ANTAGONISTICKE HRY 172

Rozměr: px
Začít zobrazení ze stránky:

Download "ANTAGONISTICKE HRY 172"

Transkript

1 5 ANTAGONISTICKÉ HRY 172

2 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí na tom, jaká rozhodnutí zvolili. Matematickým modelem antagonistického konfliktu je hra v normálním tvaru s konstantním součtem: {Q = {1, 2}; S, T ; u 1 (s, t), u 2 (s, t)} u 1 (s, t) + u 2 (s, t) = konst. pro každé (s, t) S T 173

3 Definice 1. Strategie s, t se nazývají rovnovážné ve hře (5), platí-li pro každé s S a každé t T : u 1 (s, t ) u 1 (s, t ) a zároveň u 2 (s, t) u 2 (s, t ) Je-li speciálně součet ve hře nulový, budeme používat značení model tedy bude vypadat takto: u 1 (s, t) = u 2 (s, t) = u(s, t); {Q = {1, 2}; S, T ; u(s, t)} (5.1) Pro rovnovážné strategie s, t ve hře s nulovým součtem musí platit: u(s, t ) u(s, t ) u(s, t) pro všechna s S, t T. (5.2) Hodnota u(s, t ) se nazývá cena hry. 174

4 Lze dokázat, že ke každé hře tvaru (5) s konstantním součtem lze přiřadit hru v normálním tvaru s nulovým součtem, která je s původní hrou strategicky ekvivalentní, tj. každá dvojice strategií s, t, které jsou rovnovážné v původní hře, představuje dvojici rovnovážných strategií i v příslušné hře s nulovým součtem a naopak. Přesněji: Věta 1. Necht (5) je hra s konstantním součtem rovným K. Potom s, t jsou rovnovážné strategie ve hře (5) tehdy a jen tehdy, jsou-li s, t rovnovážné strategie ve hře s nulovým součtem (5.1), kde u(s, t) = u 1 (s, t) u 2 (s, t). 175

5 MATICOVÉ HRY Hru dvou hráčů s nulovým součtem a konečnými prostory strategií S = {s 1, s 2,... s m }, T = {t 1, t 2,... t n } (5.3) lze zadat pomocí matice A = a 11 a a 1n a 21 a a 2n a m1 a m2... a mn = u 1 (s 1, t 1 ) u 1 (s 1, t 2 )... u 1 (s 1, t l ) u 1 (s 2, t 1 ) u 1 (s 2, t 2 )... u 1 (s 2, t l ) u 1 (s k, t 1 ) u 1 (s k, t 2 )... u 1 (s k, t l ) jejíž prvky udávají hodnoty výplatní funkce prvního hráče (výplatní funkce druhého hráče má vždy opačnou hodnotu): prvek a ij je roven hodnotě výplatní funkce prvního hráče, zvolil-li strategii s i a protivník zvolil strategii t j. Pro takto zadané hry se používá označení maticové hry. 176

6 Rovnovážné strategie v maticové hře První hráč pro každou svou strategii s i, tj. pro každý řádek i {1, 2,..., m} matice, nalezne minimální prvek, který pro danou strategii představuje minimální zaručenou výhru bez ohledu na volbu protivníka. Pak vybere tu strategii, neboli ten řádek, kde je toto minimum nejvyšší a tím i nejvyšší zaručená výhra nejmenší zlo. Podobně postupuje druhý hráč. Pro něj je nejhorší možností ta nejvyšší hodnota výhry prvního hráče; proto pro každou svou strategii t i, tj. pro každý sloupec j {1, 2,..., n} matice, nalezne maximální prvek, který pro danou strategii představuje maximální zaručenou prohru bez ohledu na volbu protivníka. Potom vybere tu strategii, neboli ten sloupec, kde je toto maximum nejmenší, neboli kde je maximální prohra co nejnižší. 177

7 Hráč 2 Hráč 1 s 1 s 2. s k t 1 t 2... t l u 1 (s 1, t 1 ) u 1 (s 1, t 2 )... u 1 (s 1, t l ) u 1 (s 2, t 1 ) u 1 (s 2, t 2 )... u 1 (s 2, t l ) u 1 (s k, t 1 ) u 1 (s k, t 2 )... u 1 (s k, t l ) Hráč 1: min tj u 1 (s i, t j ) MAX Hráč 2: max si u 1 (s i, t j ) MIN Zřejmě platí: max s i min t j u 1 (s i, t j ) min max u 1 (s i, t j ) (5.4) t j s i 178

8 Platí-li ve vztahu (5.4) rovnost, pak společná hodnota u(s, t ) = max s i min t j u 1 (s i, t j ) = min max u 1 (s i, t j ) (5.5) t j s i představuje cenu hry a dvojice strategií (s, t ) je rovnovážným bodem. Prvek u(s, t ) má tu vlastnost, že je současně nejmenší na řádku a největší ve sloupci, proto se nazývá sedlový prvek matice. 179

9 Příklad 1. Uvažujme hru s maticí Hráč 2 t 1 t 2 t 3 t 4 Hráč 1 s 1 s 2 s k min max: max s min t u 1 (s i, t j ) = 4 = min t max u 1 (s i, t j ) = u 1 (s 1, t 3 ) s Dvojice strategií (s 1, t 3 ) je rovnovážným bodem hry. 180

10 Bohužel, ne vždy sedlový prvek existuje: Příklad 2. Hráč 2 t 1 t 2 t 3 Hráč 1 s 1 s 2 s k min max: max s min t u 1 (s i, t j ) = 1 < min t max u 1 (s i, t j ) = 1 s 181

11 Podobně pro matice: A = ( ) ( 0 5/2 2, B = ). (5.6) V těchto případech nezbyde než zavést smíšené strategie. Uvažujme nový model dané rozhodovací situace, původně popsané maticovou hrou s maticí (5): 182

12 Definice 2. Mějme maticovou hru s prostory strategií (5.8) a maticí hry (5). Hru dvou hráčů s nulovým součtem s prostory strategií S s = {p; p = (p 1,... p m ), p p m = 1, p o} T s = {q; q = (q 1,... q n ), q q n = 1, q o} a s výplatní funkcí (5.7) π(p, q) = m n p i a ij q j = paq T (5.8) i=1 j=1 nazveme smíšeným rozšířením původní maticové hry. Prvky původních prostorů strategiís, T se nazývají ryzí strategie, prvky prostorů S s, T s, které udávají rozdělení pravděpodobností na prostoru ryzích strategií, se nazývají smíšené strategie. Věta 2. Základní věta maticových her. Smíšené rozšíření každé maticové hry má řešení v rovnovážných strategiích. 183

13 Tj. pro každou matici A existují vektory p S s, q T s : paq T p Aq T p Aq T pro všechna p S s, q T s. (5.9) Ještě jinak: Věta. Vždy existují smíšené strategie (p, q ), pro které π(p, q ) = max p min q π(s i, t j ) = min q max π(s i, t j ) p Věta 3. Rovnovážné strategie smíšeného rozšíření maticové hry se nemění, přičteme-li ke každému prvku matice hry totéž kladné nebo záporné číslo c. Cena hry s takto pozměněnou maticí je v + c, kde v je cena původní hry. 184

14 GRAFICKÉ ŘEŠENÍ MATICOVÝCH HER PRO MATICE TYPU (2, n) Střední hodnoty výhry hráče 1 při smíšené strategii (p, 1 p) a při ryzích strategiích hráče 2: Hledáme g j (p) = pa 1j + (1 p)a 2j, j = 1, 2,..., n. (5.10) p := arg max p 0,1 Nejprve budeme uvažovat funkci ϕ(p) := min g j(p). (5.11) j=1,2,...,n min g j(p). (5.12) j=1,2,...,n Tato funkce je konkávní, po částech lineární, snadno nalezneme bod jejího maxima. Hledaná cena hry je potom rovna v = ϕ(p ) := max ϕ(p) (5.13) p 0,1 a hledaná smíšená rovnovážná strategie hráče 1 je (p, 1 p ). Nastává-li extrém v bodě p, kde g j (p ) = g k (p ) = v pro jednoznačně určené strategie j, k pak složky smíšené rovnovážné 185

15 strategie hráče 2 s indexy různými od j, k jsou rovny nule. Složky, které mohou být nenulové, získáme vyřešením soustavy a 1j q j + a 1k q k = v, q j + q k = 1, q j 0, q k 0, nebo a 2j q j + a 2k q k = v, q j + q k = 1, q j 0, q k

16 Příklad 3. Určení rovnovážných strategií pro hru s maticí ( 5 5/ ). g 1 (p) = 5p + 4(1 p) = p + 4 g 2 (p) = 5 p + 8(1 p) = p + 8 g 3 (p) = 3p + 6(1 p) = 3p + 6 ϕ(p) nabývá maxima v bodě p = 1, hodnota tohoto maxima je 2 Vyřešením soustavy rovnic v(m) = q 1 + 3q 3 = 4.5, q 1 + q 3 = 1, q 1 0, q 3 0, získáme q 1 = 0.75, q 2 = Rovnovážný bod je tedy p = ( 1, ) 1 2 2, q = ( 3, 1 4 4). 187

17 188

18 OBECNÉ ŘEŠENÍ MATICOVÝCH HER LINEÁRNÍ PROGRAMOVÁNÍ Uvažujme maticovou hru s maticí a 11 a a 1n a A = 21 a a 2n a m1 a m2... a mn (5.14) a smíšené strategie p = (p 1,..., p m ), p p m = 1, p i 0 i {1,..., m}, q = (q 1,..., q n ), q q n = 1, q j 0 j {1,..., n}. Předpokládejme, že všechny prvky matice A jsou kladné (Pokud by nebyly, mohli bychom ke všem prvkům matice přičíst dostatečně vysokou kladnou konstantu c, čímž se podle věty 3 z hlediska strategií nic nezmění). 189

19 Postup je podobný, jako v případě hledání ryzích rovnovážných strategií. První hráč hledá pro libovolné, ale v tuto chvíli pevné p svou minimální zaručenou výhru h. Uvažujme Zřejmě je h = min j {a 1jp 1 + a 2j p a mj p m }. (5.15) h a 1j p 1 + a 2j p a mj p m pro všechna j {1, 2,..., n}. m (q 1 + q q n ) } {{ } h 1 q 1 h q 1 (a 11 p 1 + a 21 p a m1 p m ) q 2 h q 2 (a 12 p 1 + a 22 p a m2 p m ) q n h q n (a 1n p 1 + a 2n p a mn p m ) i=1 n p i a ij q j = π(p, q) j=1 h π(p, q) 190

20 Hodnota h je proto minimální zaručenou výhrou hráče 1, at již jeho protivník zvolí jakoukoli ryzí či smíšenou strategii (vzhledem k (5.15) je h největší číslo splňující poslední nerovnost). Nerovnosti h a 1j p 1 + a 2j p a mj p m pro všechna j {1, 2,..., n}. vydělme hodnotou h a označme p 1 1 a 1j h + a p 2 2j h + + a p m mj h y i = p i h ; zřejmě platí: y 1 + y y m = 1 h. Obdržíme nerovnost 1 a 1j y 1 + a 2j y a mj y m. (5.16) 191

21 Maximalizovat minimální zaručenou výhru znamená maximalizovat h, tj. Minimalizovat při omezeních 1 h = y 1 + y y m 1 a 1j y 1 + a 2j y a mj y m, j = 1, 2,..., n. (5.17) To je přesně duální úloha lineárního programování, která nám jako výsledek poskytne příslušnou strategii p. 192

22 Pro druhého hráče je postup analogický. Hledá h a q tak, aby h a i1 q 1 + a i2 q a in q n pro všechna i {1, 2,..., m}, přičemž opět q 1 + q q n = 1, q j 0 pro všechna j {1, 2,..., n}. Vydělme nerovnost hodnotou h a označme 1 a i1 q 1 h + a i2 q 2 h + + a in q n h x j = q j h ; zřejmě platí: x 1 + x x n = 1 h. Obdržíme nerovnost Minimalizovat h tedy znamená: 1 a i1 x 1 + a i2 x a in x n. (5.18) maximalizovat při omezeních 1 h = x 1 + x x n 1 a i1 x 1 + a i2 x a in x n, i = 1, 2,..., m. (5.19) 193

23 To je odpovídající primární úloha lineárního programování (aby h byla cena hry, je třeba, aby to v obou případech bylo totéž číslo). 194

24 Příklad 4 Penalty Střelba penalt může být považována za antagonistickou hru s následující maticí, která udává pravděpodobnost gólu pro různé strategie střelce (1. hráč) a brankáře (2. hráč). Budeme hledat rovnovážný bod v ryzích nebo smíšených strategiích. Strategie skoč vlevo skoč vpravo čekej uprostřed Střílej vlevo 0, 6 0, 7 1 Střílej vpravo 1 0, 8 0, 7 Řešení. g 1 (p) = 0, p = 1 0, 4p g 2 (p) = 0, 7p + 0, 8(1 p) = 0, 8 0, 1p g 3 (p) = p + 0, 7(1 p) = 0, 7 + 0, 3p Nejvyšší zaručená výhra pro střelce: g 2 (p) = g 3 (p) p = 1 4 Rovnovážný bod: ( 1, ) ( 3 4 4, 0, 3, 1 4 4), cena hry: v = 0,

25 Správnost řešení maticových her si můžete zkontrolovat pomocí appletu, který naleznete zde. Následující příklad ilustruje přechod od sedlového prvku k rovnovážnému bodu. Pro hry s nulovým a konstantním součtem se oba pojmy shodují, pro hry s nekonstantním součtem už tomu tak být nemusí: (3, 3) (2, 2) (0, 0) (1, 1) (3, 3) (2, 4) (0, 6) (1, 5) (3, 3) (2, 4) (0, 2) (4, 5) (4, 5)... vzájemně nejlepší odpovědi rovnovážný bod 196

{Q={1,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit:

{Q={1,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit: 3 ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

Úvod do teorie her

Úvod do teorie her Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu

Více

KOOPERATIVNI HRY DVOU HRA CˇU

KOOPERATIVNI HRY DVOU HRA CˇU 8 KOOPERATIVNÍ HRY DVOU HRÁČŮ 291 V této kapitole se budeme zabývat situacemi, kdy hráči mohou před začátkem hry uzavřít závaznou dohodu o tom, jaké použijí strategie, vygenerovaný zisk si však nemohou

Více

TGH13 - Teorie her I.

TGH13 - Teorie her I. TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Kapitola 4: Extrémy funkcí dvou proměnných 1/5

Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Matice lineárních zobrazení

Matice lineárních zobrazení Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ?

KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekonomická vědní disciplína, která se

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

Teorie her. RNDr. Magdalena Hykšová, Ph.D. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Teorie her. RNDr. Magdalena Hykšová, Ph.D. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie her RNDr. Magdalena Hykšová, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

12 HRY S NEÚPLNOU INFORMACÍ

12 HRY S NEÚPLNOU INFORMACÍ 12 HRY S NEÚPLNOU INFORMACÍ 543 Ne v každé hře mají všichni hráči úplné informace o výplatních funkcích ostatních. Ve skutečnosti je většina situací s informací neúplnou. Například: V aukcích zpravidla

Více

THE: Nekooperativní hry s nulovým součtem Non-Cooperative Zero-sum Games

THE: Nekooperativní hry s nulovým součtem Non-Cooperative Zero-sum Games THE: Nekooperativní hry s nulovým součtem Non-Cooperative Brno University of Technology Brno Czech Republic October 16, 2014 Úvod Čerpáno z: Fudenberg, D., Tirole, J.: Game Theory, MIT Press, 1991 Osborne,

Více

TEORIE HER. Základní pojmy teorie her. buď racionální (usiluje o optimální výsledek hry) nebo indiferentní (výsledek hry je mu lhostejný)

TEORIE HER. Základní pojmy teorie her. buď racionální (usiluje o optimální výsledek hry) nebo indiferentní (výsledek hry je mu lhostejný) TEORIE HER V dosavadních přednáškách jsme probírali jedno či vícekriteriální optimalizaci, ale v těchto úlohách byly předem pevně dané podmínky a ty se nijak neměnily v závislosti na našem rozhodnutí Také

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Teorie her a ekonomické rozhodování 5. Opakované hry

Teorie her a ekonomické rozhodování 5. Opakované hry Teorie her a ekonomické rozhodování 5. Opakované hry (chybějící či chybná indexace ve skriptech) 5.1 Opakovaná hra Hra až dosud hráči hráli hru jen jednou v reálu se konflikty neustále opakují (firmy nabízí

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Mikroekonomie magisterský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 1 Teorie her pro manažery Obsah 5.1 Teorie her jako součást mikroekonomie 5.2 Základní pojmy teorie

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Státnicová otázka 6, okruh 1

Státnicová otázka 6, okruh 1 Státnicová otázka 6, okruh 1 Vojtěch Franc, xfrancv@electra.felk.cvut.cz 7. února 2000 1 Zadání Statické optimalizace. Lineární a nelineární programování. Optimální řízení a rozhodování v dynamických systémech,

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Teorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů

Teorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů Teorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů (chyby ve skriptech) 6.1 Koaliční hra Kooperativní hra hráči mají možnost před samotnou hrou uzavírat závazné dohody dva hráči (hra má

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

Dva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu

Dva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu Zadání příkladu: Dva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu ze tří akcí: a/ žalovat druhý podnik u soudu strategie Z b/ nabídnout druhému podniku spojení strategie

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r Simplexová metoda Simplexová metoda, je jedním ze způsobů, jak řešit úlohy lineárního programování. Tato metoda vede k cíly, nelezení optimálního řešení, během konečného počtu kroků, pokud se při prvním

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Úvod do teorie her ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ

Úvod do teorie her ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Úvod do teorie her David Bartl, Lenka Ploháková OSNOVA Úvod (hra n hráčů ve strategickém

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Dvou-maticové hry a jejich aplikace

Dvou-maticové hry a jejich aplikace Dvou-maticové hry a jejich aplikace Obsah kapitoly. Hry s konstantním součtem Hra v normálním tvaru (ryzí strategie) Smíšené strategie. Hry s nekonstantním součtem Nekooperativní hra Dvou-maticová hra

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme

Více

3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A =

3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = 3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze Studijní program Matematika, bakalářské studium Studijní program Informatika, bakalářské studium 2014, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a,

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Teorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy

Teorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy Kapitola 1 Teorie her Dosud jsme se věnovali jednokriteriální či vícekriteriální optimalizaci, kde ve všech úlohách byly předem pevně dané podmínky a ty se nijak neměnily v závislosti na našem rozhodnutí.

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

[1] samoopravné kódy: terminologie, princip

[1] samoopravné kódy: terminologie, princip [1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla

Více

Teorie her. Theory of games. Vlastimil Čabla

Teorie her. Theory of games. Vlastimil Čabla Teorie her Theory of games Vlastimil Čabla Bakalářská práce 2009 *** nascannované zadání str. *** *** nascannované zadání str. 2 *** UTB ve Zlíně, Fakulta aplikované informatiky, 2009 4 ABTRAKT Práce se

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Koaliční hry. Kooperativní hra dvou hráčů

Koaliční hry. Kooperativní hra dvou hráčů Koaliční hry Obsah kapitoly. Koalice dvou hráčů 2. Koalice N hráčů Studijní cíle Cílem tohoto tematického bloku je získání základního přehledu o kooperativních hrách a jejich aplikovatelnosti. Student

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 1 Řešení úloh 1. dílčí téma: Řešení úloh ve stavovém prostoru Počáteční období výzkumu v oblasti umělé inteligence (50. a 60. léta) bylo charakterizováno

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi 2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více

Strategické hry v bezpečnostním inženýrství

Strategické hry v bezpečnostním inženýrství Strategické hry v bezpečnostním inženýrství Strategic games in security engineering Bc. Jan Cibulka Diplomová práce 2010 ABSTRAKT Diplomová práce je zaměřena na vyuţití teorie her a optimálního rozhodování

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Aplikace teorie her. V ekonomice a politice Ing. Václav Janoušek

Aplikace teorie her. V ekonomice a politice Ing. Václav Janoušek Aplikace teorie her V ekonomice a politice Ing. Václav Janoušek Co je teorie her a její využití Teorie her obor aplikované matematiky a operační analýzy, sloužící k analýze konfliktních a strategických

Více

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více