Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Rozměr: px
Začít zobrazení ze stránky:

Download "Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)"

Transkript

1 Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry)

2 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících tahů, přičemž hráči se v tazích střídají 2

3 3.1 Neantagonistický konflikt Antagonistický konflikt = co jeden získá, to druhý ztratí (spolupráce nemá smysl) hra s konstantním součtem Neantagonistický konflikt = zájmy hráčů nejsou v přímém protikladu hra s nekonstantním součtem výhra prvého hráče není prohrou druhého 3

4 3.1 Neantagonistický konflikt V případě neantagonistického konfliktu: nekooperativní hra = hráči nemohou spolupracovat kooperativní hra = hráči mohou spolupracovat 4

5 3.2 Nekooperativní hra Konečný prostor strategií obou hráčů 1. hráč X = {x1, x2,, xm} 2. hráč Y = {y1, y2,, yn} Celkem tedy existuje m x n možných kombinací strategií Každé kombinaci lze přiřadit výhru prvního hráče f 1 (x, y) a výhru druhého f 2 (x, y) 5

6 3.2 Nekooperativní hra Hodnoty lze opět uspořádat do matice Mezi hodnotou výplatní funkce 1. a 2. hráče však není definovaný přímý vztah Proto jsou třeba matice dvě A pro prvního hráče B pro druhého hráče Dvoumaticová (dvojmaticová, bimaticová) hra 6

7 3.2 Nekooperativní hra A = a 11 a 1n, B = a m1 a mn b 11 b 1n b m1 b mn 1. hráč xi 2. hráč yj 1. hráč získá aij hodnota výplatní funkce 1. hráče 2. hráč získá bij hodnota výplatní funkce 2. hráče 7

8 3.2 Nekooperativní hra Nashova rovnováha Pokud se některý z hráčů odchýlí od své optimální strategie (zatímco soupeř se své optimální strategie držet bude), nepolepší si Tzn. pokud se hráč nedrží optimální strategie, pohorší si (a v nejlepším případě na tom bude stejně) 8

9 3.2 Nekooperativní hra Nashova rovnováha Dvojici strategií x o X, y o Y nazveme Nashovo rovnovážné řešení, pokud platí f 1 (x, y o ) f 1 (x o, y o ) a f 2 (x o, y) f 2 (x o, y o ) 9

10 3.3 Nashova rovnováha Nashovu rovnováhu získáme nalezením sedlového prvku (sedlového bodu) Sedlový prvek největší ve svém sloupci v matici A a největší ve svém řádku v matici B 10

11 3.3 Nashova rovnováha Vytvoříme tedy dvojmatici: a 11, b 11 a 1n, b 1n a m1, b m1 a mn, b mn V každém sloupci označíme všechny maximální hodnoty z prvních prvků V každém řádku označíme všechny maximální hodnoty z druhých prvků 11

12 3.3 Nashova rovnováha Sedlový bod = prvek, který má označenou první složku (1. hráčem) a zároveň druhou složku (2. hráčem) Nashova rovnováha = Nashovo rovnovážné řešení v ryzích strategiích 12

13 3.3 Nashova rovnováha Příklad 1 1,5 4,2 2,3 2,1 1,9 1,4 3,2 3,1 4,0 Nekooperativní hra může mít 1 sedlový prvek optimální strategie získáme přímo 13

14 3.3 Nashova rovnováha Příklad 2 1,2 4,3 2,2 2,5 1,3 6,4 3,2 3,1 4,1 Nekooperativní hra může mít více sedlových prvků 14

15 3.3 Nashova rovnováha Uvedená úloha má dva sedlové body 1,2 4,3 2,2 2,5 1,3 6,4 3,2 3,1 4,1 Na rozdíl od antagonistického konfliktu nejsou hodnoty výplatních funkcí stejné Pokud má Jak úloha vybrat jediný optimální nedominovaný strategii? sedlový prvek optimální strategie přímo 15

16 3.3 Nashova rovnováha Příklad 3 1,2 5,3 2,1 2,3 1,4 4,5 3,6 3,4 4,2 Nekooperativní Jak vybrat hra může optimální mít více strategii? sedlových prvků alespoň 2 jsou vzájemně nedominované 16

17 3.3 Nashova rovnováha Nekooperativní hra může mít více sedlových prvků Pokud je jediný z nich nedominovaných, pak přímo určuje rovnovážné řešení v ryzích strategiích Pokud jsou alespoň 2 vzájemně nedominované, pak se oba hráči mohou dostat do vzájemně nepříznivé situace 17

18 3.3 Nashova rovnováha Příklad 4 1,2 4,3 2,5 2,5 1,3 6,4 3,2 3,3 4,1 Tato nekooperativní hra nemá žádný sedlový prvek nemá Nashovo rovnovážné řešení v ryzích strategiích 18

19 3.3 Nashova rovnováha Dvojmaticová hra může mít: 1 sedlový prvek rovnovážné strategie přímo více sedlových prvků jediný nedominovaný rovnovážné strategie přímo alespoň 2 nedominované problém žádný sedlový prvek neexistuje Nashova rovnováha v ryzích strategiích Pro hráče neexistují žádné rovnovážné strategie? 19

20 3.4 Smíšené rozšíření Základní věta dvojmaticových her: Každá dvojmaticová hra má alespoň jedno rovnovážné řešení (ve smíšených strategiích) 20

21 3.4 Smíšené rozšíření Postup hledání Nashova rovnovážného řešení ve smíšených strategiích se nazývá smíšené rozšíření dvojmaticové hry Smíšené rozšíření použijeme, neexistuje-li řešení v ryzích strategiích (tj. neexistuje-li sedlový prvek) 21

22 3.4 Smíšené rozšíření X = {x; x T = (x 1 ; x 2 ; ; x m ); m i=1 x i = 1; x 0} Y = {y; y T = (y 1 ; y 2 ; ; y n ); n j=1 y j = 1; y 0} 22

23 3.4 Smíšené rozšíření Hodnota výplatní funkce 1. hráče: m n f 1 x, y = x i a ij y j = x T Ay i=1 j=1 Hodnota výplatní funkce 2. hráče: m n f 2 x, y = x i b ij y j = x T By i=1 j=1 23

24 3.4 Smíšené rozšíření Podle ZVDMH existují optimální strategie (x o, y o ) ve smíšeném rozšíření, neboli existuje Nashova rovnováha Musí tedy platit: x T Ay o x ot Ay o x ot By x ot By o Hledáme tedy (x o, y o ) splňující uvedené nerovnosti 24

25 3.4 Smíšené rozšíření m n max i=1 j=1 p i q j a ij + b ij m n p i j=1 i=1 q j n j=1 m i=1 q j 0, j p i 0, i a ij q j 1, i b ij p i 1, j 25

26 3.4 Smíšené rozšíření max p T A + B q e T p f T q Aq e B T p f p 0 q 0 26

27 3.4 Smíšené rozšíření Úloha kvadratického programování Postup odvození je obdobný postupu v maticových hrách Je třeba zajistit kladné prvky v maticích A a B Symboly e a f označují vektory jedniček 27

28 3.4 Smíšené rozšíření Zpětná substituce y o j = x o i = q j n q j neboli y o = q j=1 p i i=1 f T q m p i neboli x o = p e T p Takto nalezneme jedno optimální řešení (pomocí softwaru) Úloha jich však může mít více (možnost: nastavit různá výchozí řešení) 28

29 3.5 Typické konflikty Vězňovo dilema Dva vězni jsou odděleně uvězněni Každý má možnost se přiznat nebo nepřiznat Pokud se jeden přizná a druhý ne, dostane první nižší trest (volný) a druhý vyšší Nepřiznají-li se oba, dostanou nižší trest Přiznají-li se oba, dostanou vyšší trest 29

30 3.5 Typické konflikty Vězňovo dilema P N P 6,6 0,10 N 10,0 2,2 Správně záporná znaménka záporný užitek 30

31 3.5 Typické konflikty Vězňovo dilema P N P 6, 6 0, 10 N 10,0 2, 2 Optimální pro oba je se přiznat Pokud by se ani jeden nepřiznal, dopadli by oba lépe 31

32 3.5 Typické konflikty Vězňovo dilema P N P N 6, 6 0, 10 10,0 2, 2 (P,P) je sice rovnovážné řešení, ale není Paretovsky rovnovážné (všichni si změnou mohou polepšit, aniž by byl někdo poškozen) 32

33 3.5 Typické konflikty Konflikt Kuře Dvě auta jedou proti sobě, kdo uhne, je kuře a jeho reputace klesne Oba neustoupí (neuhnou) srážka Oba uhnou oba jsou slabí a reputace se jim nezvýší 33

34 3.5 Typické konflikty Konflikt Kuře U N U N 0,0 1,1 1, 1 2, 2 Problém dvou vzájemně nedominovaných sedlových bodů situace skončí tragicky 34

35 3.5 Typické konflikty Manželský spor (bitva pohlaví) BoS Manželé jdou večer na koncert rozhodují se mezi Bachem a Stravinským Muž preferuje Bacha, žena Stravinského Každý chce jít na koncert a nejraději půjdou spolu Pokud spolu nepůjdou, nebudou mít žádný užitek 35

36 3.5 Typické konflikty Manželský spor (bitva pohlaví) muž/žena Bach Str. Bach Stravinski 2,1 0,0 0,0 1,2 Opět problém vzájemně nedominovaných sedlových prvků 36

37 3.5 Typické konflikty Problém několika vzájemně nedominovaných prvků řeší tzv. ústřední rovnováha Pokud je dána jakási nápověda, který z rovnovážných bodů zvolit, hráči ho zvolí Manželský spor: pokud se jedná o poslední koncert Bacha ve městě apod. (fotbal vs. nákupy ve skriptech atd.) 37

38 3.6 Kooperativní hra Předpokládejme nyní, že hráči mohou spolupracovat (ale nemusí) Před volbou mohou uzavírat závazné dohody Spolupracovat budou, pokud je to pro ně výhodné oba mají větší výhru, než když spolupracovat nebudou 38

39 3.6 Kooperativní hra Příklad 5 1,5 4,2 2,3 2,2 1,9 1,4 3,4 3,1 4,0 39

40 3.6 Kooperativní hra Zaručená výhra = kolik hráč získá bez spolupráce Rovnovážná zaručená výhra hráči uzavřou dohodu a předpokládají, že ji oba dodrží Maximinová zaručená výhra hráči uzavřou dohodu, ale může se stát, že ji někdo poruší 40

41 3.6 Kooperativní hra Rovnovážná zaručená výhra hráči by se dohodli, že spolupracovat nebudou zvolí tedy sedlový prvek Nashovu rovnováhu zaručená výhra 1. hráče v(1) zaručená výhra 2. hráče v(2) 41

42 3.6 Kooperativní hra Příklad 5 v(1) = 3 v(2) = 4 1,5 4,2 2,3 2,2 1,9 1,4 3,4 3,1 4,0 42

43 3.6 Kooperativní hra Maximinová zaručená výhra hráči se dohodnou, že spolupracovat budou, ale co když protihráč dohodu nedodrží? kolik dokáže hráč získat, i když mu protihráč bude dělat naschvály zaručená výhra 1. hráče v 1 = max i min j a ij zaručená výhra 2. hráče v 2 = max j min i b ij 43

44 3.6 Kooperativní hra Příklad 5 1,5 4,2 2,3 2,2 1,9 1,4 3,4 3,1 4, v(1) = 3 v(2) =

45 3.6 Kooperativní hra Symbolem v(1,2) označíme celkovou výhru hráčů při spolupráci Spolupráce Kdy se vyplatí, se vyplatí pokud spolupracovat? v 1,2 > v 1 + v(2) Jak určit výhru při spolupráci? 45

46 3.6 Kooperativní hra Příklad 5 1,5 4,2 2,3 2,2 1,9 1,4 3,4 3,1 4,0 1. hráč: x 2 2. hráč: y 3 Kolik celkem získají? = 5 46

47 3.6 Kooperativní hra Příklad 5 A + B = 1,5 4,2 2,3 2,2 1,9 1,4 3,4 3,1 4, v 1,2 = max i max j (a ij +b ij ) = 10 47

48 3.6 Kooperativní hra Rovnovážná zaručená výhra v(1) = 3 10 > v(2) = 4 spolupráce se vyplatí Maximinová zaručená výhra v(1) = 3 10 > v(2) = 2 spolupráce se vyplatí Výhra při spolupráci v(1,2) = 10 Vyplatí se spolupráce? 48

49 3.6 Kooperativní hra Příklad 5 A + B = 1,5 4,2 2,3 2,2 1,9 1,4 3,4 3,1 4, x o, y o = (x 2, y 2 ) v(1,2) = 10 49

50 3.6 Kooperativní hra Zbývá rozhodnout, jak se mají hráči o výhru podělit Celková výhra musí být rozdělena mezi hráče: a 1 + a 2 = v(1, 2) 1. hráč musí dostat hodnotu a 1, která bude alespoň rovna zaručené výhře: a 1 v(1) 2. hráč musí dostat hodnotu a 2, která bude alespoň rovna zaručené výhře: a 2 v 2 50

51 3.6 Kooperativní hra 10 4 a2 a 1 + a 2 = v 1, 2 = 10 a 1 v 1 = 3 a 2 v 2 = 4 jádro hry = všechny dvojice (a 1, a 2 ), které splňují uvedené vztahy a1 51

52 3.6 Kooperativní hra a2 v(1,2) v(2) a 1 + a 2 = v(1, 2) a 1 v(1) a 2 v 2 Kterou možnost z jádra hry vybrat? 0 v(1) v(1,2) a1 52

53 3.6 Kooperativní hra Jednou z možností je: prvnímu hráči dát jeho zaručenou výhru v(1) druhému hráči dát jeho zaručenou výhru v(2) zbytek rozdělit mezi hráče rovným dílem v 1,2 v 1 v 2 a 1 = v v 1,2 v 1 v 2 a 2 = v

54 a2 3.6 Kooperativní hra a 1 + a 2 = v 1, 2 = a 1 v 1 = 3, a 2 v 2 = 4 5,5 4 a 1 = a 2 = = 4,5 = 5, ,5 10 a1 54

55 KONEC 55

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

4EK201 Matematické modelování. 10. Teorie rozhodování

4EK201 Matematické modelování. 10. Teorie rozhodování 4EK201 Matematické modelování 10. Teorie rozhodování 10. Rozhodování Rozhodování = proces výběru nějaké možnosti (varianty) podle stanoveného kritéria za účelem dosažení stanovených cílů Rozhodovatel =

Více

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak

Více

3. ANTAGONISTICKÉ HRY

3. ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Dvou-maticové hry a jejich aplikace

Dvou-maticové hry a jejich aplikace Dvou-maticové hry a jejich aplikace Obsah kapitoly. Hry s konstantním součtem Hra v normálním tvaru (ryzí strategie) Smíšené strategie. Hry s nekonstantním součtem Nekooperativní hra Dvou-maticová hra

Více

TGH13 - Teorie her I.

TGH13 - Teorie her I. TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,

Více

KOOPERATIVNI HRY DVOU HRA CˇU

KOOPERATIVNI HRY DVOU HRA CˇU 8 KOOPERATIVNÍ HRY DVOU HRÁČŮ 291 V této kapitole se budeme zabývat situacemi, kdy hráči mohou před začátkem hry uzavřít závaznou dohodu o tom, jaké použijí strategie, vygenerovaný zisk si však nemohou

Více

Teorie her a ekonomické rozhodování 5. Opakované hry

Teorie her a ekonomické rozhodování 5. Opakované hry Teorie her a ekonomické rozhodování 5. Opakované hry (chybějící či chybná indexace ve skriptech) 5.1 Opakovaná hra Hra až dosud hráči hráli hru jen jednou v reálu se konflikty neustále opakují (firmy nabízí

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

Mikroekonomie magisterský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 1 Teorie her pro manažery Obsah 5.1 Teorie her jako součást mikroekonomie 5.2 Základní pojmy teorie

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Teorie her a ekonomické rozhodování. 9. Modely nedokonalých trhů

Teorie her a ekonomické rozhodování. 9. Modely nedokonalých trhů Teorie her a ekonomické rozhodování 9. Modely nedokonalých trhů 9.1 Dokonalý trh Dokonalý trh Dokonalá informovanost kupujících Dokonalá informovanost prodávajících Nulové náklady na změnu dodavatele Homogenní

Více

PŘÍKLADY DVOJMATICOVÉ HRY

PŘÍKLADY DVOJMATICOVÉ HRY PŘÍKLADY DVOJMATICOVÉ HRY Příklad 1 SOUTĚŽ O ZAKÁZKY Investor chce vybudovat dva hotely Jeden nazveme Velký (zkratka V); ze získání zakázky na něj se očekává zisk ve výši 30 milionů Druhý nazveme Malý

Více

KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ?

KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekonomická vědní disciplína, která se

Více

Dva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu

Dva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu Zadání příkladu: Dva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu ze tří akcí: a/ žalovat druhý podnik u soudu strategie Z b/ nabídnout druhému podniku spojení strategie

Více

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru Teorie her a ekonomické rozhodování 4. Hry v rozvinutém tvaru 4.1 Hry v rozvinutém tvaru Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících

Více

TEORIE HER. Základní pojmy teorie her. buď racionální (usiluje o optimální výsledek hry) nebo indiferentní (výsledek hry je mu lhostejný)

TEORIE HER. Základní pojmy teorie her. buď racionální (usiluje o optimální výsledek hry) nebo indiferentní (výsledek hry je mu lhostejný) TEORIE HER V dosavadních přednáškách jsme probírali jedno či vícekriteriální optimalizaci, ale v těchto úlohách byly předem pevně dané podmínky a ty se nijak neměnily v závislosti na našem rozhodnutí Také

Více

Úvod do teorie her

Úvod do teorie her Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

5.7 Kooperativní hry 5.7.1 Kooperativní hra 2 hráčů 5.7.2 Kooperativní hra N hráčů 5.8 Modely oligopolu 5.9 Teorie redistribučních systémů 5.

5.7 Kooperativní hry 5.7.1 Kooperativní hra 2 hráčů 5.7.2 Kooperativní hra N hráčů 5.8 Modely oligopolu 5.9 Teorie redistribučních systémů 5. Mikroekonomie bakalářský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 6 Teorie her, volby teorie redistribučních systémů a teorie veřejné Obsah 5.7 Kooperativní hry 5.7.1

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 1 Řešení úloh 1. dílčí téma: Řešení úloh ve stavovém prostoru Počáteční období výzkumu v oblasti umělé inteligence (50. a 60. léta) bylo charakterizováno

Více

Aplikace teorie her. V ekonomice a politice Ing. Václav Janoušek

Aplikace teorie her. V ekonomice a politice Ing. Václav Janoušek Aplikace teorie her V ekonomice a politice Ing. Václav Janoušek Co je teorie her a její využití Teorie her obor aplikované matematiky a operační analýzy, sloužící k analýze konfliktních a strategických

Více

12 HRY S NEÚPLNOU INFORMACÍ

12 HRY S NEÚPLNOU INFORMACÍ 12 HRY S NEÚPLNOU INFORMACÍ 543 Ne v každé hře mají všichni hráči úplné informace o výplatních funkcích ostatních. Ve skutečnosti je většina situací s informací neúplnou. Například: V aukcích zpravidla

Více

Stručný úvod do teorie her. Michal Bulant

Stručný úvod do teorie her. Michal Bulant Stručný úvod do teorie her Michal Bulant Čím se budeme zabývat Alespoň 2 hráči (osoby, firmy, státy, biologické druhy apod.) Každý hráč má určitou množinu strategií, konkrétní situace (outcome) ve hře

Více

TEORIE HER - ÚVOD PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 2. Zuzana Bělinová

TEORIE HER - ÚVOD PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 2. Zuzana Bělinová PŘEDNÁŠKA 2 TEORIE HER - ÚVOD Teorie her matematická teorie rozhodování dvou racionálních hráčů, kteří jsou na sobě závislí Naznačuje, jak by se v takové situaci chovali racionální a informovaní hráči.

Více

Úvod do teorie her ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ

Úvod do teorie her ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Úvod do teorie her David Bartl, Lenka Ploháková OSNOVA Úvod (hra n hráčů ve strategickém

Více

Teorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy

Teorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy Kapitola 1 Teorie her Dosud jsme se věnovali jednokriteriální či vícekriteriální optimalizaci, kde ve všech úlohách byly předem pevně dané podmínky a ty se nijak neměnily v závislosti na našem rozhodnutí.

Více

{Q={1,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit:

{Q={1,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit: 3 ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,

Více

Úvod do teorie her. druhé upravené vydání. Martin Dlouhý Petr Fiala

Úvod do teorie her. druhé upravené vydání. Martin Dlouhý Petr Fiala Úvod do teorie her druhé upravené vydání Martin Dlouhý Petr Fiala 2009 2 Teorie her: analýza konfliktů a spolupráce Teorie her: analýza konfliktů a spolupráce 3 Obsah Předmluva... 5 1. Úvod do teorie her

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Model tahové hry s finančními odměnami

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Model tahové hry s finančními odměnami VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Obor: Statistika a ekonometrie Název bakalářské práce Model tahové hry s finančními odměnami Autor: Vedoucí bakalářské práce: Rok: 009 Markéta

Více

Koaliční hry. Kooperativní hra dvou hráčů

Koaliční hry. Kooperativní hra dvou hráčů Koaliční hry Obsah kapitoly. Koalice dvou hráčů 2. Koalice N hráčů Studijní cíle Cílem tohoto tematického bloku je získání základního přehledu o kooperativních hrách a jejich aplikovatelnosti. Student

Více

Dokažte Větu 2(Minimax) ze třetího dílu seriálu pro libovolnou hru s nulovým součtem, ve kterémákaždýhráčnavýběrprávězedvoustrategií.

Dokažte Větu 2(Minimax) ze třetího dílu seriálu pro libovolnou hru s nulovým součtem, ve kterémákaždýhráčnavýběrprávězedvoustrategií. Teorie her º Ö ÐÓÚ Ö Ì ÖÑ Ò Ó Ð Ò º Ù Ò ¾¼½ ÐÓ ½º HráčIsitajněnapíšenapapírnějaképřirozenéčíslozrozmezíaž noznačmeho ivestejnou chvílisirovněžhráčiinapíšenapapírnějaképřirozenéčíslozrozmezíaž noznačmeho

Více

Hry v rozvinutém tvaru a opakované hry. Hry v rozvinutém tvaru

Hry v rozvinutém tvaru a opakované hry. Hry v rozvinutém tvaru Hry v rozvinutém tvaru a opakované hry Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Výkladová část 1) Hry v rozvinutém tvaru 2) Opakované hry I. Konečně opakované hry

Více

Teorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů

Teorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů Teorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů (chyby ve skriptech) 6.1 Koaliční hra Kooperativní hra hráči mají možnost před samotnou hrou uzavírat závazné dohody dva hráči (hra má

Více

MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL

MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL DOKONALÁ KONKURENCE Trh dokonalé konkurence je charakterizován velkým počtem prodávajících, kteří vyrábějí homogenní produkt a nemohou ovlivnit tržní

Více

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r Simplexová metoda Simplexová metoda, je jedním ze způsobů, jak řešit úlohy lineárního programování. Tato metoda vede k cíly, nelezení optimálního řešení, během konečného počtu kroků, pokud se při prvním

Více

HRY V NORMÁLNÍM TVARU

HRY V NORMÁLNÍM TVARU HRY V NORMÁLNÍM TVARU Příklad 6 Cournotovy modely Monopol: Monopolista vyrábí jistý druh výrobků. Nejvyšší cena, za kterou může prodat jeden kus tak, aby vyprodal veškerou produkci, je dána poptávkovou

Více

Strategické hry v bezpečnostním inženýrství

Strategické hry v bezpečnostním inženýrství Strategické hry v bezpečnostním inženýrství Strategic games in security engineering Bc. Jan Cibulka Diplomová práce 2010 ABSTRAKT Diplomová práce je zaměřena na vyuţití teorie her a optimálního rozhodování

Více

charakteristika oligopolu kartel Cournotův model duopolu oligopol s dominantní firmou Sweezyho model (se zalomenou křivkou poptávky) Nashova

charakteristika oligopolu kartel Cournotův model duopolu oligopol s dominantní firmou Sweezyho model (se zalomenou křivkou poptávky) Nashova charakteristika oligopolu kartel Cournotův model duopolu oligopol s dominantní firmou Sweezyho model (se zalomenou křivkou poptávky) Nashova rovnováha Soukupová et al.: Mikroekonomie. Kapitola 11, str.

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Teorie her v praxi. Katedra pravděpodobnosti a matematické statistiky

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Teorie her v praxi. Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Šárka Hezoučká Teorie her v praxi Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Doc. RNDr. Petr Lachout,

Více

Úvod do teorie her. David Bartl, Lenka Ploháková

Úvod do teorie her. David Bartl, Lenka Ploháková Úvod do teorie her David Bartl, Lenka Ploháková Abstrakt Předložený text Úvod do teorie her pokrývá čtyři nejdůležitější, vybrané kapitoly z této oblasti. Nejprve je čtenář seznámen s předmětem studia

Více

Mezi firmami v oligopolu dochází ke strategickým interakcím. Při zkoumání strategických interakcí používáme teorii her.

Mezi firmami v oligopolu dochází ke strategickým interakcím. Při zkoumání strategických interakcí používáme teorii her. Teorie her a oligopol Varian: Mikroekonomie: moderní přístup, oddíly 26.1-9, 27.1-3 a 27.7-8 Varian: Intermediate Microeconomics, Sections 27.1-9, 28.1-3, 28.7-8 () 1 / 36 Obsah přednášky V této přednášce

Více

Úvod do teorie her

Úvod do teorie her Úvod do teorie her. Formy her a rovnovážné řešení Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 208 ÚTIA AV ČR Program. Definujeme 2 základní formy pro studium různých her: rozvinutou, strategickou. 2.

Více

UNIVERZITA PARDUBICE FAKULTA EKONOMICKO - SPRÁVNÍ DIPLOMOVÁ PRÁCE

UNIVERZITA PARDUBICE FAKULTA EKONOMICKO - SPRÁVNÍ DIPLOMOVÁ PRÁCE UNIVERZITA PARDUBICE FAKULTA EKONOMICKO - SPRÁVNÍ DIPLOMOVÁ PRÁCE 2010 Bc. Kateřina KOUBOVÁ Univerzita Pardubice Fakulta ekonomicko správní Metody na podporu rozhodování manažera v konfliktních rozhodovacích

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

Státnicová otázka 6, okruh 1

Státnicová otázka 6, okruh 1 Státnicová otázka 6, okruh 1 Vojtěch Franc, xfrancv@electra.felk.cvut.cz 7. února 2000 1 Zadání Statické optimalizace. Lineární a nelineární programování. Optimální řízení a rozhodování v dynamických systémech,

Více

Teorie her a ekonomické rozhodování. 8. Vyjednávací hry

Teorie her a ekonomické rozhodování. 8. Vyjednávací hry Teorie her a ekonomické rozhodování 8. Vyjednávací hry 8. Vyjednávání Teorie her Věda o řešení konfliktů Ale také věda o hledání vzájemně výhodné spolupráce Teorie vyjednávání Odvětví teorie her dohoda

Více

Teorie her. RNDr. Magdalena Hykšová, Ph.D. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Teorie her. RNDr. Magdalena Hykšová, Ph.D. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie her RNDr. Magdalena Hykšová, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

Teorie her v konkurenčním prostředí

Teorie her v konkurenčním prostředí Univerzita Pardubice Fakulta ekonomicko správní Ústav ekonomiky a managementu Teorie her v konkurenčním prostředí Bc. Kateřina Nováková Diplomová práce 2013 PROHLÁŠENÍ Prohlašuji, že jsem tuto práci

Více

nutně znamenat ztrátu), ve které mají oba hráči dvě možnosti kooperovat nebo zradit.

nutně znamenat ztrátu), ve které mají oba hráči dvě možnosti kooperovat nebo zradit. Vě zň ovo dilěma Vojtěch Ptáčník K tomuto tématu jsem se dostal úplnou náhodou. Měli jsme udělat projekt dle své vlastní volby. V té době jsem vůbec nevěděl, jaké téma si mám zvolit. Jednoho dne nám do

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

4EK213 Lineární modely. 5. Dualita v úlohách LP

4EK213 Lineární modely. 5. Dualita v úlohách LP 4EK213 Lineární modely 5. Dualita v úlohách LP 5. Dualita v úlohách LP Obecné vyjádření simplexové tabulky Formulace duálního problému Formulace symetrického duálního problému Formulace nesymetrického

Více

(Ne)kooperativní hry

(Ne)kooperativní hry (Ne)kooperativní hry Tomáš Svoboda, svobodat@fel.cvut.cz katedra kybernetiky, centrum strojového vnímání 5. října 2015 Tomáš Svoboda, svobodat@fel.cvut.cz / katedra kybernetiky, CMP / (Ne)kooperativní

Více

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský

Více

VÍCEKRITERIÁLNÍ ROZHODOVANÍ

VÍCEKRITERIÁLNÍ ROZHODOVANÍ VÍCEKRITERIÁLNÍ ROZHODOVANÍ 1 Obsah Typy modelů vícekriteriálního rozhodování Základní pojmy Typy informací Cíl modelů Užitek, funkce užitku Grafické zobrazení Metody vícekriteriální analýzy variant 2

Více

4 Kriteriální matice a hodnocení variant

4 Kriteriální matice a hodnocení variant 4 Kriteriální matice a hodnocení variant V teorii vícekriteriálního rozhodování pracujeme s kritérii, kterých je obecně k, a s variantami, kterých je obecně p. Hodnotu, které dosahuje varianta i pro j-té

Více

Dvojmaticové hry. tefan Pe²ko. 18. april Katedra matematických metód, FRI šu

Dvojmaticové hry. tefan Pe²ko. 18. april Katedra matematických metód, FRI šu Katedra matematických metód, FRI šu 18. april 2012 ƒastej²ie neº s antagonistickými koniktami sa stretávame s koniktami, v ktorých kaºdý z inteligentných ú astníkov sleduje svoje záujmy, ktoré sú iasto

Více

Teorie her. Theory of games. Vlastimil Čabla

Teorie her. Theory of games. Vlastimil Čabla Teorie her Theory of games Vlastimil Čabla Bakalářská práce 2009 *** nascannované zadání str. *** *** nascannované zadání str. 2 *** UTB ve Zlíně, Fakulta aplikované informatiky, 2009 4 ABTRAKT Práce se

Více

Charakteristika oligopolu

Charakteristika oligopolu Oligopol Charakteristika oligopolu Oligopol v ekonomice převažuje - základní rysy: malý počet firem - činnost několika firem v odvětví vyráběný produkt může být homogenní (čistý oligopol) nebo heterogenní

Více

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Teorie her a ekonomické rozhodování. 11. Aukce

Teorie her a ekonomické rozhodování. 11. Aukce Teorie her a ekonomické rozhodování 11. Aukce 11. Aukce Příklady tržních mechanismů prodej s pevnou cenou cenové vyjednávání aukce Využití aukcí prodej uměleckých předmětů, nemovitostí, prodej květin,

Více

ÚVOD DO TEORIE HER MGR. LENKA PLOHÁKOVÁ RNDR. DAVID BARTL, PH.D.

ÚVOD DO TEORIE HER MGR. LENKA PLOHÁKOVÁ RNDR. DAVID BARTL, PH.D. ÚVOD DO TEORIE HER MGR. LENKA PLOHÁKOVÁ RNDR. DAVID BARTL, PH.D. ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: OP VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST ČÍSLO OBLASTI PODPORY: ZVYŠOVÁNÍ ODBORNÝCH

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Operační výzkum. Teorie her. Řešení maticových her převodem na úlohu LP.

Operační výzkum. Teorie her. Řešení maticových her převodem na úlohu LP. Operační výzkum Řešení maticových her převodem na úlohu LP. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

4EK213 Lineární modely. 4. Simplexová metoda - závěr

4EK213 Lineární modely. 4. Simplexová metoda - závěr 4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu

Více

2. KONEČNÉ HRY 2 HRÁČŮ

2. KONEČNÉ HRY 2 HRÁČŮ Markl: Konečné hry 2 hráčů /TEH_2_2006.doc/ Strana 1 2. KONEČNÉ HRY 2 HRÁČŮ Definice 2.1: Konečná hra dvou (racionálních) hráčů je speciální případ hry v normálním tvaru (viz definice 1.1.2)

Více

6 Ordinální informace o kritériích

6 Ordinální informace o kritériích 6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

2.6 Odvození hranice užitkových možností (UPF) z modelu všeobecné rovnováhy.

2.6 Odvození hranice užitkových možností (UPF) z modelu všeobecné rovnováhy. 1. Všeobecná ekonomická rovnováha, model 2x2x2x2 a jeho význam. 1.1 Model všeobecné ekonomické rovnováhy jako maximalizační a zároveň paretovsky efektivní model. 1.2 Základní prvky modelu 2x2x2x2 (graf

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

TEORIE HER

TEORIE HER TEORIE HER 15. 10. 2014 HRA HRA Definice Hra je činnost jednoho či více lidí, která nemusí mít konkrétní smysl, ale přitom má za cíl radost či relaxaci. HRA Definice Hra je činnost jednoho či více lidí,

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze Studijní program Matematika, bakalářské studium Studijní program Informatika, bakalářské studium 2014, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a,

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

NEKOOPERATIVNI HRY VYUZ ˇ ITI V ANALY ZE DOPRAVNI CH SYSTE MU

NEKOOPERATIVNI HRY VYUZ ˇ ITI V ANALY ZE DOPRAVNI CH SYSTE MU 1 NEKOOPERATIVNÍ HRY VYUŽITÍ V ANALÝZE DOPRAVNÍCH SYSTÉMŮ 2 ANTAGONISTICKÉ HRY spolehlivost dopravních sítí Obvyklý přístup: získání statistických dat pro jednotlivé hrany (doba přepravy, zpoždění, kapacita)

Více

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení 4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování

Více

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,

Více

Mikroekonomie magisterský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2013 Téma 4 Teorie her pro manažery Obsah 5.7 Kooperativní hry 5.7.1 Kooperativní hra 2 hráčů 5.7.2 Kooperativní

Více

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity) 4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

THE: Nekooperativní hry s nulovým součtem Non-Cooperative Zero-sum Games

THE: Nekooperativní hry s nulovým součtem Non-Cooperative Zero-sum Games THE: Nekooperativní hry s nulovým součtem Non-Cooperative Brno University of Technology Brno Czech Republic October 16, 2014 Úvod Čerpáno z: Fudenberg, D., Tirole, J.: Game Theory, MIT Press, 1991 Osborne,

Více

3. Vícevrstvé dopředné sítě

3. Vícevrstvé dopředné sítě 3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:

Více