ λ f Re, D Re [ ] Reynoldsoo číslo Δ D λ [ ] - součinitel ztráty třením D ν K4 HYA Hydraulika potrubí 6 Re [ ] relatiní drsnost potrubí

8 DRSNOST POTRUBÍ! Nejednotná terminologie při definici drsnosti literatuře! absolutní drsnost Δ [m] nebo [mm]- ýška ýstupků neroností nitřního porchu stěn potrubí jednoznačná hodnota pouze u geometricky homogenních porchů homogenní porch pouze u umělé drsnosti nehomogenní porch skutečný porch technicky yráběného potrubí K4 HYA Hydraulika potrubí 7

9 Absolutní drsnost tar a ýška ýstupků plošné rozmístění ýstupků pískoá drsnost b-h Nikuradseho pokusy K4 HYA Hydraulika potrubí 8

10 Drsnost technicky yráběných potrubí ýška a prostoroé rozložení ýstupků se nepraidelně mění není možné stanoit jednoznačnou hodnotu Δ na ztráty mají kromě neroností porchu li i deformace e spojích, ýchylky ose deformace potrubí po delším uložení na neroném podkladu změna nitřního porchu potrubí ( stárnutí potrubí ) Hydraulická drsnost K4 HYA Hydraulika potrubí 9

11 Zaedení pojmu hydraulická drsnost Poronání ztrát třením na potrubí se známou umělou pískoou drsností se ztrátami třením na technickém potrubí (yužití hydraulických laboratoří). Jsou-li ztráty třením Z th při proudění potrubí s homogenní drsností o ýšce ýstupků Δ kadratické oblasti shodné se ztrátou třením na potrubí s nehomogenním porchem Z tn při stejném průtoku průměru a délce potrubí, přiřadí se tomuto potrubí hydraulická drsnost o ýšce Δ. K4 HYA Hydraulika potrubí 0

12 Relatiní drsnost Absolutní nebo hydraulická drsnost neystihují přímo li charakteru porchu na součinitele ztrát třením. důležitý zájemný ztah absolutní nebo hydraulické drsnosti a rozměru potrubí relatiní drsnost relatiní drsnost - poměr hydraulické (absolutní) drsnosti a charakteristického rozměru potrubí D, r 0, R (r 0 poloměr potrubí, R hydraulický poloměr S/O) různé ýrazy charakterizující relatiní drsnost odborné literatuře Δ Δ, D r0, Δ R K4 HYA Hydraulika potrubí

13 Hydraulické drsnosti Δ pro technicky yráběná potrubí Druh potrubí azbestocementoé oceloé bezešé oceloé sařoané litinoé plastoé (PVC, PE) betonoé Sta potrubí noé po použití noé po použití po delším proozu noé mírně zreziělé silně zreziělé noé po použití silně zreziělé noé po delším proozu noé po delším proozu Δ [mm] K4 HYA Hydraulika potrubí

14 Jako hydraulicky hladké potrubí je možné uažoat potrubí yráběná jako technicky hladká : sklo, mosaz, měď, hliník, plasty Stárnutí potrubí : rozrušoání porchu unášenými částicemi usazoání suspendoaných a rozpuštěných látek inkrustace potrubí ylučoáním zejména ápenných solí K4 HYA Hydraulika potrubí 3

15 Hydraulicky odlišné oblasti proudění záislost ztrát třením na rychlosti Z t a b laminární proudění b lineární oblast ztrát oblast přechodu (kritická oblast) přechod mezi laminárním a turbulentním prouděním 300 < Re < 4000 až 5000 Re k 30 3 turbulentní proudění hydraulicky hladkém potrubí b.75 λ f( Re) 4 turbulentní proudění přechodné oblasti.75 < b < Δ λ f Re, D 5 Hydraulicky drsné potrubí kadratické oblasti - b Δ λ f D K4 HYA Hydraulika potrubí 4

16 Nikuradseho diagram pro potrubí s umělou drsností K4 HYA Hydraulika potrubí 5

17 Moodyho diagram K4 HYA Hydraulika potrubí 6

18 Empirické ronice pro ýpočet součinitele tření hydraulicky hladké potrubí autor Blasius Prandtl-Kármán Altšul Konako λ ronice Re log Re λ Re.8 log + λ 00 λ.8 Re.5 ( λ ) 0. 8 ( ) platnost 40 3 <Re< <Re< <Re< <Re<0 5 K4 HYA Hydraulika potrubí 7

19 přechodná oblast autor ronice platnost Colebrook-White λ.5 log Re λ + Δ 3.7 D Re>40 3 El-Abdala λ 6.54 log Re + Δ 3.7 D 0 4 <Re< <Δ/d< 0 - Haaland λ log Re + Δ 3.7 D <Re<0 8 Δ/d< 0 - Altšul λ Re + Δ D 0.5 Re>40 3 Moody 6 Δ 0 λ D Re 40 3 <Re<0 7 Δ/d< 0 - K4 HYA Hydraulika potrubí 8 3

20 kadratická oblast autor ronice platnost Nikuradse λ r0 log Δ Re>40 3 Šifrinson λ Δ 0. D <Re< <Δ/d< 0 - K4 HYA Hydraulika potrubí 9

21 Obecnější platnost ronice Colebrook-Whiteoa úpraa ronice Nikuradseho pro kadratickou oblast ztrát λ r0 log Δ +.74 D log Δ D log Δ log D log Δ úpraa ronice Prandtl-Kármána pro hydraulicky hladké potrubí Re log( Re λ ) 0.8 ( log( Re λ ) 0.4) log( Re λ ) + log log λ λ.5.5 ronice Colebrook-Whiteoa λ.5 log Re λ + Δ 3.7 D.5 Δ Re 0 log Nikuradseho r. Re λ λ 3.7 D Δ Δ log Prandtl Kárm. r. D 3.7 D λ Re λ K4 HYA Hydraulika potrubí 0

22 Určení hranic mezi jednotliými oblastmi proudění hydraulicky hladké potrubí Re < Re D D log 0. Δ Δ 8. D Δ 5.6 D Δ Eck Re m m log hranice kadratické oblasti ztrát třením A D Re > Rem Nikuradse A9 Colebrook A00 λ Δ 400 D Nikuradse 3.7 D Re m log Δ Δ Šifrinson Re > 500 D Δ použití diagramů (Moody) K4 HYA Hydraulika potrubí

23 Jiné ýpočetní postupy ýpočtu ztrát třením kadratické oblasti ztráty třením z obecné ronice ronoměrného proudění ronice Chezyho C R ie po aplikaci ronice spojitosti QS Q C S R ie K ie ie Q K K modul průtoku [m 3 s - ] C Chezyho rychlostní součinitel A Q A modul ztráty třením [m -6 s ] Afce(D, materiál p.) empirické ronice pro stanoení C K4 HYA Hydraulika potrubí

24 Empirické ronice pro stanoení součinitele C z ronice Manninga ronice Paloského C R n C 6 R n y y.5 n ( n 0.0) n manningů součinitel drsnosti yjádřením i E s Darcy-Weisbachoy ronice a z Chezyho ronice dostaneme ztah mezi C a λ. C 8 g λ λ 8 g C K4 HYA Hydraulika potrubí 3

25 ZTRÁTY MÍSTNÍ místní ztráty důsledek deformace rychlostního pole příčina překážka potrubí působící na proudění délka úseku s oliněným prouděním LL +L u +L p K4 HYA Hydraulika potrubí 4

26 Charakteristika jednotliých úseků L stupní úsek délka úseku před překážkou, e kterém je možné pozoroat deformaci rychlostního pole L u úsek s úplay dochází k odtržení proudu os stěny potrubí, oblast intenziních írů (turbulence) L p přechodoý úsek délka úseku za úsekem úplau, kde se rychlostní pole postupně yronáá ztráty místní se ytáří na celé délce L řádoě 0 až 00 D L L + L + L u p!!! Výpočet místních ztrát praxi : zjednodušení!!! celkoá hodnota ztrátoé ýšky Z m se přisoudí profilu překážky oproti skutečnosti se čára energie snižuje profilu překážky skokem K4 HYA Hydraulika potrubí 5

27 Výpočet ztrátoé ýšky Z m ξ g [m] ξ [-] - součinitel místní ztráty stanoení ξ zpraidla dle hydraul. tabulek Typické objekty na potrubí s ýskytem místních ztrát : tok do potrubí náhlé zúžení a rozšíření průřezu potrubí postupné (kónické) zúžení a rozšíření průřezu změna směru potrubí (ostrá a obloukoá kolena) taroky (rozdělení a spojení proudů) uzáěry pro regulaci průtoku (šoupata,klapky, kohouty, entily) ýtok z potrubí do nádrže clony, enturimetry, objemoé odoměry sací koše a jiné speciální objekty K4 HYA Hydraulika potrubí 6

28 Místní ztráta na toku do potrubí Z t ξ t g ostrá stupní hrana ysunutý tok do nádrže řešení hydraulicky hodných toků do potrubí K4 HYA Hydraulika potrubí 7

29 Tabulka hodnoty součinitele místní ztráty na toku pro různá konstrukční proedení toku typ toku potrubí zasahuje do nádrže ostrá stupní hrana seříznutá stupní hrana zaoblená stupní hrana kónicky rozšířený tok kruhoě zaoblený tok tok dle Lískoce (strofoida) platnost L/D 0. σ(40 80) L/D(0. 0.3) r0.d ξ t K4 HYA Hydraulika potrubí 8

30 Místní ztráta náhlým rozšířením potrubí (Bordoa ztráta) Z nr ξ nr g ξ nr g předpoklad: tlak potrubí průměru D před rozšířením je stejný jako tlak potrubí průměru D profilu těsně za rozšířením Odození na základě ěty o hybnosti a Bernoulliho ronice K4 HYA Hydraulika potrubí 9

31 K4 HYA Hydraulika potrubí 30 p p Q S Q S p p S p Q S p Q ρ ρ ρ ρ + ρ + ρ dle ěty o hybnostech Bernoulliho ronice pro odoronou osu g Z p p g Z p p Z g g p g g p nr nr nr ρ + ρ ρ ρ + ρ + ρ ρ + ρ poronáním ( ) ( ) nr nr nr g Z g Z g Z + ρ ρ ρ + ρ ρ

32 Z nr g ( ), S S S S Z nr g S S Z nr g S S ξ S D nr S D Tabulka hodnoty součinitele místní ztráty náhlého rozšíření D /D S /S ξ nr K4 HYA Hydraulika potrubí 3

33 Místní ztráta náhlým zúžením potrubí Z nz ξ nz g ξ nz S fce S ξ nz ε kde ε S. S Tabulka hodnoty součinitele místní ztráty náhlého zúžení D /D S /S ξ nz Tullis Douglas K4 HYA Hydraulika potrubí 3

34 Místní ztráta kónickým rozšířením potrubí Z kr ξ kr g S ξ kr fce ; δ S Tabulka hodnoty součinitele místní ztráty kónického rozšíření S /S δ δ δ δ K4 HYA Hydraulika potrubí 33

35 Místní ztráta kónickým zúžením potrubí Z kz ξkz ξkz fce( δ) g Tabulka hodnoty součinitele místní ztráty kónického zúžení δ ξ kz Místní ztráta na ýtoku z potrubí do nádrže Z g y ξy ξy - rychlost proudění potrubí před ýtokem do nádrže K4 HYA Hydraulika potrubí 34

36 Místní ztráta změnou směru ostrá kolena průběh rychlostí a tlaků ostrém kolenu rchol kolena ětší rychlosti u nitřní stěny nejětší tlaky u nější stěny Z os ξ os ξ os fce g ( δ) Tabulka hodnoty součinitele místní ztráty ostrého kolena δ ξ os hladká potrubí ξ os drsná potrubí K4 HYA Hydraulika potrubí 35

37 obloukoá kolena Z os r ξos ξ δ o os fce ; g D charakter proudění obloukoé kolenu: nejětší rychlosti u nitřní stěny, nejětší tlaky u nější stěny úplay - nější u rcholu oblouku, nitřní na konci oblouku dojitě spiráloité proudění Tabulka hodnoty součinitele místní ztráty čtrtkruhoého oblouku r o /D ξ os hladká potrubí ξ os drsná potrubí K4 HYA Hydraulika potrubí 36

38 Místní ztráty na objektech určených ke zjišťoání ( měření ) průtoku clona do potrubí ložen tenký profil s průměrem D menším než průměr potrubí D g Q g S p p ρ g Zcl ξcl ξcl ξ cl fce D D dýza ýpočet ztráty obdobný jako u clony K4 HYA Hydraulika potrubí 37

39 enturimetr princip funkce do potrubí ložen objekt s obloukoým zúžením a kónickým rozšířením potrubí -měření rozdílů tlaků mezi profily aplikace ronice Bernoulliho h + p ρ g + α g h + p ρ g + α g + ξ e g pro odoroné potrubí h h S m S Δp ΔH ρ g ( α ( ) + ) m g ΔH ξ α g ΔH ( m ) + ξe μ g ΔH Q S e K4 HYA Hydraulika potrubí 38

40 kolenoý průtokoměr měření tlaků na nějším a nitřním oblouku kolena jeho rcholu Q p fce ne p ρ g ni ro ; D Q c S ro D p ne p ρ g ni c S ro D Δp ρ g součinitel c stanoený cejchoáním K4 HYA Hydraulika potrubí 39

41 Místní ztráty na uzáěrech uzáěry slouží k zastaení nebo regulaci průtoku Z uz ξuz ξ uz fce( konstrukční typ, elikost oteření) g!!! Pro některé typy ξ uz 0 i při plném oteření uzáěru!!! základní konstrukční typy uzáěrů : šoupata entily kohouty klapky jehloé uzáěry zpětné klapky K4 HYA Hydraulika potrubí 40

42 Základní schéma ýpočtu potrubí ČE ČT pa RB: H + + ρ g Z Z α g + ΣZ A pb ρ g ΣZ α + g + ΣZ ( Z + ΣZ ) j tj mj tj mj j K4 HYA Hydraulika potrubí 4 B

43 oteřené a elké nádrže!! ýtokoá ztráta!! na hladině nádrží působí atmosférický tlak zanedbatelné rychlosti proudění nádržích p A p B p a A 0 B 0 RB: H + pa ρ g + α g A pb ρ g + α g B + ΣZ H ΣZ K4 HYA Hydraulika potrubí 4

44 ýtok z potrubí do olna!! není ýtokoá ztráta!! na hladinu nádrže před tokem i na ýtokoý paprsek působí atmosférický tlak zanedbatelná rychlost proudění nádrži A před tokem nezanedbatelná rychlost proudění ýtokoého paprsku p A p V p a A 0 V 0 p p A α α α A V V RB: H ΣZ V H + ΣZ ρ g g ρ g g g K4 HYA Hydraulika potrubí 43

45 K4 HYA Hydraulika potrubí 44 ýpočet sérioého potrubí ( ) + ξ λ π Σ + n j k i ji j j j 4 j n j mj tj n j j D L D g 8 Q Z Z Z Z n n S Q... S Q S Q 4 k i i k i i D g Q 8 D L S g Q D L π + ξ λ + ξ λ RK : obecně pro n úseků úsek : D, L, Q, + ξ + λ g g D L Z Z Z k i i k i mi t

46 Různé scénáře ýpočtu potrubí: známé potrubí (L j, D j, Δ j ), známý rozdíl hladin HΣZ mezi nádržemi Q? Q?? Re? oblast proudění? λ? postup ýpočtu :. předpoklad proudění kadratické oblasti ztrát e šech úsecích odhad Δ λ fce D. řešení Bernoulliho ronice H Z fce Q Q ( ) 3. Q Re 4. posouzení předpokladu e šech úsecích -splnění předpokladu e šech úsecích QQ konec ýpočtu -nesplnění předpokladu některém z úseků iterační postup K4 HYA Hydraulika potrubí 45

47 5. Re zpřesnění odhadu Δ λ fce Re ; D opakoané řešení Bernoulliho ronice Q -Q Q QQ konec ýpočtu -Q Q Re λ BR Q opakoání postupu až je dosaženo dostatečné shody mezi kroky iteračního postupu aplikace praxi : ýpočet kapacity potrubí při proudění K4 HYA Hydraulika potrubí 46

48 známé potrubí (L j, D j, Δ j ), známý průtok Q ΣZ? Q Re Δ λ fce Re; D postup ýpočtu řešení Bernoulliho ronice : Z fce( Q ) řešení bez iteračního postupu aplikace praxi posouzení tlakoých poměrů na proozoaném potrubí K4 HYA Hydraulika potrubí 47

49 známý průtok Q, požadoané tlakoé poměry ΣZ H nárh potrubí D j, L j, Δ j postup ýpočtu Q, D Re λ Δ fce Re; D aplikace Bernoulliho ronice : Σ řešení bez iteračního postupu nárh potrubí splňuje hydraulické požadaky pro ΣZ < ΣZ pro ΣZ <<ΣZ nárh není ekonomický zbytečně elké D posouzení jiného nárhu s menšími D Z fce( Q ) Aplikace praxi : nárh odoodního potrubí pro zásoboání pitnou odou, K4 HYA Hydraulika potrubí 48

50 Posouzení tlakoých poměrů e ybraných profilech potrubí základní přístupy řešení absolutních tlacích p přetlak potrubí > 0 m.s. ρ g podtlak potrubí p < ρ g 0 m.s. p min teoretické minimum (akuum) 0 m.s. ρ g p požadoané minimum > 4 m.s. ρ g při nesplnění přerušení odního sloupce, kaitace relatiních tlacích požadoané přetlak p p podtlak p a minimum > 0 m.s. < 0 m.s. ρ g ρ g p amin 6 8 m.s. ρ g K4 HYA Hydraulika potrubí 49

51 Posouzení tlakoých poměrů absolutních tlacích oblast nádrží A a B H A A 0 B 0 ČE ČT určení absolutního tlaku profilu řešení Bernoulliho ronice pa p α p pa α H Z A HA H + Z ρ g ρ g g ρ g ρ g g + A nebezpečné profily p i < ( 4) m.s. ρ g K4 HYA Hydraulika potrubí 50

52 Posouzení tlakoých poměrů relatiních tlacích oblast nádrží A a B A 0 B 0 ČE ČT určení podtlaku profilu 4 řešení Bernoulliho ronice H A pa4 α pa4 α 4 H Z A4 HA H Z A4 ρ g g ρ g g nebezpečné profily < ( 6 8) m.s. ρ g K4 HYA Hydraulika potrubí 5 p ai

53 SOUSTAVA POTRUBÍ - ČERPADLO Geodetický spád: H g Hgs + Hg H g celkoý geodetický spád H gs geodetická sací ýška H g geodetická ýtlačná ýška Dopraní ýška: H H s + H (H gs + Z s ) + (H g + Z ) p A Z s :tření, sací koš, zpětná klapka, koleno, oblouky ždy jako krátké potrubí Z :tření, uzáěry, krátké nebo dlouhé H H g + ΣZ s + ΣZ H g + ΣZ K4 HYA Hydraulika potrubí 5

54 p A Posouzení akuometrické ýšky: H a pa ρ g H gs + ΣZ S + α g s orientačně H a <(6 8) m. sl. absolutní tlak na toku do čerpadla pč ρ g pa ρ g H gs Z s α g s měrná energie č. : Y gh [Jkg - ] pč α p č np ΔY + ΔYč ρ ρ kaitační rezera min. ka. rez. č. p np tlak nasycených odních par pro T K4 HYA Hydraulika potrubí 53

55 Jmenoité charakteristiky čerpadla: Q n, H n, Y n, η n, Δy čn, P n Příkon: ρ g Q H P η ρ g Y η [W] η n η max Účinnost: η η č η m (η č ~0,3 0,9) charakteristika potrubí H H g hlaní charakteristika čerpadla Hfce(Q) H klesá s Q hodnoty dány ýrobcem účinnost + Z H g + Q 8 g π n j D λ + ξ ηfce(q) ηs růstem Q nejpre roste, od η max klesá hodnoty účinnosti záislosti na Q dány ýrobcem K4 HYA Hydraulika potrubí 54 L D j k 4 j j j i ji H roste s Q parabola

56 Praconí bod soustay potrubí - čerpadlo: charakteristika potrubí hlaní charakteristika čerpadla účinnost optimálně Q p Q n K4 HYA Hydraulika potrubí 55

57 Řešení soustay čerpadel zapojených paralelně několik stejných čerpadel zapojených paralelně Celkoá charakteristika čerpadel sčítání pořadnic Q praconí bod pro čerpadlo Q č H č praconí bod pro čerpadla Q č < Q č K4 HYA Hydraulika potrubí 56

58 Řešení soustay čerpadel zapojených sérioě několik stejných čerpadel zapojených sérioě Celkoá charakteristika čerpadel sčítání pořadnic H praconí bod pro čerpadlo Q č H č praconí bod pro čerpadla H č < H č K4 HYA Hydraulika potrubí 57

59 TRUBNÍ SÍTĚ druhy trubních sítí ětené okruhoé kombinoané počet akumulačních nádrží s odojemem s íce odojemy druhy odběru ody bodoý ronoměrný odběr po délce K4 HYA Hydraulika potrubí 58

60 Podstata hydraulického ýpočtu Z MO Z MN + Z NO Q MN Q NO Q NP Q N 0 Ronice kontinuity průtokoá (uzloá) podmínka Q i 0 Ronice Bernoulliho ztrátoá podmínka uzlu je jeden tlak jedna kóta ČE Schematizace sítě odběry Q i uzlech K4 HYA Hydraulika potrubí 59

61 Výpočet paralelního potrubí ronice kontinuity Q B 0, Q C 0 Q AB Q BC +Q BC3 Q CD Q ronice Bernoulliho Z AD Z AB +Z BC +Z CD Z AB +A BC3 +Z CD Z BC Z BC3 Z AB fce(q ) Z BC fce(q BC ) Z BC3 +fce(q BC3 ) Z CD fce(q ) K4 HYA Hydraulika potrubí 60

62 Způsoby řešení základní ronice Z AD Z AB +Z BC +Z CD fce (Q, Q BC ) Z AD Z AB +Z BC3 +Z CD fce (Q, (Q-Q BC ) ) nebo Z BC fce(q BC ) Z BC3 fce(q-q BC ) ) soustaa ronic o neznámých řešení : exaktní řešení soustay ronic iterační postup zpřesňoání olby neznámých až platí základní ronice například : odhad průtoku Q BC Z BC Z BC3 Q BC3 Q Q Q Q BC BC BC3 QBC3 Q předpoklad, QBC Q Q Q Q Q Q BC, QBC3 kontrola spránosti Q,Q BC,Q BC3 ΔHZ AD, Z BC Z BC3 případě nesplnění opakoání ýpočtu K4 HYA Hydraulika potrubí 6

63 Větená síť + jednoduchost + menší náklady - malá flexibilita - problémy s dodákou ody při poruše Jsou známé směry a elikosti průtoků úsecích Q i Z i, p i Hydraulický ýpočet metoda korekce tlaků (ztrát) (odhad p i uzlech Z i úsecích Q i úsecích ΣQ i 0 uzlech opraa p i...) D i K4 HYA Hydraulika potrubí 6

64 Okruhoá síť hlaní (primární) síť detailní (sekundární) síť pro každý uzel ΣQ i 0 (Q 0 -Q -Q Q A 0) pro každý okruh ΣZ i 0 podmínka ztrátoá (okruhoá) (Z + Z -Z 5 -Z 0)? nejsou známy směry ani elikosti průtoků úsecích - složité hydraulicky i proozně -ětší náklady + flexibilita prooz, přetížení + dodáka ody i při poruše Hydraulický ýpočet mnohonásobných iteračních cyklech metoda korekce průtoků řešení na PC K4 HYA Hydraulika potrubí 63

65 Řešení úlohy se 3 odojemy H D < H B odtok z odojemu B H D > H B přítok do odojemu B H D H B oda potrubí neproudí možný iterační postup řešení: odhad kóty H D Z AD, Z BD, Z CD Q, Q, Q 3 dle podmínky ΣQ D 0 opraa H D... K4 HYA Hydraulika potrubí 64

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

1. M ení místních ztrát na vodní trati

1. M ení místních ztrát na vodní trati 1. M ení místních ztrát na odní trati 1. M ení místních ztrát na odní trati 1.1. Úod P i proud ní tekutiny potrubí dochází liem její iskozity ke ztrátám energie. Na roných úsecích potrubních systém jsou

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Fluidace Úvod: Úkol: Teoretický úvod:

Fluidace Úvod: Úkol: Teoretický úvod: Fluidace Úod: Fluidace je mechanická operace (hydro- nebo aeromechanická), při které se udržují tuhé částice e znosu tekuté (kapalné nebo plynné) fázi. Uplatňuje se energetice při spaloání uhlí, katalytických

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ DIPLOMOVÁ PRÁCE Modeloání proudění ody na měrném přeliu Vedoucí práce: Ing. Jiří Palásek, Ph.D. Diplomant: Roman Kožín 009 Prohlášení Prohlašuji,

Více

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD 19. Konference Klimatizace a větrání 010 OS 01 Klimatizace a větrání STP 010 STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD Jan Schwarzer, Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání

Více

10.1 CO JE TO SRÁŽKA?

10.1 CO JE TO SRÁŽKA? 10 Sr ûky Fyzik Ronald McNair byl jednìm z astronaut, kte Ì zahynuli p i ha rii raketopl nu Challenger. Byl takè nositelem ËernÈho p sku karate a jedin m derem dok zal zlomit nïkolik betono ch tabulek.

Více

BR 52 Proudění v systémech říčních koryt

BR 52 Proudění v systémech říčních koryt BR 52 Proudění v systémech říčních koryt Přednášející: Ing. Hana Uhmannová, CSc., doc. Ing. Jan Jandora, Ph.D. VUT Brno, Fakulta stavební, Ústav vodních staveb 1 Přednáška Úvod do problematiky Obsah: 1.

Více

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu . Dráha ronoměrně zrychleného (zpomaleného) pohybu teorie Veličina, která charakterizuje změnu ektoru rychlosti, se nazýá zrychlení. zrychlení akcelerace a, [a] m.s - a a Δ Δt Zrychlení je ektoroá fyzikální

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU OBSAH 1. ÚVOD... 3 1.1. Předmět a účel... 3 1.2. Platnost a závaznost použití... 3 2. SOUVISEJÍCÍ NORMY A PŘEDPISY... 3 3. ZÁKLADNÍ

Více

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé. Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5 Obsah Historický přehled 5 Plynný sta hmoty 8. Jednotky tlaku................ 8.. Použíané jednotky tlaku.......... 9.. Rozlišení oblastí akua podle tlaku...... 9. Staoá ronice................ 9.. Gay

Více

1 Vlastnosti kapalin a plynů

1 Vlastnosti kapalin a plynů 1 Vlastnosti kapalin a plynů hydrostatika zkoumá vlastnosti kapalin z hlediska stavu rovnováhy kapalina je v klidu hydrodynamika zkoumá vlastnosti kapalin v pohybu aerostatika, aerodynamika analogicky

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

NOVÝ Zpětný ventil. Typ 561 a 562. www.titan-plastimex.cz

NOVÝ Zpětný ventil. Typ 561 a 562. www.titan-plastimex.cz NOVÝ Zpětný ventil Typ 561 a 562 www.titan-plastimex.cz VÝHODY Nové zpětné ventily jsou maximálně spolehlivé a výkonné díky optimalizované geometrii proudění vede k vašemu prospěchu a vyššímu zisku. Zpětné

Více

Protokol č. V- 213/09

Protokol č. V- 213/09 Protokol č. V- 213/09 Stanovení součinitele prostupu tepla U, lineárního činitele Ψ a teplotního činitele vnitřního povrchu f R,si podle ČSN EN ISO 10077-1, 2 ; ČSN EN ISO 10211-1, -2, a ČSN 73 0540 Předmět

Více

11. Mechanika tekutin

11. Mechanika tekutin . Mechanika tekutin.. Základní poznatky Pascalův zákon Působí-li na tekutinu vnější tlak pouze v jednom směru, pak uvnitř tekutiny působí v každém místě stejně velký tlak, a to ve všech směrech. Hydrostatický

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT. RNDr.František Pastuszek VODNÍ ZDROJE, a.s.

VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT. RNDr.František Pastuszek VODNÍ ZDROJE, a.s. VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT RNDr.František Pastuszek VODNÍ ZDROJE, a.s. EXPERT je soustavou kalkulátorů, které zjednodušují práci při zpracovávání hydrogeologických

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

X-kříž. Návod k instalaci a použití

X-kříž. Návod k instalaci a použití X-kříž Návod k instalaci a použití 1 Obsah Název kapitoly strana 1. Měřicí princip X-kříže 2 2. Konstrukce 2 3. Využití 2 4. Umístění 3 5. Provedení 3 6. Instalace 4 7. Kompletace systému 7 8. Převod výstupu

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:

Více

Matematické modelování proudění vody s volnou hladinou

Matematické modelování proudění vody s volnou hladinou Inovace předmětu Vodohospodářské inženýrství a životní prostředí v rámci projektu Inovace bakalářského programu Stavební inženýrství pro posílení profesního zaměření absolventů CZ.2.17/3.1.00/36033 financovaném

Více

Vodní cesty a plavba Doc. Ing. Aleš Havlík, CSc.

Vodní cesty a plavba Doc. Ing. Aleš Havlík, CSc. Vodní cesty a plavba Doc. Ing. Aleš Havlík, CSc. Vnitrozemská vodní doprava Výhody : Nejméně energeticky náročná. Velké ložné plochy, velká nosnost. Malý poměr hmotnosti lodi k hmotnosti nákladu. Malý

Více

Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT 23-41-M/01 Strojírenství

Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT 23-41-M/01 Strojírenství Protokol SADA DUM Číslo sady DUM: Název sady DUM: Název a adresa školy: Registrační číslo projektu: Číslo a název šablony: Obor vzdělávání: Tematická oblast ŠVP: Předmět a ročník Autor: Použitá literatura:

Více

Charakteristika čerpání kapaliny.

Charakteristika čerpání kapaliny. Václav Slaný BS design Bystřice nad Pernštejnem Úvod Charakteristika čerpání kapaliny. Laboratorní zařízení průtoku kapalin, které provádí kalibraci průtokoměrů statickou metodou podle ČSN EN 24185 [4],

Více

8. Mechanika kapalin a plynů

8. Mechanika kapalin a plynů 8. Mechanika kapalin a plynů 8. Vlastnosti kapalin a plynů Základní vlastností je tekutost. Tekutost je, když částečky se po sobě velmi snadno a velmi dobře pohybují (platí to pro tekutiny i plyny). Díky

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

5 Zásady odvodňování stavebních jam

5 Zásady odvodňování stavebních jam 5 Zásady odvodňování stavebních jam 5.1 Pohyb vody v základové půdě Podzemní voda je voda vyskytující se pod povrchem terénu. Jejím zdrojem jsou jednak srážky, jednak průsak z vodotečí, nádrží, jezer a

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE TECHNICKÁ DOKUMENTACE Jan Petřík 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Obsah přednášek 1. Úvod do problematiky tvorby technické dokumentace

Více

ČVUT v Praze, Fakulta stavební Katedra hydromelioracía krajinného inženýrství Životní prostředí (143 ZIPR)

ČVUT v Praze, Fakulta stavební Katedra hydromelioracía krajinného inženýrství Životní prostředí (143 ZIPR) ČVUT v Praze, Fakulta stavební Katedra hydromelioracía krajinného inženýrství Životní prostředí (143 ZIPR) 8. přednáška Vliv dopravy na životní prostředí Životní prostředí VLIV DOPRAVY NA PROSTŘEDÍ dělení

Více

Světlo elektromagnetické vlnění

Světlo elektromagnetické vlnění FYZIKA praconí sešit pro ekonomické lyceum Jiří Hlaáček, OA a VOŠ Příbram, 05 Sětlo elektromagnetické lnění Sětelné jey jsou známy od pradána. Ale až 9. století se podařilo íce proniknout k podstatě sětla

Více

Ing. Viktor Zbořil BAHAL SYSTEM VĚTRÁNÍ RODINNÝCH DOMŮ

Ing. Viktor Zbořil BAHAL SYSTEM VĚTRÁNÍ RODINNÝCH DOMŮ VĚTRÁNÍ RODINNÝCH DOMŮ (PŘEDEVŠÍM V PASIVNÍCH STANDARDECH) 1. JAK VĚTRAT A PROČ? VĚTRÁNÍ K ZAJIŠTĚNÍ HYGIENICKÝCH POŽADAVKŮ FYZIOLOGICKÁ POTŘEBA ČLOVĚKA Vliv koncentrace CO 2 na člověka 360-400 ppm - čerstvý

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

Výzkum řešení degradace jakosti pitné vody při její akumulaci

Výzkum řešení degradace jakosti pitné vody při její akumulaci Výzkum řešení degradace jakosti pitné vody při její akumulaci ČVUT v Praze, Fakulta stavební Mze, NAZV-1G58052 Katedra zdravotního a ekologického inženýrství Doc. Ing. Iva Čiháková, CSc. Ing. Bronislava

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

Varius Nožové pojistky

Varius Nožové pojistky Varius Nožoé pojistky Nožoé pojistkoé ložky řady PNA s harakteristikou gg se yznačují ysokou ypínaí shopností, elkou proudoou omezoaí shopností a nízkými hodnotami přepětí zniklého během působení pojistkoé

Více

Program KALKULÁTOR POLOHY HPV

Program KALKULÁTOR POLOHY HPV Program KALKULÁTOR POLOHY HPV Výpočet úrovně hladiny podzemní vody Dokumentace Teoretický základ problematiky Pokyny pro uživatele Jakub Štibinger, Pavel Kovář, František Křovák Praha, 2011 Tato dokumentace

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Příloha 01. Deskriptory kvalifikačních úrovní Národní soustavy povolání

Příloha 01. Deskriptory kvalifikačních úrovní Národní soustavy povolání Příloha 01 Deskriptory kalifikačních úroní Národní soustay poolání Znalosti teoretické a faktické (aplikoatelné e ýkonu ) Doednosti kognitiní - použíání logického, intuitiního a tůrčího myšlení a doednosti

Více

Geologie a tepelné vlastnosti hornin Projektování vrtů pro tepelná čerpadla na základě geologických předpokladů vliv na vodní režim, rizika

Geologie a tepelné vlastnosti hornin Projektování vrtů pro tepelná čerpadla na základě geologických předpokladů vliv na vodní režim, rizika Zpracoval: Mgr. Michal Havlík Geologie a tepelné vlastnosti hornin Projektování vrtů pro tepelná čerpadla na základě geologických předpokladů vliv na vodní režim, rizika Kapitola 4 - GEOLOGIE A TEPELNÉ

Více

Sedlové ventily VF 2, VL 2 - dvoucestné VF 3, VL 3 trojcestné

Sedlové ventily VF 2, VL 2 - dvoucestné VF 3, VL 3 trojcestné Datový list Sedlové ventily VF 2, VL 2 - dvoucestné VF 3, VL 3 trojcestné Popis Ventily poskytují kvalitní a cenově příznivé řešení pro většinu aplikací vytápění i chlazení s médiem - voda. Tyto ventily

Více

ZÁSOBOVÁNÍ HASIVY ZÁSOBOVÁNÍ VODOU

ZÁSOBOVÁNÍ HASIVY ZÁSOBOVÁNÍ VODOU Fakulta bezpečnostního inženýrství VŠB TUO ZÁSOBOVÁNÍ HASIVY ZÁSOBOVÁNÍ VODOU Názvosloví a definice odborných termínů doc. Ing. Šárka Kročová, Ph.D. VODÁRENSTVÍ Technický obor, který se zabývá jímáním,

Více

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1.

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1. TEZE ka. 5 Vlhký zduch, ychrometrický diagram (i x). Charakteritika lhkých materiálů, lhkot olná, ázaná a ronoážná. Dehydratace otrainářtí. Změny ušicím zduchu komoroé ušárně. Kontrolní otázky a tyy říkladů

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

Hydroenergetika (malé vodní elektrárny)

Hydroenergetika (malé vodní elektrárny) Hydroenergetika (malé vodní elektrárny) Hydroenergetický potenciál ve světě evaporizace vody (¼ solární energie) maximální potenciál: roční srážky 10 17 kg prum výška kontinetálního povrchu nad mořem =

Více

PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ

PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ Ing. Jindřich Mrlík O netěsnosti a průvzdušnosti stavebních výrobků ze zkušební laboratoře; klasifikační kriteria průvzdušnosti oken a dveří, vrat a lehkých obvodových plášťů;

Více

02-05.5 04.11.CZ Regulační ventil najížděcí G 93

02-05.5 04.11.CZ Regulační ventil najížděcí G 93 0-05.5 04..CZ Regulační ventil najížděcí G 9 -- Výpočet součinitele Kv Praktický výpočet se provádí s přihlédnutím ke stavu regulačního okruhu a pracovních podmínek látky podle vzorců níže uvedených. Regulační

Více

Hydrogeologie a právo k 1.1. 2012. část 5.

Hydrogeologie a právo k 1.1. 2012. část 5. Hydrogeologie a právo k 1.1. 2012 část 5. Zasakování srážkových vod do půdní vrstvy Právní začlenění: 5, odstavec 3 zákona č. 254/2001 Sb. říká, že: Při provádění staveb nebo jejich změn nebo změn jejich

Více

Využití počítačové simulace CFD pro stanovení součinitelů místních ztrát

Využití počítačové simulace CFD pro stanovení součinitelů místních ztrát Počítačová simulace FD omputational Simulation FD P o č í t a č o v á s i m u l a c e F D o m p u t a t i o n a l S i m u l a t i o n F D Ing. Vladimír ZMRHAL, Ph.D. Ing. Jan SHWARZER, Ph.D. ČVUT v Praze,

Více

Zesilování a rekonstrukce pomocí nabetonovaných vrstvev pro mosty, tunely a ostatní infrastrukturu

Zesilování a rekonstrukce pomocí nabetonovaných vrstvev pro mosty, tunely a ostatní infrastrukturu Neautorizoaný překlad originál angličtině je k dispozici. Zesiloání a rekonstrukce pomocí nabetonoaných rste pro mosty, tunely a ostatní infrastrukturu Konstrukční zásady a narhoání pro staticky neurčité

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 3 PŘEVODY

Více

STAŽENO z www.cklop.cz

STAŽENO z www.cklop.cz 6 Spárová průvzdušnost a vodotěsnost 6.1 Základní definice Průvzdušnost V [m 3 /s] charakterizuje množství vzduchu v m 3, který projde za jednotku času stavební konstrukcí, stavebním dílcem, konstrukčním

Více

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2)

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 27. 3. 2013 Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) 5.5 REGULOVANÉ SOUSTAVY Regulovaná

Více

Frézování. Hlavní řezný pohyb nástroj - rotační pohyb Přísuv obrobek - v podélném, příčném a svislém směru. Nástroje - frézy.

Frézování. Hlavní řezný pohyb nástroj - rotační pohyb Přísuv obrobek - v podélném, příčném a svislém směru. Nástroje - frézy. Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Základní konvenční technologie obrábění FRÉZOVÁNÍ Technická univerzita v Liberci

Více

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

Laboratorní práce č. 2: Určení povrchového napětí kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice

Více

Čistírny odpadních vod ČOV-AF. s dávkováním flokulantu

Čistírny odpadních vod ČOV-AF. s dávkováním flokulantu ČOV-AF s dávkováním flokulantu ČISTÍRNY ODPADNÍCH VOD ČOV-AF 3 ČOV-AF 50 S DÁVKOVÁNÍM FLOKULANTU POUŽITÍ Domovní čistírny odpadních vod ČOV-AF s dávkováním flokulantu slouží pro čištění komunálních vod

Více

Solární tepelné soustavy. Ing. Stanislav Bock 3.května 2011

Solární tepelné soustavy. Ing. Stanislav Bock 3.května 2011 Solární tepelné soustavy Ing. Stanislav Bock 3.května 2011 Princip sluneční kolektory solární akumulační zásobník kotel pro dohřev čerpadlo Možnosti využití nízkoteplotní aplikace do 90 C ohřev bazénové

Více

edb žný hydrogeologický pr zkum Hodov ... z provedené erpací zkoušky na vrtu

edb žný hydrogeologický pr zkum Hodov ... z provedené erpací zkoušky na vrtu Tak ne předběžný hydrogeologický průzkum Hodov... z provedené čerpací zkoušky na vrtu ČI 1 vyplývá, že při čerpání vydatnosti 0,2 l/s (1 000 l/den) poklesla hladina ve vrtu zhruba o 1/3 (ustálená HPV před

Více

Stokové soustavy existují v podstatě tři a to soustava jednotná, oddílná a modifikovaná.

Stokové soustavy existují v podstatě tři a to soustava jednotná, oddílná a modifikovaná. KANALIZAČNÍ STOKY Ing. D. Hánková Zpracováno pro projekt CTU0513011(2005) 1 SOUSTAVY A SYSTÉMY STOK Stokové soustavy existují v podstatě tři a to soustava jednotná, oddílná a modifikovaná. 1.1 Jednotná

Více

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze 3. SPLAVENINY VE VODNÍCH TOCÍCH VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proce vodní eroze DRUHY A VLASTNOSTI SPLAVENIN Rozdělení plavenin: Plaveniny: do 7mm (překryv v 0,1 7,0 mm dle unášecí íly τ 0

Více

Stanice pro ohřev pitné vody Regumaq X-30 / Regumaq XZ-30

Stanice pro ohřev pitné vody Regumaq X-30 / Regumaq XZ-30 X-30 / XZ-30 Systém øízení jakosti Oventrop je certifikován podle DIN-EN-ISO 9001. Datový list Rozsah pouití: Skupiny armatur Oventrop X-30 a XZ-30 umožňují hygienický ohřev pitné vody na základě principu

Více

Katedra obrábění a montáže, TU v Liberci při obrábění podklad pro výuku předmětu TECHNOLOGIE III - OBRÁBĚNÍ je při obrábění ovlivněna řadou parametrů řezného procesu, zejména řeznými podmínkami, geometrií

Více

Seřizovací kulové kohouty JIP BaBV (PN 25)

Seřizovací kulové kohouty JIP BaBV (PN 25) Seřizovací kulové kohouty JIP BaBV (PN 25) Popis BaBV WW BaBV FF Seřizovací kulové kohouty Danfoss BaBV byly navrženy speciálně pro aplikace dálkového vytápění. Jejich vlastnosti se vyznačují vysokou provozní

Více

Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda

Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda Tepelná čerpadla Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda Tepelná čerpadla arotherm VWL vzduch/voda Vzduch jako zdroj tepla Tepelná čerpadla Vaillant arotherm

Více

Měření a výpočet kapacity vodovodních přivaděčů - matematické modelování

Měření a výpočet kapacity vodovodních přivaděčů - matematické modelování Měření a výpočet kapacity vodovodních přivaděčů - matematické modelování Ing. Jan Berka; Ing. Rostislav Kasal Ph.D.; Ing. Jan Cihlář VRV a.s. Úvod Matematické modelování je moderním nástrojem pro posouzení

Více

Pozor! SolaVentec solární stanice 1. solární stanice s ventilovou technikou! Provozní stav:

Pozor! SolaVentec solární stanice 1. solární stanice s ventilovou technikou! Provozní stav: Pozor! SolaVentec solární stanice 1. solární stanice s ventilovou technikou! Solární stanice SolaVentec má místo jinak obvyklých zpětných ventilů nastavovací ventil. Ten se otvírá a uzavírá termickým nastavovacím

Více

M114 Aerodynamika, konstrukce a systémy letounů (RB1)

M114 Aerodynamika, konstrukce a systémy letounů (RB1) M114 Aerodynamika, konstrukce a systémy letounů (RB1) úroveň 114.1 Teorie letu (11.1) 114.1a Aerodynamika letounu a řízení letu Činnost a účinek řízení: příčného náklonu křidélka a spoilery; podélného

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

Zakládání ve Scia Engineer

Zakládání ve Scia Engineer Apollo Bridge Apollo Bridge Architect: Ing. Architect: Miroslav Ing. Maťaščík Miroslav Maťaščík - Alfa 04 a.s., - Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Více

Studie migrace ryb přes kartáčovérybípřechody na řece Sázavě

Studie migrace ryb přes kartáčovérybípřechody na řece Sázavě Horký, P. a kol. Studie migrace ryb přes kartáčovérybípřechody na řece Sázavě Výzkumný ústav vodohospodářský T. G. Masaryka, v.v.i. Podbabská 30/ 2582, 160 00 Praha 6 +420 220 197 111 Pobočka Brno Mojmírovo

Více

Vířivé anemostaty. doporučené použití v místnostech s výškou od cca 2,60... 4,00 m

Vířivé anemostaty. doporučené použití v místnostech s výškou od cca 2,60... 4,00 m 2/4/TCH/8 Vířivé anemostaty Série RFD doporučené použití v místnostech s výškou od cca 2,60... 4,00 m TROX GmbH Telefon +420 2 83 880 380 organizační složka Telefax +420 2 86 881 870 Ďáblická 2 e-mail

Více

TZ 12 Návrh dešťové kanalizace a zařízení na využití odpadních vod

TZ 12 Návrh dešťové kanalizace a zařízení na využití odpadních vod ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TZ 12 Návrh dešťové kanalizace a zařízení na využití odpadních vod ČSN EN 12056 Gravitační systémy, ČSN 737660 Gravitační a podtlakové systémy

Více

Návod na montáž a zapojení LED pásku

Návod na montáž a zapojení LED pásku Návod na montáž a zapojení LED pásku Návod na montáž a zapojení LED pásku obsahuje důležité pokyny k montáži a zapojení. Jestliže výrobek předáte jiným osobám, dbejte na to, abyste jim odevzdali i tento

Více

Efektiv. Technický popis. Profilový systém. Produktová skupina. Materiál. Brugmann AD 73 mm. Počet komor 5 / 7 Parametry U f

Efektiv. Technický popis. Profilový systém. Produktová skupina. Materiál. Brugmann AD 73 mm. Počet komor 5 / 7 Parametry U f technický list Produktová skupina Třída Materiál Použití Technický popis Profilový systém Efekitv Bronze PVC Okna, balkonové dveře Efektiv 1 Název Šířka Brugmann AD 73 mm 73 mm Počet komor 5 / 7 Parametry

Více

NOVOSTAVBA RODINNÉHO DOMU NA PARCELE Č. 4544/123 V KATASTRÁLNÍM ÚZEMÍ HUSTOPEČE U BRNA

NOVOSTAVBA RODINNÉHO DOMU NA PARCELE Č. 4544/123 V KATASTRÁLNÍM ÚZEMÍ HUSTOPEČE U BRNA INVESTOR: Vladimíra Tučková, Nová Ves 109, 691 23, Pohořelice NOVOSTAVBA RODINNÉHO DOMU NA PARCELE Č. 4544/123 V KATASTRÁLNÍM ÚZEMÍ HUSTOPEČE U BRNA VYTAPĚNÍ Obsah projektu : Technická zpráva Výkresová

Více

TECHNICKÁ ZPRÁVA. Geodetické zaměření Neštěmického potoka Geodetické zaměření Neštěmického potoka v úseku 0-3,632 ř. km.

TECHNICKÁ ZPRÁVA. Geodetické zaměření Neštěmického potoka Geodetické zaměření Neštěmického potoka v úseku 0-3,632 ř. km. TECHNICKÁ ZPRÁVA Číslo zakázky: Název zakázky: Název akce: Obec: Katastrální území: Objednatel: Měření zadal: Geodetické zaměření Neštěmického potoka Geodetické zaměření Neštěmického potoka v úseku 0-3,632

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Měření průtoku škrtícími prvky Speciální potrubní díly Teploměrové jímky Kalibrování průtokoměrů

Měření průtoku škrtícími prvky Speciální potrubní díly Teploměrové jímky Kalibrování průtokoměrů Měření průtoku škrtícími prvky Speciální potrubní díly Teploměrové jímky Kalibrování průtokoměrů Firma IMAHA spol.s r.o. byla založena roku 1993 a její hlavní činností je prodej regulačních ventilů firmy

Více

Zajištění dodávky spalovacího vzduchu s využitím samoregulačních větracích klapek REGEL-air

Zajištění dodávky spalovacího vzduchu s využitím samoregulačních větracích klapek REGEL-air Zajištění dodávky spalovacího vzduchu s využitím samoregulačních větracích klapek REGEL-air Cílem článku je seznámení odborné veřejnosti s možností přívodu spalovacího vzduchu samoregulačními větracími

Více

Fakulta životního prostředí

Fakulta životního prostředí Fakulta životního prostředí Seznam všech výstupů projektu OP-Praha Adaptabilita CZ.2.17/3.1.00/36149 Modernizace výuky udržitelného hospodaření s vodou a půdou v rámci rozvíjejících se oborů bakalářského

Více

Schémata elektrických obvodů

Schémata elektrických obvodů Schémata elektrických obvodů Schémata elektrických obvodů Číslo linie napájení Elektrický obvod 30 Propojení s kladným pólem akumulátorové baterie 31 Kostra 15, 15a Propojení s kladným pólem akumulátorové

Více

n =, kde n je počet podlaží. ψ 0 je redukční

n =, kde n je počet podlaží. ψ 0 je redukční Užitné zatížení Činnost lidí Je nahrazeno plošným a bodovým zatížením. Referenční hodnota 1 rok s pravděpodobností překročení 0,98 Zatížení stropů Velikost zatížení je dána v závislosti na druhu stavby

Více

Technické údaje SI 75TER+

Technické údaje SI 75TER+ Technické údaje SI 75TER+ Informace o zařízení SI 75TER+ Provedení - Zdroj tepla Solanky - Provedení Univerzální konstrukce reverzibilní - Regulace WPM 2007 integrovaný - Místo instalace Indoor - Výkonnostní

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více