KOMBINATORIKA. Způsob řešení b)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "KOMBINATORIKA. Způsob řešení b)"

Transkript

1 / KOMBINATORIKA Příld Určete počet všech přirozeých dvojciferých čísel, v jejichž dedicém zápisu se ždá číslice vysytuje ejvýše jedou. Způsob řešeí ) Kombitoricé prvidlo součiu: Počet všech uspořádých -tic, jejichž prví čle lze vybrt způsoby, druhý čle po výběru prvího čleu způsoby td. ž -tý čle po výběru všech předcházejících čleů způsoby, je rove Způsob řešeí b). Kombitoricé prvidlo součtu: Jsou-li A, A,, A oečé možiy, teré mjí po řdě p, p,, p prvů, jsou-li ždé dvě disjutí, p počet prvů možiy A A A je rove p + p + + p. Příld Určete počet všech čtyřciferých čísel, v jejichž dedicém zápisu eí ul ze zbývjících devíti cifer se v ěm ždá vysytuje ejvýše jedou. ) Koli z těchto čísel je větších ež 9? b) Koli z těchto čísel je meších ež? Příld Z Adělsého údolí do Bílísého les vedou čtyři cesty. Z Bílísého les vedou tři růzé cesty dál do Ciásé role. Koli růzými způsoby lze dojít z Adělsého les do Ciásé role zpět, poud ) eldeme žádé poždvy? b) právě jed cest je použit dvrát? c) žádá cest eí použit dvrát? A B d) právě dvě cesty jsou použity dvrát? C

2 Kombitori / e) lespoň jed cest je použit dvrát? Příld V městsé ihově v odděleí zoologie jsou všechy svzy ih očíslováy čtyřciferými čísly tvořeými cifrmi,,, 5 (tyto cifry se mohou v čísle opovt). Určete počet ih, teré mjí svoje registrčí číslo dělitelé ) pěti. b) dvěm. c) čtyřmi. Pomocí ombitoricých prvidel vyřešte ásledující úlohy: ) J má 5 růzě brevých triče estejé suě. Koli způsoby si může vzít tričo sui, by poždé vpdl ji? ) Do tečích přišlo chlpců díve. Koli růzých tečích párů mohou vytvořit? ) V resturci mjí jídelí lísu druhy poléve, 7 možostí výběru hlvího jídl, druhy moučíů. K pití si lze objedt ávu, limoádu ebo džus. Koli způsoby si host může vybrt oběd, z předpoldu, že bude jíst ) je polévu hlví jídlo. b) polévu, hlví jídlo dále si objedá ápoj. c) polévu, hlví jídlo, moučí ápoj. ) Ve třídě chodí žáů frcouzštiu žáů ěmčiu. Kždý žá vštěvuje právě jede z uvedeých předmětů. Koli způsoby lze vybrt dvojici týdeí službu t, by měl službu jede žá z odděleí ěmčiy jede žá z odděleí frcouzštiy? Koli let by žáci museli chodit do šoly, by se všechy tyto dvojice vystřídly? Počítejte, že šolí ro má vyučovcích týdů. Řešeí: ) 5 ) 88 ) ) b) 6 c) 5 ) 8 rát; 5,5 let Příld 5 Při vyopávách se šl ohivzdorá sříň. Nšel se i líč, le otevřeí bylo potřeb zát heslo, teré bylo potřeb stvit pět otoučů s čísly ž 9. Heslo se tedy sládlo z pěti číslic, vš ido evěděl z terých. Nezbylo ic jiého, ež vyzoušet všechy možosti. Koli jich bylo?

3 Kombitori / K-čleá vrice s opováím z prvů (popř. Vrice -té třídy z s opováím) je uspořádá -tice sestveá z těchto prvů t, že ždý se v í vysytuje ejvýše -rát. K-čleou vrici s opováím z prvů ozčujeme V (,) (popř. V ()) její počet je. Příld 6 O telefoím čísle svého spolužá si Vše zpmtovl pouze to, že má předvolbu 67 v dlší šestici se žádá cifr eopuje. Určete, oli telefoích čísel připdá v úvhu. 67 K-čleá vrice bez opováí z prvů (popř. Vrice -té třídy z ) je uspořádá - tice sestveá z těchto prvů t, že ždý se v í vysytuje ejvýše jedou. K-čleou vrici bez opováí z prvů ozčujeme V(, ), (popř. V ()) její počet je. Příld 7 Npište všechy dvoučleé vrice s opováím i bez opováí z prvů, b, c. Zotrolujte počet vypsých vricí výpočtem. V(; ) = V (; ) = Příld 8 Určete počet: V,5 = V 5, = V, = V,8 = V,5 = V 5, = V, = V,8 = V 5, = V,5 = V, = V 8, = Příld 9 Koli způsoby můžeme mezi 8 sportovců rozdělit zltou, stříbrou brozovou medili? Příld Státí pozávcí zč byl tvru uspořádé sedmice zů. Prví tři zy tvořil písme dlší čtyři zy číslice. Koli pozávcích zče bylo teoreticy dispozici, mohlo-li být použito 6 písme číslic? Příld K sestveí vljy, terá má být slože ze tří růzobrevých vodorových pruhů, jsou dispozici láty brvy bílé, červeé, modré, zeleé žluté. ) Koli růzých vlje lze z těchto láte sestrojit?

4 Kombitori / b) Koli z ich má modrý pruh? c) Koli jich má modrý pruh uprostřed? d) Koli jich emá uprostřed červeý pruh? Příld Zástupce ředitele šoly sestvuje rozvrh hodi. ) Koli způsoby lze sestvit rozvrh hodi jede de pro třídu, v íž se vyučuje dváct růzých předmětů (ždý ejvýše jedu hodiu deě) teto de se vyučuje šest hodi? b) Koli způsoby lze sestvit rozvrh hodi, poud prví hodiu je vyučová mtemti? c) Koli způsoby lze sestvit rozvrh hodi, poud se určitě vyučuje fyzi? Příld Určete počet prvů, z ichž lze utvořit ) dvoučleých vricí bez opováí b) 56 dvoučleých vricí s opováím. Příld Změí-li se počet prvů o, zvětší se počet tříčleých vricí ) desetrát. Určete počet prvů. b) o 5. Určete počet prvů.

5 Kombitori 5 / Vyřešte ásledující úlohy:. Koli způsoby lze rozdělit růzě velých báů mezi 8 opic, jestliže žádá opice eobdrží více ež jede z rozdělových plodů?. Dvojčt Le Luc mjí ve sříi dohromdy 6 suí, hlee 8 druhů orálů. Koli způsoby se mohou připrvit do divdl, předpoládáme-li, že ždý si obleče hleu, sui vezme jedy orále?. Koli růzých telefoích stic lze zpojit, jsou-li všech telefoí čísl 6ti ciferá epřipouštíme-li umístěí prvím místě.. Mějme zy. Lze zódovt česou becedu sestveím těchto zů do supi o jedom ž čtyřech prvcích? 5. Máme přirozeá čísl Určete, zd je více těch čísel, terá mjí ve svém zápisu ebo těch, terá v číselém zápisu emjí. 6. Koli způsoby můžeme vytvořit ve vší třídě supiu žáů t, by ve supiě byli chlpci dívy, přičemž chlpec bude mít fuci zástupce této supiy dív bude mluvčí supiy? 7. Ve studetsém pooji žijí studeti. Mjí šály, 5 tlířů 6 čjových lžiče (všechy šály, tlířy lžičy se vzájem odlišují). Koli způsoby mohou prostřít stůl pití čje; ždý dostává šále, tlíře lžiču. 8. Koli růzých ódů dély šest můžeme vytvořit z číslic,,,,, jestliže ód esmí zčít čtyřou posledím místě může být z uvedeých číslic pouze číslice lichá? 9. Koli lichých čísel existuje mezi (včetě), přičemž všechy cifry v čísle jsou vzájem růzé? Koli z ich je dělitelých pěti?. Koli sudých čísel existuje mezi (včetě), přičemž všechy cifry v čísle se mohou opovt? Koli z ich je dělitelých deseti?. Koli čleů bylo registrováo v lubu cylistů, dyž víme, že předsed použil registrci všechy ciferé ódy eobshující žádou osmiču?. Koli zových ódů můžeme vytvořit ze zů & * ^ $ %, jestliže z * je vždy použit, le smí stát jeom zčátu ebo oci, z $ se epoužije i jedou zy se mohou opovt? Řešeí: ) ) 5 ) 9. 5 ) e pro becedu s háčm o bez háčů čáre 5) emá 6) V(, )V(, 7) 7 8 8) 5 5 ; má m) 9), 8 ) 5, 9 ) 79 ) 75

6 Kombitori 6 / Příld 5 V osudí je deset očíslových oulí. ) Koli růzých thů může stt, poud jsou tžey tři oule záleží jejich pořdí? b) Koli růzých thů může stt, poud je vytžeo všech deset oulí? Po thu se oule do osudí evrcí. Permutce z prvů je uspořádá -tice sestveá z těchto prvů t, že ždý se v í vysytuje právě jedou. Zčíme P(). Permutce z prvů je ždá -čleá vrice z těchto prvů. Počet permutcí z prvů je! P( ), de! zveme ftoriál. Pro úplost ještě dodefiujeme! =. Příld 6 Vypočítej P()= P()= P()= P(+)= P(-)= P(-)= Příld 7 Zpiš! Pomocí )! b) 9! Příld 8! V (, ) Dožte, že pltí:! Příld 9 Učitel dějepisu se rozhodl, že des vyzouší studety: Adm, Blžeu, Cyril Du. Koli možých způsobů, v jém pořdí žáy vyvolá, vyučující má?

7 Kombitori 7 / Příld Zjedodušte: ) 7!! b)!! 9! c)!! d)!! e)!!! f) 9 6!!! Příld Koli způsoby se mohou tři děvčt tři chlpci rozsdit do lvice se šesti místy, poud ) Petr chce sedět svém oblíbeém místě u dveří? b) Pvlí chce sedět rji? c) Hoz chce sedět hed vlevo od Ley? d) Luáš potřebuje opisovt od Ley, musí sedět tedy vedle í?

8 Kombitori 8 / Příld Určete počet všech šestimístých ) ódů, b) přirozeých čísel, teré obshují všechy cifry,,, 6, 8, 9. Příld V ádrží hle před poldmi se sešlo sedm člee pěvecého roužu tři chlpci z roové pely. Zjistěte, oli způsoby se mohou postvit do froty, mjí-li ) chlpci stát z sebou? b) dívy i chlpci stát z sebou? Příld Řeš rovice s ezámou 5! )! N b)!!!! Příld 5 Zástupce ředitele šoly připrvuje rozvrh třídy, terá má mít v určitý de tyto předměty: česý jzy, glicý jzy, mtemtiu, semiář z mtemtiy, fyziu tělesou výchovu. Určete počet všech možých rozvrhů třídy pro teto de, teré se liší pořdím uvedeých předmětů, jestliže ždý předmět se vyučuje právě jedu hodiu přitom ) pořdí předmětů může být libovolé. b) tělesá výchov je šestou vyučovcí hodiu. c) semiář z mtemtiy esmí být před mtemtiou.

9 Kombitori 9 / d) semiář z mtemtiy musí být ihed po mtemtice. e) mezi mtemtiou semiářem z mtemtiy esmí být žádý předmět. f) mtemti musí být ejpozději čtvrtou vyučovcí hodiu. Vyřešte ásledující úlohy: ) Koli způsoby lze přemístit písme slov PERMUTACI. ) Koli způsoby lze přemístit písme slov FAKTORIAL, t by ěterá supi po sobě jdoucích písme utvořil ) slovo FAKTA? b) slov FAKTA LORI v libovolém pořdí? c) slov LIRA KAT v libovolém pořdí? ) V možiě přirozeých čísel řeš rovice:!! ) 6 c)!!! 5 8 5! b) 7!! d)!!!!! 5!

10 Komplexí čísl / Mtemticý semiář -. ROČNÍK Řešeí: Příld 6 Koli způsoby si může vybrt tříd tři vyučující ze čtyř možých šolí exurzi? K-čleá ombice z prvů (popř. Kombice -té třídy z ) je euspořádá -tice sestveá z těchto prvů t, že ždý se v í vyytuje ejvýš jedou.!!! ) ( ), ( C K =, Z + ; Příld Příld 8 Koli způsoby mohou tři osoby obsdit seddl v pětimístém utomobilu, poud záleží pouze tom, teré místo je obszeo, ezáleží ám, ým je obszeo. ) 6 88 ) ) b) c) 6 ) ) 5 b) c) 5 d)

11 Kombitori / Příld 9 Koli způsoby lze vybrt ze 7 chlpců díve 6-ti čleé družstvo t, by ) v ěm byly právě dívy? b) v ěm byly lespoň dívy? Příld Koli způsoby je možé z vší třídy vybrt osob, poždujeme-li, by mezi vybrými c) ebyl osob A? d) ebyly zároveň osoby A B? e) byl lespoň jed z osob A B? Příld Určete, oli způsoby může m chlpců díve vytvořit jede tečí pár. Příld Koli způsoby můžeme z hráčů vytvořit volejblová družstv? Příld Supi vědců je slože z pěti psychologů tří sociologů. ) Koli existuje růzých výborů složeých z pěti vědců? b) Koli existuje růzých výborů složeých z pěti vědců, z ichž tři jsou psychologové zbyte sociologové? Příld V hrdecé městsé doprvě se používjí jízdey s devíti očíslovými poli. Při ždé jízdě má cestující z poviost ve zehodocovcím stroju si ozčit svoji jízdeu. Teto stroje vždy probije tři ebo čtyři pole jízdece. Vychytrlý chlpec ZŠ si řel, že poud ždý de zísá jedu ozčeou jízdeu, musí přeci z ějou dobu zíst všechy možé jízdey. Nejdříve z j dlouho bude moci říct, že už emůže zíst žádou ji ozčeou jízdeu? Příld 5 Určete, z oli prvů lze utvořit 6 dvoučleých ombicí.

12 Kombitori / Příld 6 Mt se zeptl svého sy, jé je vlstě zstoupeí díve chlpců v mtemticém roužu, terý její sy vštěvuje. Dostl ásledující odpověď: Chodí tm 6 žáů z ší šoly dohromdy můžeme vytvořit 6 dvoučleých ombicí. Koli chlpců oli díve vštěvuje mtemticý rouže? Příld 7 Zmeší-li se počet čísel o, zmeší se počet dvoučleých ombicí vytvořeých z těchto prvů o. Určete původí počet prvů. Příld 8 Určete počet prvů, z ichž lze vytvořit 6x více čtyřčleých ombicí ež dvoučleých.

13 Kombitori / V možiě přirozeých čísel řeš rovice: Řešeí: ) -- = = ) - = = 7) emá řešeí ) 5) = -8+5 = = 5 ) 6) --5 = = 5-8+ = = 6 Řešte ásledující úlohy: ) Při sportovím di je třeb ze třídy, ve teré je 9 chlpců 6 díve, vybrt žáy. Koli způsoby to lze provést, jestliže to mjí být ) spoň chlpci. b) ejvýše dívy. ) V bedě je usů výrobů, z ichž mjí výrobí vdu. Koli způsoby lze z bedy vybrt součstě 5 výrobů t, že mezi imi ) budou všechy výroby bez vdy. b) bude ejvýše výrobe vdý. c) budou ejvýše výroby vdé. d) budou lespoň výroby bez zu. ) V lvici může sedět 5 žáu A, B, C, D, E. Koli způsoby si mohou sedout, jestliže ) A má sedět určeém rji. b) A má sedět jedom ebo druhém rji. c) žáci A C mjí sedět vedle sebe. d) žá A má sedět rji žáci B, C vedle sebe. ) Koli způsoby lze ubytovt 5 hostů (záleží v terém pooji, e do leží v jé posteli) ) do pětilůžového pooje. b) do čtyřlůžového jedolůžového pooje. c) do dvoulůžového třílůžového pooje. d) do jedolůžových poojů třílůžového pooje. e) do 5 jedolůžových poojů. 5) Po letech se sešli dobré přítelyě. Pobvily se, pobesedovly rozloučeou se políbily - ždá s ždou. Koli bylo polibů, jestliže ) byly. b) bylo jich.

14 Kombitori / c) bylo jich. 6) Zvětší-li se počet prvů o, zvětší se počet permutcí 56rát. Určete počet prvů. 7) Zvětší-li se počet prvů o, zvětší se počet vricí. třídy bez opováí o 8. Určete původí počet prvů. 8) Koli způsoby lze seřdit do řdy omorí sbor ti zpěváů t, že dí zpěváci ejsou vedle sebe. 9) Fotblový treér má dispozici bráře, 5 obráců, záložíy útočíů. Koli růzých fotblových mužstev z ich může sestvit, tvoří-li jedo mužstvo brář, obráci, záložíci 5 útočíů? ) Ve třídě se vyučuje předmětů. Koli způsoby lze sestvit rozvrh hodi de, vyučuje-li se teto de 6 růzých předmětů? ) Koli způsoby můžeme seřdit do řdy Agličy, 5 Frcouzů Tury, poud osoby téže árodosti stojí vedle sebe. ) Koli můžeme utvořit ciferých čísel z cifer,,,,, 5, poud se cifry emohou opovt. Koli z ich je sudých ) Určete počet sudých čísel vytvořeých z cifer,,, 5, 6, poud ) cifry se emohou opovt. b) cifry se mohou opovt. Řešeí: ) ) K(,9)+6K(,9)+ K(,6) K(,9) b) K(,9)+6K(,9)+ K(,6) K(,9) ) ) b) 5 c) d) e) ) ) K(5,7) b) K(5,7)+K(,7) c) K(5,7)+K(,7)+ K(,)K(,7) d) K(5,7)+K(,7) 5) ) b) 5 c).(-)/ ) ) b) 8 c) 8 d) 6) 6 7) 9 8) ) ) 6 ) 68 ),56 ) ) b)

15 Kombitori 5 / Psclův trojúhelí: 6 Příld 9 Zjedodušte:

16 Kombitori 6 / Biomicá vět: 6 b b b b b b b b tý čle biomicého rozvoje: ) ( b A Příld Užitím biomicé věty vypočtěte: ( + b) 5 = (- m) 7 = ( - 5) = 6 b 7 ) ( ( b) ( b) ( b) ( b)

17 Kombitori 7 / Příld Njděte v rozvoji 7 ( u u) prostředí čle. Příld Njděte v rozvoji ( x) šestý čle. Příld Njděte v rozvoji ( m ) čtvrtý čle. Příld Pro teré x je v rozvoji výrzu ( ) x pátý čle rove 5? Příld 5 Určete bsolutí čle v rozvoji výrzu ( x. x ) Příld 6 Njděte v rozvoji výrzu ( x ) čle obshující x.

18 Kombitori 8 / Permutce s opováím z prvů je uspořádá -tice sestveá z těchto prvů t, že ždý se v í vysytuje spoň jedou. Počet permutcí s opováím z prvů, v ichž se jedotlivé prvy opují,,, rát: P (,,..., )...!!!...! Př. Určete počet všech způsobů, jimiž lze přemístit písme slov ABRAKADABRA. Určete, v oli z ich ) žádá dvojice sousedích písme eí tvoře dvěm písmey A; b) žádá pětice sousedích písme eí tvoře pěti písmey A. Výsledy:! 7 6!! 7! P ( 5,,,,) ; ) 78; b) 89. 5!!! 5!! 5!!!!! Př. Určete počet všech čtyřciferých přirozeých čísel dělitelých devíti, v jejichž dedicém zápisu jsou pouze číslice,,, 5, 7. ( =5)

19 Kombitori 9 / Příld 7 Určete, oli způsoby je možé srovt do řdy šedé, modré čeré osty. Příld 8 Určete počet uspořádáí těchto šesti prvů:,,, b, b, c. Příld 9 Určete oli způsoby lze přemístit písme slov Mississippi. Koli z ich ezčíá písmeem M? P'(,,, ) = 65; P'(,,, ) P'(,, ) = 65 5 = 5 Příld 5 Určete počet všech pěticiferých přirozeých čísel, jež lze sestvit z číslic 5 7, má-li v ždém z ich být číslice 5 ) právě třirát; b) ejvýše třirát; c) spoň třirát.

20 Kombitori / Příld 5 Určete počet všech deseticiferých přirozeých čísel, jejichž ciferý součet je rove třem. Koli z ich je sudých? P'(, 7) + P'(, 8) + = 55 P'(, 6) + P'(, 8) + P'(, 7) + = = 6 Příld 5 Ze sedmi uliče, z ichž čtyři jsou modré (vzájem erozlišitelé), jed bílá, jed červeá jed zeleá, máme vybrt položit do řdy pět uliče. Koli způsoby to lze provést? Příld 5 Určete počet způsobů, jimiž lze šchovici 8 8 rozmístit všechy figury šchové hry (bílý rál, bílá dám, bílí střelci, bílí jezdci, bílé věže, 8 bílých pěšců + totéž čeré brvy). P'(,,,,, 8,,,,,, 8, )

21 Kombitori / Kombice s opováím -čleá ombice s opováím z prvů je euspořádá -tice sestveá z těchto prvů t, že ždý se v í vysytuje ejvýše -rát. Počet K'(, ) všech -čleých ombicí s opováím z prvů je K'(, ) = ( + ). Příld 5 Určete, oli způsoby je možé rozmístit sedm stejých uliče do tří rbiče. Řešeí Sedmrát vybíráme jedu ze tří rbiče, do teré umístíme uliču; jde tedy o sedmičleé ombice s opováím ze tří prvů ( = 7, = ). K'(7, ) = ( ) = ( 9 7 ) = 6 Příld 55 Koli způsoby lze rozdělit 5 bobóů mezi dětí? Řešeí Ptáctrát vybíráme jedo z deseti dětí, terému dáme bobó; jde tedy o ptáctičleé ombice s opováím z deseti prvů( = 5, = ). K'(5, ) = ( ) = ( 5 ) = 7 5 Příld 56 Určete počet všech trojúhelíů, z ichž žádé dv ejsou shodé jejichž ždá str má veliost vyjádřeou jedím z čísel, 5, 6, 7. Řešeí Tři čísl, b, c mohou být veliosti str trojúhelíu, poud pltí + b > c, + c > b,b + c >. Tuto podmíu splňuje ždá trojice sestveá z čísel, 5, 6, 7: vezmeme dvě ejmeší možá čísl (tj. ) porováme jejich součet s ejvětším možým číslem (tj. 7). Protože + > 7, trojúhelíová erovost pltí pro rjí přípd proto pltí i pro všechy osttí přípdy.

22 Kombitori / Příld se t zjedodušil hledáí počtu euspořádých trojic sestveých z čísel, 5, 6, 7, tedy určeí počtu tříčleých ombicí s opováím ze čtyř prvů( =, = ). K'(, ) = ( + ) = ( 6 ) = Příld 57 V obchodě mjí tři druhy sirupu: jhodový, mliový pomerčový. Určete počet všech možostí áupu pěti lhví sirupu v tomto obchodě. K'(5, ) = ( ) = ( 7 5 ) = = Příld 58 Určete, oli způsoby si mohou tři osoby rozdělit osm (stejých) jble. (K'(8, ) = 5) Příld 59 Ze všech bílých šchových figure bez rále dámy (tj. z osmi pěšců, dvou věží, dvou jezdců dvou střelců)vybereme ) dvojici, b) trojici. Jý je počet možostí pro jejich složeí? ( ) K'(, ) = b) K'(, ) = 7) Příld 6 V železičím depu je dvcet osobích, sedm lůžových pět poštovích vozů. Koli růzých souprv s pěti vozy je možo v tomto depu sestvit, jestliže ezáleží pořdí vozů v souprvě? (K'(5, ) = )

23 Kombitori / Příld 6 Kleotí vybírá do prsteu tři drhomy; dispozici má tři rubíy, dv smrgdy pět sfírů. Koli způsoby může teto výběr provést, povžujeme-li mey téhož druhu z stejé? (K'(, ) = 9) Příld 6 Určete, oli růzými způsoby lze rozdělit 5 oruových micí mezi dětí, jestliže ) eldeme žádá omezeí; b) ždé dítě doste lespoň jedu mici; c) ejstrší dítě doste lespoň dvě mice. ) K'(5, ) = 7 5; b) K'(5, ) = ; c) K'(, ) = 97

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál:

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: PERMUTACE a VARIACE 2.1 Permutace P() = * ( - 1) * ( - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: ( )! P = Jedá se o vzorec pro počet permutací z prvků bez opakováí. 2.2 Variace bez

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

DĚTSKÝ A DOPLŇKOVÝ SOR T

DĚTSKÝ A DOPLŇKOVÝ SOR T DĚTSKÝ DOPLŇKOVÝ SOR T 2014 IMET UTÍČK OVIK OVOCE CZ - BO396 CZ - BO398 POHÁDKY OVIK 1 OVIK CZ - BO399 CZ - BO397 ČÍSLICE OVIK CZ - BO401 MEDVÍDCI OVIK OVIK CZ - BO402 CZ - BO400 ZELEI ČÍM BUDU IK IK OVIK

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

š ý Č Í Á é č š Č č Íč č č Í š ě ě é š š š é ě ě č č š ň š ě ý ě Í š ň ě č šš é é ě š ý š ů ě ý ů é š ě š ě ó š é š š ý ě š Š Ž š š š š š š ě Š ý ý ý ýš ý ě Í ý ý ě Ž ě ě Š ó š ě é é š é é Š ě ě ě č ý

Více

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II 1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

é é é é é ý ý ý ý Í ý ý ý ý ý ý ý ý ý ž ý é é é ó ú ž ú é é ú ú ú ú ó é ž é ú ž Í Í Í ý ý ž ů ú ó ý ů ž ý ů Ď Í ň ů ž ž Í Í ó ý ů ý ů ů ů ý Í ÍÍ é é é ť Í ů ů ů ů ů ý ý é ů é Í é ž ý ý ů ý é ý ý ů ů ý

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

Metodika implementace Průřezového tématu Environmentální výchova I

Metodika implementace Průřezového tématu Environmentální výchova I Elektroická publikace Metodika implemetace Průřezového tématu Evirometálí výchova I Zpracovaly: Bc. Jaroslava Rozprýmová a Mgr. Milica Sedláčková Témata: 1. Zemědělství a životí prostředí 2. Ekologické

Více

Základní poznatky z matematiky

Základní poznatky z matematiky Zákldní pozntky z mtemtiky Obsh. Zákldní pozntky z mtemtiky.... Číselné obory..... Celá čísl..... Reálná čísl.... Odmocniny.... Mocniny... 5.. Mocniny se zákldem 0... 5.. Mocniny s přirozeným mocnitelem...

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů:

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů: Algeicé ýz Výz = ždý zápis, eý je spáě oře podle zásd o zápisech čísel, poěých, ýsledů opecí, hodo fcí. Npř. π,,... Výz číselé s poěo Výzo spi oří loeé ýz s ezáo e jeoeli ( sí ý ede podí, ýz á ssl poze

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Ý Á Ř é á ší ě ý ů á é ří á í á í í ěří ř á á í á ř č áš ý ý é á í Š ší é ů ř č ý ří Ž ě ý í á ý ó é č ý ý ó ý á í š čá í á Ž é á í Ž á í Í š ě ší ě ž í ě ě ě éř é žř č ó žč ě ěř ž á í ě é óž ý é ř í é

Více

á Í š ů á š Ď í á Š č á š á íš ř á Íí ě á č í í á á á ť ř ň ě č íč í í ť ě ť ě á á í é á í š ť á Ťí ě í í í á č íšť á í í í ě ť ě á á í Ťí š š í ďě á í ť šť á í í ě í š í ďé á í á í Ť á ďě á í í š é á

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha Občejé erecálí rovce Caucova úloa Drcletova úloa Občejé erecálí rovce - Caucova úloa Úlo: I. = s omíou = jea rovce. řáu II. soustava rovc. řáu III. = - jea rovce -téo řáu = = = - = - Hleáme uc res. uce

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Íč č č Ě Ť š č č š ť č ň š ň č č č Í Ť š š Í č ň Ž č č č Ť š ň ň Ť č Í Ť ň Í Ť š Ž Ť Ž Í Ž Š Ž š č šť č š š ň š Ž š š š Ž č Ď Ď č Í ň Í ň č š Íš š ň ň š č č č Ď č č Ž š Ž Ý Ť š š ň ď š ň ň š ň č ň š Í

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

Ú é ž ě ě ě ů Ú é ž š š ě é é ú Ť é ž ý é ž ú ú é š é ě ú ů ú ú ů é ž š š š é ž ú ž ý ň Š Š ž š é é ž ů ž é š ž š ž ů ý é ž š š ťú ě ěž ú ů ů ý ú ě ý š ú Ť š é ž ů é ý ů ý é ě š ý ý ť é ě é ú ú É ž ěž

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Ů á č č Ů č Ů č č á č Ě č ň Ď č č č ď ň ř č Ž č Ů Ů č č Ů Ž č č Ý Ú Ž Ú Ú Ů Ď Ů ť Č Ů č Ý Ů Ž Ů Ď Ě č Ě Ů Ů Ě Ě Ě č Ž Ě č č č á ť Ů č Ě Ž č č ňř č č č ť č č Ď Ů č Ě č Ž č ĚĎ Ž č č Úč Ů ť ť ť č Ě Ž Ě č

Více

Č É É Č ď Č ž ž Ž ď ě š ě š ě ě š ě ď ž ď šť ť ďš Č ď Č Č ě ž ž Í ě Č ě š ě š š Ž ě ě ť ě ž ě Č ě ž š Í Í ě ě ď ě ě ě ě Í ě ť ě ě ď ě ť ě ď ž ě ě š ě ť Č ě Ž Ž ě ž š š Ž ě Č Ž ě ě ě ě ě ě ě Ž ž ě ť É šš

Více

VARIACE BEZ OPAKOVÁNÍ

VARIACE BEZ OPAKOVÁNÍ VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení.

Více

ý ó Í Í Í ž ň ř ě ý ř ž Í ř ě É ť Á ý ý Í Ž ý Š ěř ý ř ě ý š ř Ž ž ů ř ě ě ý ů ó ž ž ž ý Í ř ř ž ě ž ž ř ř ž š ý ž žš ě ď ó ř ý ů ř ýš ž ý ů ů ž ý ě ž ž ž ý ů ž ě ř Í ě ú ž ě Ú ě ý ú ě Ž ě ě ě ý ě ů ěž

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

í ť š í Á Á Á š É š Ž Ř Á š Á Á š Á í Ě Á š Ě Ž É Ř Ř Ě Ž É é é ě í í čí Á Ř íš é Á Á Ř Á š Ě Ž É č Á Á Á š č Ů Ú Ř Á š Á Ř É č š Ě š É č š Ě ŽÁ í č é Á Ř Á é Á íš Ř íš é Ř íš í ň Á Ě Ž É Ř í Í Á š Ě Ž

Více

Č Ž Á Í ž é é ě ě ú ů ů ě ě š ů Ť é ě é ě š ě š ě ě š ů é ú é ě ž ě ě š ů ú ú ě é ú ě ě š ů ě ů ů ě ěž ů ž ěž ů é ú ěž ž ů ě ě ú é ů ů ú š ó ě ú ů ů ů ů ů ů š ú ž ú é ň ú ů ů š ě ě ě ú ú é ú ě ů ě ú ů

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na.

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na. Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Lieárí algebra II láta z II semestru iformatiy MFF UK dle předáše Jiřího

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Ť Ú Ž Ý Ý ě ě ě ý ů ě ů ů ě ů ů ř č ě č ď č ň ý š ě ž ř ě ý ě š ř š ž ý ý š š ý ě Ú ř ž ď ě ř ž ý ř š ý ČČ Č č ý ČČ Č Č Č Č ý Č Č Č Č Č Č Č ý č Ř š ř č ě ě Á ž Ž ě ě ě Šý ě ž ř ě ů č ž ě š š ý č ý ČČ

Více

Ž Ž Á Ů Á Á ú Á ú Ž Ž Ž Ď ú ú Á Ž Ý Ž Ý Ž Ý Ú Ž Ž Ď Ú Ž ú Ž Ú Ž Ž Á Č ú Ž Ň Ů ů ŽÁ Š Ž Á Á Ů Ú ÁÁ Á Ž Ž Ž ú Ú Ž Ú Á Á ů Ú Š ú Ž Á Ž Ž ř Ů ú Ů Ž Ž Ž Ů Ž Á Ž Ž Ž Ž Ý Ž Ý Ď Ž Ž Á Ý Ů Ý Ý Ý Ž Ž Ž Ž Š Ž ř Ý

Více

ěř é é ě ř ř á ý ří í á č ť é Ž ř ř ě á č á é ě é á ěř čí á ě č á á í ř ě ě ě ý É Á Á Á Í á á č é č á ě ě ří á á č á ěž ž ěž ý áž ě í á ý á á ž áš č í š ší ř ě ší ý á á ž ů é é é Ž ě á á í í í Ž í ž š

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

ý ý ž ž š š ě ě ě ě ě ě ž Á ť ě ý ý ý Ú ý ž š ý ý ž ý ž ý ž Š ě ý ž ý ž Í ý ž ě ž ě ý ú ě ě ý ý ě ě ý ě ú ů ý ž ě ú ú ě ý Ú š ú ů ýš ů ě ú š š ý Ú š ý ě ďě š ú ž Š ě ú Š ě Ť ž ú š ú ž ú ě ě ť ě ý ú ě ž

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

ť ý ř ý ž í ř í š í ý ě ž í ř í š š č ř š š č Ž ý ě ěř í ý ú ř ř ý ě š ě í í Ťí í ř í ř Ž ř ě í ů ř ž ý ý í Ťí í ý š ř ž Ž ň í í í í ř úč í ř ú š č Č Č í í č ú í ř ř Č Ž í ř í ě ř č ě í ě í č ě ě č ě ě

Více

Deskriptivní geometrie I.

Deskriptivní geometrie I. Středí růmyslová šol eletrotecicá Vyšší odorá šol rduice, Krl IV. 3 esritiví geometrie I. Ig. Rudolf Rožec = = = = rduice 00 Srit jsou urče ro ředmět desritiví geometrie II. ročíu tecicéo lyce jo dolě

Více

Práce, energie, výkon

Práce, energie, výkon I N V E S T I C E D O R O Z V O E V Z D Ě L Á V Á N Í TENTO PROEKT E SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laoratorní práce č. 6 Práce,, výon Pro potřey projetu

Více

Á Á Š Ěľĺĺ É č ě řč Č ĺ Č č ř ě č úč ř ý Č Č č ř ě ý Ž č č úč ĺ č š ř č č ý č ý ĺ ě ý ě ž ý ú ý ě š ě Ú ľĺ ĺ š Ž ú ř Ž ů č č ŕ ý ú ř ů Č ě ě š ř ů ň š Ž ě ě ř ř ě Ž ý š Ž ř ř ż č ň š Ž ě ě ř ř ě Ž ř ůč

Více

ě ů É ď ů š ě ů ů ž ů ě ě ú Ú ě Ú ě é ě ě é ě š ú ů š š é ě ě ů ě ě ž Í Á Á é ě ěž Ú ě ů ěž ě Ú é ě é é ů é Ž é ě ě ě é é ě ě ú é ě ě ě é ě ď Ú š ú ů é ď ů ě ů ů ě é é ě ů Ú é ů ů é ě Í Á ě ě ů é ě ěž

Více