Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista

Rozměr: px
Začít zobrazení ze stránky:

Download "Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista"

Transkript

1 Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Matematický software MAPLE slouží ke zpracování matematických problémů pomocí jednoduchého matematického manipulačního programovacího jazyka. Jednotlivé příkazy se ukončují středníkem nebo dvojtečkou a po stisku klávesy ENTER jsou hned vykonány. Je-li příkaz ukončen dvojtečkou, vykonaná operace se nezobrazí na monitoru, je-li příkaz ukončen středníkem, operace se zobrazí. Je důležité, aby byla dodržena přesná syntax příkazů (zápis čárek, dvojteček, středníků a závorek). Bez přesného zápisu příkazu program požadovaný příkaz neprovede, protože ho neidentifikuje jako příkaz. V případě, že se program začne chovat podivně, restartujeme ho příkazem restart. Tento manuál je určen pro studenty Zemědělské fakulty Jihočeské univerzity v Českých Budějovicích. Je rozdělen do 8 tematických celků pokrývající probíranou látku kurzů matematiky. Každá z kapitol obsahuje několik řešených příkladů, na kterých je ukázáno použití jednotlivých příkazů (jsou uvedeny červeně) a za nimi následuje ukázka provedeného příkazu (uvedeno modře). Software MAPLE je nainstalovaný na Bobíku i na výpočetním středisku a je k nalezení rozkliknutím nabídky Start/Programy/Maple V/Maple V Release. 1 MATEMATICKÉ OPERACE Protože je MAPLE kanadský produkt, má některá svá specifika spojená s angloamerickým prostředím. Prvním patrným specifikem je používání desetinné tečky místo desetinné čárky nebo že goniometrická funkce tg(x) je reprezentována příkazem tan(x). Pro práci s programem MAPLE je vhodné používat anglickou klávesnici, neboť se v příkazech vyskytují speciální znaky anglické klávesnice. 1

2 1.1 Řešené příklady Příklad Zjistěte hodnoty daného výrazu: 13, Pro operaci násobení používáme znak *, pro dělení znak /. Nezapomínáme na užití desetinné tečky místo desetinné čárky. Výraz vyčíslíme příkazem: Příklad ( *3987)/37; Zjistěte hodnoty daného výrazu: e 4 3π na 50 platných míst. Mocniny zadáváme pomocí znaku ˆ. Odmocniny přepisujeme jako exponent ve tvaru zlomku. Eulerovo číslo e zapisujeme ve tvaru exp(), kde v závorce uvádíme exponent. Pro číslo π používáme příkaz Pi. Daný výraz najdeme pomocí příkazu: 13ˆ(5/7) + exp(4) - 3*Pi; 13 ( 5 7 ) + e 4 3π Abychom zjistili hodnotu daného výrazu, použijeme evaluační příkaz: evalf(%,50); Znak % zastupuje poslední vypočítanou hodnotu (v tomto případě 13 ( 5 7 ) +e 4 3π), za čárkou je uveden počet míst, kolik jich chceme uvést (např. 50). Počet míst není povinný, bez zadání vyčílí MAPLE výraz na 10 platných míst. Také je možné získat danou hodnotu rovnou kombinací výše uvedených příkazů: evalf(13ˆ(5/7) + exp(4) - 3*Pi,50);

3 1.1.3 Příklad Zjistěte hodnotu výrazu s goniometrickými funkcemi: (cos(3, 5)) 3 + sin(2, 7) tan(5) na 25 platných míst. Pro výpočet hodnot goniometrických funkcí používáme příkazy sin(), cos() a tan(). V závorkách uvádíme argument. Daný výraz vyčíslíme příkazem: Příklad evalf((cos(3.5))ˆ3 + sin(2.7) - tan(5),25); Jakému úhlu v radiánech a ve stupních odpovídá hodnota sin(x) = 0, 6438? Pro výpočet úhlu goniometrických funkcí používáme cyklometrické funkce arcsin(x), arccos(x), a arctan(x). V tomto případě použijeme funkci arcsin(x) reprezentovanou příkazem arcsin(), kde v závorce uvádíme argument: evalf(arcsin(0.6438)); Získaná hodnota je v radiánech. Pro převod radiánů na stupně použijeme příkaz: convert( ,degrees); degrees π Abychom dostali hledanou hodnotu, musíme ještě použít evaluační příkaz: Příklad evalf(%); degrees Zjistěte hodnotu výrazu s absolutní hodnotou Pro výpočet hodnot s absolutní hodnotou používáme příkazy abs(), kde v závorkách uvádíme výraz v absolutní hodnotě. Daný výraz vyčíslíme příkazem: abs(7-abs(6-15)-32); 34 3

4 1.1.6 Příklad Zjednodušte daný výraz x 2 y 2 x 2 +4x+4 : x y x+2. Pro zjednodušování výrazů použijeme příkaz: Příklad simplify(((xˆ2-yˆ2)/(xˆ2+4*x+4))/((x-y)/(x+2))); x+y x+2 Zjednodušte daný výraz s komplexními čísly (3 8i)3 3 5i. Pro zápis imaginární jednotky i použijeme znak I a výraz zjednodušíme opět příkazem: 1.2 Neřešené příklady simplify(((3-8*i)ˆ3)/(3-5*i)); I Vyčíslete: ( ) [8072, ] (sin(5)) 7 + e 2,5 [ ] ( ) , π α ve stupních, je-li cos(α) = 0, 7236 [ 2804, ] [43, ] Upravte: x2 (x + y) x y x(x + y + 1) + y i5 + (5 i) 2 2 i [x 1] [ 57+6i 5 ] 4

5 2 LINEÁRNÍ ALGEBRA Před začátkem práce s vektory a maticemi je nutné aktivovat knihovnu lineární algebry. Tím si program MAPLE aktivizuje příkazy,které my pak můžeme používat. Knihovna lineární algebry se aktivizuje příkazem with(linalg); Po zadání příkazu se modře vypíše seznam příkazů, které můžeme pro zpracování úloh z lineární algebry používat. MAPLE umí pracovat jak s vektory tak s maticemi. Vždy je dobré si zadávané vektory a matice pojmenovat pomocí přiřazovacího příkazu :=, aby bylo možné s nimi dále pracovat. Některá velká písmena nedovolí MAPLE pro pojmenování použít, neboť manjí svůj specifický význam (např. E je rezervovaný název pro jednotkovou matici). 2.1 Řešené příklady Příklad Jsou dány vektory a = (3, 5, 5) a b = (2, 3, 7). Určete skalární součin a b, vektorový součin a b, normu vektoru a a odchylku vektorů a a b. Vektory a a b zadáme pomocí příkazu: a:=vector(3,[3,-5,5]); a:=[3, -5, 5] b:=vector(3,[2,3,-7]); b:=[2, 3,-7] První cifra označuje počet složek vektoru, v hranatých závorkách pak uvedeme postupně všechny složky vektoru, které oddělíme čárkami. Skalární a vektorový součet vektorů provedeme příkazy: dotprod(a,b); 44 crossprod(a,b); [20, 31, 19] 5

6 Normu vektoru a nalezneme pomocí příkazu: norm(a,2); 59 Cifra 2 v argumentu je součástí příkazu a je povinná. Odchylku vektorů získáme příkazem: evalf(angle(a,b)); Získaná hodnota odpovídá radiánům. Pro převod na stupně použijeme příkaz: evalf(convert(%,degrees)); degrees Příklad Je dány matice A = ( ), matice B = Určete matici C, její hodnost a determinant Nejprve je potřeba vytvořit matice A a B pomocí příkazu: a matice C = A B. A:=matrix(2,3,[3,5,4,-6,3,7]); [ ] A := B:=matrix(3,2,[7,9,-5,3,7,1]); 7 9 B := První dvě cifry před hranatou závorkou určují typ matice, v hranatých závorkách pak uvedeme postupně všechny prvky matice, které oddělíme čárkami. 6

7 Nyní můžeme s maticemi pracovat. Nejprve matice vynásobíme, abychom získali matici C: C:=evalm(A&*B); nebo C:=multiply(A,B); [ ] C := 8 38 Hodnost matice a determinant matice C zjistíme zadáním příkazu: rank(c); 2 det(c); Příklad Najděte matici V, pro kterou platí, že V = 3 A B. Pro násobení matic číslem a matic navzájem použijeme příkaz: V:=evalm(3*A&*B); [ ] V := Pro násobení se v příkazu rozlišuje násobení matice číslem (*) a matic navzájem (&*) Příklad Jsou dány matice A = ( Určete matici H. ), B = , matice G = ( ), a matice H = A B 5G. 7

8 Máme-li z předchozího příkladu zadané matice A i B, zadáme ještě matici G: Nyní určíme matici H: G:=matrix(2,2,[3,7,9,-5]); [ ] 3 7 G := Příklad H:=evalm(A&*B-5*G); [ ] 9 11 H := Pro matici K platí, že K = B A. Určete matici transponovanou a adjungovanou k matici K. Nejprve vynásobíme matice B a A, abychom získali matici K: K:=multiply(B,A); K := Nyní můžeme přistoupit k výpočtu matice transponované (nazveme transk) a adjungované (nazveme adjk): transk:=transpose(k); transk := adjk:=adj(k); transk :=

9 2.1.6 Příklad Je dána matice S := matici k ní inverzní Určete její determinant a pokud je regulární, najděte Nejprve zadáme matici S: Vypočteme determinant: S:=matrix(3,3,[5,7,13,-3,6,11,2,8,5]); S := Matice je regulární, zjistíme matici inverzní: det(s); -499 inverse(s); Příklad Upravte matici S do Gaussova tvaru. Pro úpravu matic do Gaussova tvaru používáme příkaz: gausselim(s);

10 2.2 Neřešené příklady Určete: závislost souboru S = {(1, 3, 2, 6, 3); (3, 5, 2, 0, 5); (8, 3, 5, 2, 8); ( 3, 2, 7, 4, 6), (7, 3, 12, 0, 22)} [h(s) = 4, závislý] normu vektoru v = (2, 3; 5, 3; 3; 7; 4; 9, 1; 3) odchylku vektorů m = (3, 7, 3, 5, 6) a n = ( 1, 3, 5, 7, 11) determinant matice X = hodnost matice R = [2 53 = ] [34, ] [ 2744] [2] 10

11 3 ROVNICE 3.1 Řešené příklady Příklad Řešte kvadratickou rovnici x 2 7x + 10 = 0; Rovnici budeme řešit jednoduchým příkazem: Příklad solve(xˆ2-7*x+10=0,x); Najděte hodnoty neznámých x, y a z v soustavě: 5x + 7y 13z = 5 3x 5y + 6z = 3 2x 8y = 1 5, 2 Soustavy rovnic můžeme řešit několika způsoby. Máme-li aktivní knihovnu lineární algebry (linalg), můžeme soustavu zadat a nazveme ji R: R:={5*x+7*y-13*z-5,3*x-5*y+6*z-3,2*x-8*y+1}; R := {5x + 7y 13z 5, 3x 5y + 6z 3, 2x 8y + 1}; Rovnice soustavy jsme položili rovny 0, oddělili čárkami a zadali je do složených závorek. Nyní můžeme soustavu vyřešit příkazem: leastsqrs(r,{x,y,z}); {x = 25 22, y = 9 22, z = 3 11 } Dalším způsobem, jak vyřešit tuto soustavu, je použití matic. Nejprve vytvoříme matici soustavy A: A:=matrix(3,3,[5,7,-13,3,-5,6,2,-8,0]); A :=

12 Dále zadáme vektor pravých stran: v:=vector(3,[5,3,-1]); v := [5, 3, 1] A nyní soustavu vyřešíme příkazem a po řadě dostaneme hodnoty neznámých x, y a z: linsolve(a,v); [ 25 22, 9 22, 3 11 ] Příklad Řešte rovnici 3x 2 + 2x 7 = 8. Rovnici vyřešíme příkazem: solve(3*xˆ2+2*x-7=8,x); , Neřešené příklady Řešte: rovnici 3x 2 5x + 8 = 13 [ , ] rovnici 2x 11 x+5 + 4x = 17 5x [ , ] soustavu rovnic 7u + 5v 8x 9y = 6 3u 2v 3y = 5 u + 2v 13x 3y = 3 5u x 4y = 2 [v = 97 91, u = , x = 6 65, y = ] 12

13 4 POSLOUPNOSTI A ŘADY 4.1 Řešené příklady Příklad Určete limitu dané posloupnosti: lim n 3n 3 + 5n + 1 7n Limity posloupností hledáme pomocí příkazu: limit((3*nˆ3+5*n+1)/(7*nˆ2+8),n=infinity); V první části uvedeme samotnou posloupnost, ve druhé pak pro jaké n. V tomto případě se jednalo o limitu jdoucí do nekonečna - infinity Příklad Určete limitu dané posloupnosti: lim n n n. Limitu posloupnosti získáme pomocí příkazu: limit(nˆ(1/n),n=infinity); Příklad ( Určete limitu dané posloupnosti: lim n. n n) Limity posloupností zadáme pomocí příkazu: limit((1+(1/n))ˆn,n=infinity); Limita dané posloupnosti je rovna Eulerovu číslu e, které má přibližnou hodnotu 2,178. e 13

14 4.1.4 Příklad Určete součet řady 70 k=1 5 2k. Součet řady najdeme zadáním příkazu: sum(5/(2*k),k=1..70); Příklad Určete součty harmonické řady 1000 k= k, k=1 Součty harmonické řady najdeme zadáním příkazu 1 k a k=1 1 k. sum(1/k,k= ); sum(1/k,k= ); sum(1/k,k=1..infinity); Float( ) Z výsledku plyne, že harmonická řada má dané součty pro uvedené konkrétní n, ale v případě sečtení členů až do nekonečna daná řada součet nemá - diverguje. 4.2 Neřešené příklady Určete: sin(x) limitu posloupnosti lim x 0 x [1] ( limitu posloupnosti lim ) 7n n n [e 7 = 1096, ] součet řady součet řady 57 k=1 n=1 7 2k 3 [4, ] 1 n 2 [ 1 6 π2 = 1, ] 14

15 5 FUNKCE 5.1 Řešené příklady Příklad Najděte funkční hodnotu funkce y = 9x 7 3 cos x v bodě x = 1, 73. Funkci nazveme f a zadáme ji příkazem f:=x->9*xˆ7-3*cos(x); f := x 9x 7 3 cos(x) Nyní zjistíme hodnotu v bodě x = 1, 73: f(1.73); Příklad Najděte funkční hodnotu funkce 2 proměnných z = x 3 3y 2 + sin(xy) v bodě [3, 5; 2, 4]. Funkci nazveme z a zadáme ji příkazem: z:=(x,y)->xˆ3-3*yˆ2+ sin(x*y); f := (x, y) x 3 3y 2 + sin(xy) Nyní zjistíme hodnotu v bodě [3, 5; 2, 4]: z(3.5,2.4);

16 maximum funkce y = 7cos(sin(x 5 )) 5 na intervalu π 2 2π [2] Příklad Najděte minimum a maximum funkce y = 5x 3 3x na intervalu 3, 5. Minimum a maximum funkce y v daném intervalu 3, 5 najdeme pomocí příkazů: minimize(5*xˆ3-3*xˆ2+8,x=-3..5); 154 maximize(5*xˆ3-3*xˆ2+8,x=-3..5); Neřešené příklady Určete: funkční hodnotu funkce y = 5x 7 3e 5x 4 cos(x) v bodě x = 6, 22 [ 9, ] funkční hodnotu funkce 3 proměnných w = 5(xy) 3 +4zy 2 +cos(xyz) v bodě [ 2, 5; 1, 8; 3] [ ] minimum funkce y = 3e 2x 5 3x 3 17 na intervalu 5, 9 [ ] 16

17 6 GRAFIKA MAPLE umí vykreslit dvoudimenzionální grafy jedné proměnné i trojdimenzionální grafy dvou proměnných. Dokáže navíc vykreslit několik grafů do jednoho obrázku. Vždy je nutné uvést interval, na kterém se daný graf či grafy vykreslí. 6.1 Řešené příklady Příklad Vykreslete graf funkce y = 3x 4 + 5x 3 1 na intervalu 2, 1. Graf vykreslíme následujícím příkazem, kde doplníme interval pro proměnnou x (ta je povinná) a pro proměnnou y (je nepovinná, ale graf je přehlednější): plot(3*xˆ4+5*xˆ3-1,x=-2..1,y=-4..3); Příklad Vykreslete grafy funkcí y = x 2 2x 8 a y = 5x 8 na intervalu 3, 5 a najděte jejich průsečík. Grafy vykreslíme následujícím příkazem, kde do složených závorek zadáme obě funkce oddělené čárkou: plot({xˆ2-2*x-8,5*x-8},x=-3..5); Z grafů je patrné, že obě křivky se protínají v bodě [0,-8]. 17

18 6.1.3 Příklad Vykreslete trojdimenzionální graf funkce dvou proměnných z = x e x2 y 2 x 2, 2 a y 2, 2. na intervalu Pro vykreslení trojdimenzionálních grafů použijeme příkaz: plot3d(x*exp(-xˆ2-yˆ2),x=-2..2,y=-2..2); 18

19 7 DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET 7.1 Řešené příklady Příklad Najděte první derivaci funkce y = x 7 5 x 3 + e 2x. Derivaci si nazveme d a vytvoříme ji příkazem: diff(xˆ7- (x)ˆ(3/5)+ exp(2*x),x); 7x 6 3 5x ( 2 5 ) + 2e(2x) V argumentu příkazu je nutné uvést proměnnou, podle které derivujeme (v tomto případě podle x) Příklad Najděte 3.derivaci funkce y = sin(x) + x 3 + e 2x. Třetí derivaci funkce vytvoříme příkazem: diff(sin(x) + xˆ3 + exp(2*x),x$3); cos(x) e 2x V argumentu příkazu je nutné uvést proměnnou, podle které derivujeme, a stupeň derivace (v tomto případě podle x a stupeň 3.) Příklad Najděte parciální derivaci podle y funkce dvou proměnných z = sin(xy) + 3x 3 + x y. Parciální derivaci snadno vytvoříme příkazem: diff(sin(x*y) + 3*xˆ3 + (x/y),y); cos(xy)x x y 2 19

20 7.1.4 Příklad Najděte druhou derivaci funkce 4x 7 5 x a její hodnotu v bodě x = 3, 78. Jestliže chceme s derivacemi ještě dále pracovat, je nezbytné nejprve vytvořit funkci a tu pak derivovat. Označíme si funkci a a zadáme již známým příkazem: Funkci a zderivujeme a derivaci nazveme b: a:=x->4*xˆ7-(x)ˆ(1/5); a := x 4x 7 x ( 1 5 ) b := x 168x x ( 9 5 ) Nyní již můžeme zjistit hodnotu druhé derivace v bodě x = 3, 78: b(3.78); Příklad Řešte neurčitý integrál ln(x) dx. Neurčitý integrál získáme pomocí příkazu: int(ln(x),x); x ln(x) x Opět je nutné v argumentu příkazu uvést, podle které proměnné integrujeme (v tomto případě podle x). 20

21 7.1.6 Příklad Určete hodnotu určitého integrálu 7 3 x 5 dx. Neurčitý integrál získáme pomocí příkazu: int((xˆ5),x=3..7); Opět je nutné v argumentu příkazu uvést, podle které proměnné integrujeme (v tomto případě podle x) a meze určitého intervalu. 7.2 Neřešené příklady Určete: 1.derivaci funkce y = xex x 2 x 8 hodnotu y (2) funkce funkce y = x7 +x 2 cos(x) x 8 [ ex +xe x 2x x 8 xex x 2 (x 8) 2 ] [ ] parciální derivaci podle x funkce dvou proměnných z = cos(xy) + e3x y y 3 [ sin(xy)y + 3e(3x) y 3 ] 3x 2 x 4 dx [ 3 2 x2 + 12x + 48 ln(x 4)] 7 2e 5x x dx 5 [ 2 5 e( 25) e35 12 = 0, ] 21

22 8 DIFERENCIÁLNÍ ROVNICE 8.1 Řešené příklady Funkci y zadáváme do programu pomocí příkazu y(x), její první derivaci pomocí diff(y(x),x), pro druhou derivace pak diff(y(x),x$2). Pro derivace vyšších řádů používáme stejný příkaz, kde jen měníme stupeň derivace Příklad Je dána diferenciální rovnice y (x) 2y(x) = e x. Řešte ji obecně a pak s počáteční podmínkou y(8) = 5. Nejprve si danou diferenciální rovnici vložíme a nazveme ji dr: Nyní nalezneme obecné řešení: dr:=diff(y(x),x) - 2*y(x) = exp(x); dr := ( d dx y(x)) 2y(x) = e x dsolve(dr,y(x)); y(x) = e x + e (2x) C1 Obecné řešení obsahuje C1, což označuje integrační konstantu C 1. Rovnou však můžeme najít partikulární řešení, když vložíme do argumentu příkazu danou počáteční podmínku: Příklad dsolve({dr,y(8)=5},y(x)); y(x) = e x e(2x) ( 5 e 8 ) e 16 Je dána diferenciální rovnice y (x) 2y (x) 8y(x) = x 3 5. Najděte obecné řešení. Nejprve si danou diferenciální rovnici vložíme a nazveme ji a: a := diff(y(x), x$2) 2 diff(y(x), x) 8 y(x) = x 3 5; ( ) a := d 2 y(x) 2 ( d dx 2 dx y(x)) 8y(x) = x

23 Nyní nalezneme obecné řešení: dsolve(a,y(x)); y(x) = e (4x) C2 + e ( 2x) C x x2 32 x Neřešené příklady Řešte: diferenciální rovnici 5y (x) y(x) = 3x 5. Řešte ji obecně a pak s počáteční podmínkou y(1) = 2. [y(x) = 10 3x + C 1 e ( x 5 ), y(x) = 10 3x + 15e( x 5 ) e ( 1 5 ) ] diferenciální rovnici y (x) 7y (x) + 10y(x) = 5e x + x 2 3. Řešte ji obecně a pak s počátečními podmínkami y(8) = 5 a y(0) = 9. [y(x) = C 2 e (5x) + C 1 e (2x) ex + x x ] 23

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

1.1.3 Práce s kalkulátorem

1.1.3 Práce s kalkulátorem .. Práce s kalkulátorem Výrazy zadáváme do kalkulačky pokud možno vcelku, pozor na závorky a čísla ve jmenovateli u zlomků. Př. : Spočti na kalkulačce s maximální možnou přesností a bez zapisování mezivýsledků:

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Úvod do práce s Matlabem

Úvod do práce s Matlabem Úvod do práce s Matlabem 1 Reálná čísla 1.1 Zadávání čísel Reálná čísla zadáváme s desetinnou tečkou (.), čísla lze také zadávat v exponenciálním tvaru například číslo 0.000014 zadáme takto 1.4e-5, číslo

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

16. Goniometrické rovnice

16. Goniometrické rovnice @198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny

Více

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

1. LINEÁRNÍ ALGEBRA Vektory Operace s vektory... 8 Úlohy k samostatnému řešení... 8

1. LINEÁRNÍ ALGEBRA Vektory Operace s vektory... 8 Úlohy k samostatnému řešení... 8 1 Lineární algebra 1 LINEÁRNÍ ALGEBRA 8 11 Vektory 8 111 Operace s vektory 8 8 112 Lineární závislost a nezávislost vektorů 8 8 113 Báze vektorového prostoru 9 9 12 Determinant 9 9 13 Matice 1 131 Operace

Více

3.2 3DgrafyvMaple 106 KAPITOLA 3. UŽITÍ MAPLE PŘI ŘEŠENÍ KVADRIK

3.2 3DgrafyvMaple 106 KAPITOLA 3. UŽITÍ MAPLE PŘI ŘEŠENÍ KVADRIK 106 KAPITOLA 3. UŽITÍ MAPLE PŘI ŘEŠENÍ KVADRIK > A2:=augment(submatrix(A,1..3,[1]),b,submatrix(A,1..3,[3])); Potom vypočítáme hodnotu x 2 : > x2:=det(a2)/det(a); Zadání matice. Matici M typu (2, 3) zadáme

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

MODAM Mgr. Zuzana Morávková, Ph.D.

MODAM Mgr. Zuzana Morávková, Ph.D. GeoGebra známá i neznámá (začátečníci) MODAM 2015 Mgr. Zuzana Morávková, Ph.D. MODAM 2015 GeoGebra známá i neznámá (začátečníci) Příklad 1: Kružnice opsaná trojúhelníku Zadání: Vytvořte aplikaci na sestrojení

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její

Více

Obsah. Metodický list Metodický list Metodický list Metodický list

Obsah. Metodický list Metodický list Metodický list Metodický list METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 19. září 2011 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Doporučená literatura web: http://marian.fsik.cvut.cz/zapg

Více

Matematika 1 sbírka příkladů

Matematika 1 sbírka příkladů Matematika 1 sbírka příkladů RNDr. Rudolf SCHWARZ, CSc. Brno 2012 1. Poznámka Výsledky jednotlivých příkladů mají tuto barvu. 2. Poznámka Pokud je v hranatých závorkách uvedeno písmeno, označuje, ze které

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA PROGRAM MAXIMA KORDEK, David, (CZ) Abstrakt. Co je to Open Source Software? Příklady některých nejpoužívanějších software tohoto typu. Výhody a nevýhody Open Source Software. Jak získat program Maxima.

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Petr Hasil

Petr Hasil Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Kvadratická funkce Autor: Kubešová

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

= 0,1 1,3. je oblast ohraničená přímkami =, =, =0 :0 1, : =2, =, =1

= 0,1 1,3. je oblast ohraničená přímkami =, =, =0 :0 1, : =2, =, =1 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad 1 Vypočtěte integrály a) b) c) d) e) f) g) h) i) j),, = 0,1 1,3 je oblast ohraničená přímkami =,=,=0 1+, :=0,=1,=1,= +3, :=0,=,=0,=1 sin+, 3,,,, :=0,=,= : + 4 : =4+,+3=0

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4. ..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda.

Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Úvod Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Mnoho technických problémů vede na řešení matematických úloh, které se následně převedou na úlohy řešení soustav nelineárních rovnic

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Neurčitý integrál. Robert Mařík. 4. března 2012

Neurčitý integrál. Robert Mařík. 4. března 2012 Neurčitý integrál Robert Mařík 4. března 0 V tomto souboru jsou vysvětleny a na příkladech s postupným řešením demonstrovány základní integrační metody. Ikonka za integrálem načte integrál do online aplikace

Více

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5 Příklad 1 Najděte totální diferenciál d (h) pro h=(h,h ) v příslušných bodech pro následující funkce: a) (,)= cos, =1; b) (,)=ln( + ), =2; 0 c) (,)=arctg(), =1; 0 1 d) (,)= +, =1; 1 Řešení 1a Máme nalézt

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

Internetová adresa osobní stránky: http://www.mat.fme.vutbr.cz/home/klaska E-mail: klaska@um.fme.vutbr.cz

Internetová adresa osobní stránky: http://www.mat.fme.vutbr.cz/home/klaska E-mail: klaska@um.fme.vutbr.cz 3 MAPLEOVSKÁ CVIČENÍ PRO ZÁKLADNÍ KURZ MATEMATIKY RNDr. Jiří Klaška, Dr. Internetová adresa osobní stránky: http://www.mat.fme.vutbr.cz/home/klaska E-mail: klaska@um.fme.vutbr.cz Úvod Maple je program,

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Vybrané problémy lineární algebry v programu Maple

Vybrané problémy lineární algebry v programu Maple UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra matematické analýzy a aplikací matematiky BAKALÁŘSKÁ PRÁCE Vybrané problémy lineární algebry v programu Maple Vedoucí bakalářské práce: RNDr.

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 Robert Mařík 5. října 2009 c Robert Mařík, 2009 Obsah 1 LDR druhého řádu 4 2 Homogenní LDR, lineární nezávislost a wronskián 9 3 Homogenní LDR s konstantními

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12 Vektory a matice Lineární (ne-)závislost vektorů n zê Matice a operace s nimi Hodnost matice Determinanty. p.1/12 Lineární (ne-)závislost vektorů zê n Příklad 9.1.1 Rozhodněte, zda jsou uvedené vektory

Více

předmětu MATEMATIKA B 1

předmětu MATEMATIKA B 1 Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory

Více

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

Matematika I: Pracovní listy do cvičení

Matematika I: Pracovní listy do cvičení Matematika I: Pracovní listy do cvičení Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Pro FAST upravil Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita

Více

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3, V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Úvod do řešení lineárních rovnic a jejich soustav

Úvod do řešení lineárních rovnic a jejich soustav Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

MATEMATIKA A Metodický list č. 1

MATEMATIKA A Metodický list č. 1 Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ..07/..00/6.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické funkce Autor: Ondráčková

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a MATEMATIKA B metodický list č. 1 Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači se seznámí

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více