Úloha 1: Spektrální analýza a frekvenční vlastnosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Úloha 1: Spektrální analýza a frekvenční vlastnosti"

Transkript

1 Úloha 1: Spektrální analýza a frekvenční vlastnosti Spektrální analyzátor DSA815 Přístroj slouží k provádění spektrální analýzy až do frekvence 1,5 GHz. Na čelním panelu má vyvedené dva konektory typu N, které jsou osazeny redukcí na BNC. Pravý konektor slouží ke vstupu signálu a může na něm být max. DC napětí P 50 V, ale střídavý výkon jen 20 dbm. Jednotka dbm je relativní jednotka definovaná vztahem p=10 log 1 mw. Pro určení max. amplitudy vstupního signálu je třeba znát ještě vstupní impedanci, která je, na rozdíl třeba od osciloskopu, 50 Ω. Druhý konektor slouží k vyvedení signálu sledovacího oscilátoru a může plnit dvě funkce: 1. slouží k proměřování frekvenčních vlastností filtrů či jiných obvodů, 2. může sloužit jako pevný generátor. Ovládání Přístroj se zapíná spodním levým tlačítkem a po naběhnutí se zobrazí úvodní obrazovka se spektrálním záznamem. K základnímu ovládání slouží šedé klávesy vpravo od obrazovky, jejich funkce závisí na konkrétní situaci a je popsána na pravém okraji obrazovky. Jedna z funkcí je vždy aktivní a je barevně zvýrazněna. Funkce může mít nastavovanou hodnotou, nebo sloužit jako přepínač. K přepínání slouží opakovaný stisk klávesy, hodnota se dá měnit třemi způsoby: zadáním čísla na klávesnici v bloku Edit, v tom případě je na konci třeba ještě zadat jednotku přes klávesy vpravo od obrazovky, změnou hodnoty pomocí otočného knoflíku vpravo uprostřed, změnou pomocí šipek nahoru a dolů pod otočným knoflíkem (velké skoky). Další funkce jsou dostupné pomocí stisku ostatních tlačítek. Nastavení k měření Před měřením je potřeba nastavit interval, ve kterém má přístroj měřit. Lze to udělat buď nastavením centrální frekvence (Center Freq) a rozsahu (Span), nebo pomocí počáteční a koncové frekvence. Centrální, počáteční a koncová frekvence jsou dostupné po zapnutí nebo po stisku tlačítka FREQ, rozsah se zobrazí po stisku tlačítka SPAN. Pomocí posledního tlačítka AMPT lze nastavit parametry zobrazení, především referenční úroveň a logaritmickou/lineární stupnici. Další parametr, který ovlivňuje výsledné měření, je šířka pásma rozlišení, která se nastavuje pomocí tlačítka BW/Det. Standardně je nastavena na určitý podíl z rozsahu a příliš velká hodnota vede k širokým píkům. Volba menší hodnoty vykreslí ostřejší píky, ale měření je pomalejší. Při vysoké hodnotě mohou zaniknout maxima s malou intenzitou. Měření hodnot K měření hodnot amplitudy daných frekvencí slouží nabídka Marker. Po zmáčknutí se objeví na pravé straně displeje nabídka, která umožňuje přepínat mezi čtyřmi různými kurzory, zapnout měření rozdílů apod. V levé části obrazovky se objeví hodnota velikosti signálu, odpovídající součané poloze kurzoru. Polohu kurzoru lze měnit otočným knoflíkem, nebo pomocí číselné klávesnice. Měření filtrů Proměřování frekvenčních vlastností obvodů lze provést tím, že se na vstup měřeného obvodu připojí výstup z konektoru GEN OUTPUT a výstup obvodu se přivede na pravý konektor. Měřením dle předchozích návodů se pak proměří přenosová charakteristika obvodu. Při jejím vyhodnocování je však třeba pamatovat, že výstup i vstup přístroje mají odpor 50 Ω. Funkční generátor DG4162 Po zapnutí pomocí levého dolního tlačítka naběhne obrazovka, rozdělená na dvě části, protože přístroj má dva nezávislé výstupy. Mezi nimi se přepíná tlačítkem CH1 a CH2. Přístroj je vybaven čtyřmi BNC konektor, kde dva slouží k výstupu generovaného signálu a zbývající dva umožňují synchronizaci. Generovaný signál se na výstupu objeví až po stisknutí tlačítka Output1 nebo Output2. Nastavení signálu Generovaný průběh se vybírá pomocí tlačítek v horní části přístroje (sinus, obdélník, šum atd.). Jednotlivé parametry průběhu se nastavují opět pomocí klávesnice, otočného knoflíku nebo šipkami pod ním. Mezi parametry se přepíná pomocí tlačítek na pravé straně od obrazovky. Typicky se nastavuje frekvence, amplituda (v jednotkách rozkmitu Vpp nebo efektivní hodnoty Vrms), ofset a fáze. Rozmítání Režim rozmítání umožňuje nastavit postupnou změnu frekvence signálu a aktivuje se tlačítkem Sweep. Nastavuje se doba jednoho rozmítání (rozmítání se nekonečněkrát opakuje), počáteční a koncová frekvence a doba návratu. Rozmítat lze pouze signál sinusový, obdélníkový, pilovitý a libovolný (Arb). Modulace Tlačítkem Mod lze aktivovat vytváření modulovaného signálu. Nosná vlna bude mít parametry

2 nastavené před stisknutím tlačítka (a lze se k ním dostat opakovaným stiskem tlačítka průběhu), parametry modulace lze volit po stisknutí. Je možno volit typ modulace (např. amplitudová, frekvenční), modulační frekvenci, modulující průběh a hloubku modulace. Zadání úloh 1. Proměřte spektrální složení sinusových signálů z následujících generátorů: generátor Rigol DG4162, osciloskop Agilent DSO-2002A, generátor Function Generator ze systému microlab, Wienova oscilátoru (obr. 1), sestaveného z diskrétních prvků. Obrázek 1: Wienův oscilátor Ve všech případech určete činitel zkreslení signálu. 2. Proměřte spektrální složení obdélníkového, pilového, šumového a libovolného (s funkcí Sinc) průběhu z generátoru Rigol a srovnejte s teoretickými hodnotami. 3. Na generátoru nastavte rozmítaný signál s pomalou změnou fekvence, zobrazte a analyzujte signál spektrálním analyzátorem. 4. Analyzujte signál amplitudově modulovaného generátoru, vyzkoušejte různé modulační frekvence, průběhy i hloubky. 5. Analyzujte spektrum vybraného napěťového průběhu v logickém obvodu. 6. Využijte výstup GEN OUTPUT, proměřte frekvenční závislosti jednoduchého odporového obvodu, sestaveného na nepájivém poli, a výsledky interpretujte. 7. Předchozí úlohu zopakujte s frekvenčním filtrem.

3 Úloha 2: Kalibrace napětí a proudů Kalibrace multimetru Proveďte kalibraci stejnosměrných napěťových a proudových rozsahů přesného multimetru Fluke 189 a jednoduchého multimetru Uni-T DT9202A, a to v souladu s doporučenými kalibračními postupy (KP 4.1.2/06/11/N). Vyhodnoďte získané hodnoty a posuďte shodu s parametry udávanými výrobci. Vyhotovte kalibrační protokoly, včetně všech nutných údajů. Kalibrace měřicích přístrojů se provádí pomocí speciálních přesných generátorů, zvaných kalibrátory. Kalibrátor se propojí s měřicím přístrojem, nastaví se na něm zvolená hodnota a odečte se údaj z dispeje měřicího přístroje. Pro správné vyhodnocení a úměrnou délku kalibrace je nutné vhodně zvolit kalibrační body, jejich počet a správně zvolit nejistotu kalibrátoru vzhledem k měřenému přístroji a také správně vyhodnotit výslednou nejistotu. Proto je potřeba mít vypracovanou metodiku kalibrace. V úloze se bude používat kalibrační postup, vytvořený Českou metrologickou společností, KP 4.1.2/06/11/N, určený pro kalibraci číslicových multimetrů. Kalibrátor Jako kalibrátor se použije kalibrátor Fluke 715, který slouží pro kalibraci stejnosměrných napětí a proudů, a to v rozsahu do 20 V a 24 ma. Kalibrátor musí být sám zkalibrován a musí mít metrologickou návaznost nutno ověřit. Obsluha je jednoduchá: tlačítkem "Input/Output" se přepne do režimu kalibrace (Output), mezi napětím a proudem se přepíná tlačítky "V" a "ma" a hodnota kalibrující veličiny se nastavuje inkrementací/dekrementací pomocí tlačítek s šipkami nahoru/dolů (malá šipka mění nejnižší řády, velká šipka nejvyšši). Při kalibraci napětí je výstupní napětí mezi dvěma pravými zdířkami, při kalibraci proudu je proud vnucován přes obě krajní zdířky (pokud je zapojena příliš velká impedance a přístroj není schopen proud dodat, displej bliká). Postup 1. Z parametrů kalibrátoru a měřeného přístroje určíme rozsahy stejnosměrného napětí a proudu, které jsme schopni kalibrovat (tj. rozsah kalibrátoru musí být větší nebo stejný jako zvolený rozsah) a s ohledem na kalibrační postup zvolíme předem kalibrační body (ty jsou v postupu uvedeny jako procenta z měřicího rozsahu, tedy např. kalibrační bod 10 % při měřicím rozsahu 2 V znamená kalibrační bod 0,2 V). 2. Propojíme kalibrátor s měřicím přístrojem pomocí krátkých a kvalitních měřicích přívodů, oba přístroje zapneme a uvedeme do přís lušných režimů/rozsahů. 3. Nastavíme první kalibrační bod, počkáme na ustálení údaje na displeji kalibrovaného přístroje a hodnotu zapíšeme. 4. Body 2 a 3 smysluplně opakujeme, až vyčerpáme všechny kalibrační body. 5. Výsledky kalibrace vyhodnotíme, stanovíme nejistotu kalibrovaného přístroje (dle KP) a vypracujeme kalibrační protokol. 6. V případě, že je dostupná informace o přesnosti přístroje od výrobce, porovnáme s ní dosažené výsledky. Vyhodnocení parametrů A/D převodníku Ověřte linearitu modulu A/D Converter ze systému microlab. Vyhodnoťte základní parametry A/D převodníku (ofset, chyba zesílení, diferenciální a integrální nelinearita). Parametry A/D převodníků Ideální A/D převodník má stupňovitou převodní charakteristiku, ve které středy stupňů leží na přímce se sklonem 45, procházející nulou. U reálného převodníku může dojít k posunutí charakteristiky (ofsetu) vlivem chyby nuly, ale také ke změně sklonu přímky vlivem chyby zesílení. Uvedené dvě chyby ale zcela nevystihují chování převodníku, protože popisují jenom globální vlastnosti. K posouzení lokálního chování je vhodnější používat integrální a diferenciální nelinearitu (obr. 2). Diferenciální nelinearita DNL i pro i-tý stupeň je charakterizována pomocí šířky i-tého stupně q i a šířky ideálního stupně q podle vztahu DNL i = q i q q Integrální nelinearita INL i se charakterizuje pomocí rozdílu mezi polohou středu i-tého stupně v reálné a ideální charakteristice. Mezi další parametry, popisující nedokonalosti A/D převodníku, patří například existence nemonotonního chování.

4 Obrázek 2: Chyby A/D převodníku Použitý převodník A/D Converter ze systému microlab je založen na integrovaném A/D převodníku WSH570A, který používá metodu postupné aproximace. Výstupy obvodu ale nejsou přímo přístupné, protože je obklopen dalšími obvody, díky kterým signál na zdířkách D0-D7 reprezentuje převáděnou hodnotu v přímém binárním kódu. Převodník lze používat v různých režimech, pro kalibraci využijeme režim vnitřních hodin, který je nejjednodušší na zapojení - stačí propojit zdířky CLKO a CLKI. K převodu dochází při sestupné hraně na vstupu WRITE, proto na něj přivedeme signál z generátoru hodin Time Base s frekvencí 1 khz. Ostatní vstupy mohou zůstat nezapojené, pokud je nebude ovlivňovat rušení, jinak je uzemníme. Převáděný signál přivedeme na vstup INPUT a rozsah A/D převodníku nastavíme pomocí posuvných voličů tak, aby levý volič byl v poloze 1, ostatní v nule; pak je napěťový rozsah 0 až 20 V. Postup 1. Zapojíme A/D převodník, ke vstupu INPUT připojíme kalibrátor zapnutý do režimu výstupních napětí, k výstupům D0-D7 připojíme vstupy Log Probe a na vstup WRITE připojíme hodinový signál. 2. K přechodu mezi úrovněmi nedochází skokově, ale údaje problikávají mezi dvěma hodnotami. Je proto nutné zvolit si pravidlo, jak budeme definovat okamžik překlopení. 3. Postupně pomocí malých šipek zvyšujeme napětí kalibrátoru a sledujeme údaje na Log Probe a vyhledáme okamžik přechodu na novou hodnotu; údaje zaznamenáme. Z časových důvodů měření provádíme pro spodních 16 úrovní, pro horních 16 úrovní a pro 16 úrovní rovnoměrně rozmístěných ve zbývajícím intervalu. 4. Z naměřených údajů vypočítáme příslušné parametry A/D převodníku. Kalibrace osciloskopu Proveďte kalibraci digitálního osciloskopu Agilent DSO 2002A, včetně měřicí sondy (s převodem 1:1 a 1:10, s ověřenou frekvenční kompenzací). Pro úplnou kalibraci osciloskopu není dostupné vybavení, lze kalibrovat pouze měření stejnosměrných napětí (pomocí vestavěných funkcí osciloskopu) a vertikální citlivost (tj. parametr V/div). Proto se nebudeme držet příslušného kalibračního postupu, ale aplikujeme, vhodně upravený, kalibrační postup pro multimetr. Sonda K osciloskopu můžeme měřené napětí přivádět buď přímo, nebo zeslabené. V první případě použijeme redukci BNC/banánky, ve druhém případě originální sondu od firmy Agilent, s koeficientem zeslabení 10. Druhá sonda má možnost korekce frekvenční kompenzace, jejíž nastavení může v principu změnit přenosové vlastnosti. Proto je nutné před kalibrací provést kompenzaci: Na sondu se přivedeme obdélníkové napětí a pozorujeme jeho zobrazený průběh. Pokud je sonda vykompenzovaná, je průběh obdélníkový. Pokud není, nese průběh známky integrování nebo derivování a průběh je deformovaný. Otáčením šroubku na sondě docílíme vykompenzování. U osciloskopu Agilent DSO 2002A je proces ověření kompenzace možno urychlit pomocí vestavěných funkcí. Sondu přichytíme na svorkou Probe Comp (dole uprostřed osciloskopu, bude na ní obdélníkový signál), uzemnění připojíme na podélný kontakt vedle a na osciloskopu stiskneme číslo kanálu/probe/probe Check. Systém v tomto případě sám ověří, je-li kompenzace dostatečná a zjistí např. i špatně nastavenou velikost zeslabení.

5 Postup 1. Při měření zohledníme postupy z předchozí kalibrace multimetru. 2. Připojíme sondu 1:1 mezi konektor kanálu 1 osciloskopu a zdířky kalibrátoru, oba přístroje zapneme a uvedeme do vhodných režimů a nastavíme vhodnou citlivost, nulovou polohu stopy a parametry sondy. 3. Ze specifikací přístrojů a kal. postupu určíme vhodné kalibrační body. 4. V menu osciloskopu zapneme měření a zvolíme měření stejnosměrného napětí. 5. Dle jednotlivých kalibračních bodů nastavujeme napětí na kalibrátoru, počkáme na ustálení a změřené hodnoty odečítáme. 6. Pro kalibraci vertikální citlivosti zvolíme kalibrační body takové, aby odpovídaly jednotlivým dílkům na obrazovce. 7. V okolí kalibračních bodů hledáme takové napětí, při kterém dojde k překrytí zobrazeného dílku a průběhu kanálu. 8. Body 3 až 7 opakujeme pro různé vertikální citlivosti a oba kanály osciloskopu. 9. Vyhotovíme kalibrační protokol. 10. Připojíme sondu 1:10, provedeme její frekvenční kompenzaci a nastavíme správné parametry osciloskopu. 11. Zopakujeme body 3 až 9.

4. MĚŘENÍ NA SMĚŠOVAČI A MEZIFREKVENČNÍM FILTRU

4. MĚŘENÍ NA SMĚŠOVAČI A MEZIFREKVENČNÍM FILTRU 4. MĚŘENÍ NA SMĚŠOVAČI A MEZIFREKVENČNÍM FILTRU Cíl měření Seznámit se s vlastnostmi dvojitě vyváženého směšovače a stanovit: 1) spektrum výstupního signálu a vliv mezifrekvenčního filtru na tvar spektra,

Více

Rezonance v obvodu RLC

Rezonance v obvodu RLC 99 Pomůcky: Systém ISES, moduly: voltmetr, ampérmetr, dva kondenzátory na destičkách (černý a stříbrný), dvě cívky na uzavřeném jádře s pohyblivým jhem, rezistor 100 Ω, 7 spojovacích vodičů, 2 krokosvorky,

Více

Popis a obsluha vektorového obvodového analyzátoru R&S ZVL

Popis a obsluha vektorového obvodového analyzátoru R&S ZVL Popis a obsluha vektorového obvodového analyzátoru R&S ZVL Měřící přístroj R&S ZVL může pracovat buď v režimu obvodového nebo spektrálního analyzátoru. V tomto návodu je zaměřena pozornost na základní

Více

List 1 z 6. Akreditovaný subjekt podle ČSN EN ISO/IEC 17025:2005: FORTE a.s. Metrologická laboratoř Mostkovice 529

List 1 z 6. Akreditovaný subjekt podle ČSN EN ISO/IEC 17025:2005: FORTE a.s. Metrologická laboratoř Mostkovice 529 List 1 z 6 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: (23 ± 2) ºC 1. Elektrický odpor KP 01/2001 0,0 0,5 1,0 mω 0,5 1,0 0,25 % 1,0 4,0 0,070% 4,0 1,0 M 0,035

Více

Rezonance v obvodu RLC

Rezonance v obvodu RLC Rezonance v obvodu RLC Úkoly: 1. Prozkoumejte, jak rezonanční frekvence závisí na kapacitě kondenzátoru. 2. Prozkoumejte, jak rezonanční frekvence závisí na parametrech cívky. 3. Zjistěte, jak se při rezonanci

Více

5. A/Č převodník s postupnou aproximací

5. A/Č převodník s postupnou aproximací 5. A/Č převodník s postupnou aproximací Otázky k úloze domácí příprava a) Máte sebou USB flash-disc? b) Z jakých obvodů se v principu skládá převodník s postupnou aproximací? c) Proč je v zapojení použit

Více

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru 4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)

Více

Příloha č.: 1 ze dne: je nedílnou součástí osvědčení o akreditaci č.: 456/2012 ze dne: List 1 z 6

Příloha č.: 1 ze dne: je nedílnou součástí osvědčení o akreditaci č.: 456/2012 ze dne: List 1 z 6 List 1 z 6 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: ( 23 ± 2 ) C 1 Elektrický odpor KP 01/2001 0,0 0,5 1,0 mω 0,5 1,0 0,25 % 1,0 4,0 0,070% 4,0 1,0 M 0,035

Více

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením. SG 2000 je vysokofrekvenční generátor s kmitočtovým rozsahem 100 khz - 1 GHz (s option až do 2 GHz), s možností amplitudové i kmitočtové modulace. Velmi užitečnou funkcí je také rozmítání výstupního kmitočtu

Více

Rozsah měřené veličiny

Rozsah měřené veličiny Obor měřené veličiny: délka Kalibrace: Nominální teplota pro kalibraci: (20 ±1 ) C Rozsah měřené veličiny Identifikace kalibračního postupu 1. Posuvná měřidla 0 300 mm (30+ 30L) µm LIII-D001 (DAkkS-DKD-R

Více

1.6 Operační zesilovače II.

1.6 Operační zesilovače II. 1.6 Operační zesilovače II. 1.6.1 Úkol: 1. Ověřte funkci operačního zesilovače ve funkci integrátoru 2. Ověřte funkci operačního zesilovače ve funkci derivátoru 3. Ověřte funkci operačního zesilovače ve

Více

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1 Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. Zadání. Naučte se pracovat s generátorem signálů Agilent 3320A, osciloskopem Keysight a střídavým voltmetrem Agilent 34405A. 2. Zobrazte

Více

L A B O R A T O R N Í C V I Č E N Í

L A B O R A T O R N Í C V I Č E N Í Univerzita Pardubice Ústav elektrotechniky a informatiky Pardubice, Studentská 95 L A B O R A T O R N Í C V I Č E N Í Příjmení Šitina Číslo úlohy: 1 Jméno: Petr Datum měření: 30. 3. 2007 Školní rok: 2006

Více

Kalibrační pracoviště

Kalibrační pracoviště ! Popis systému Systém jakosti Adash s.r.o., Ostrava, Česká republika, tel.: +420 596 232 670, fax: +420 596 232 671, email: info@adash.cz Další technické a kontaktní informace najdete na www.adash.net,

Více

AX-C800 Návod k obsluze

AX-C800 Návod k obsluze AX-C800 Návod k obsluze Bezpečnostní pokyny Abyste se vyhnuli úrazu elektrickým proudem nebo zranění: Nikdy nepřipojujte do dvou vstupních zdířek nebo do libovolné vstupní zdířky a uzemněné kostry napětí

Více

Základy elektrického měření Milan Kulhánek

Základy elektrického měření Milan Kulhánek Základy elektrického měření Milan Kulhánek Obsah 1. Základní elektrotechnické veličiny...3 2. Metody elektrického měření...4 3. Chyby při měření...5 4. Citlivost měřících přístrojů...6 5. Měřící přístroje...7

Více

Dodatek k uživatelském manuálu Adash 4202 Revize 040528MK

Dodatek k uživatelském manuálu Adash 4202 Revize 040528MK Vyvažovací analyzátory Adash 4200 Dodatek k uživatelském manuálu Adash 4202 Revize 040528MK Email: info@adash.cz Obsah: Popis základních funkcí... 3 On Line Měření... 3 On Line Metr... 3 Časový záznam...

Více

1 Zadání. 2 Teoretický úvod. 7. Využití laboratorních přístrojů v elektrotechnické praxi

1 Zadání. 2 Teoretický úvod. 7. Využití laboratorních přístrojů v elektrotechnické praxi 1 7. Využití laboratorních přístrojů v elektrotechnické praxi 1 Zadání Zapojte pracoviště podle pokynů v pracovním postupu. Seznamte se s ovládáním přístrojů na pracovišti a postupně realizujte jednotlivé

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více

Návod k obsluze MPS-1. Monitor PLC signálu

Návod k obsluze MPS-1. Monitor PLC signálu Návod k obsluze MPS-1 Monitor PLC signálu UPOZORNĚNÍ Zařízení tvoří ucelenou sestavu. Pouze tato sestava je bezpečná z hlediska úrazu elektrickým proudem. Proto nepoužívejte jiné napájecí zdroje, ani nepřipojujte

Více

9 khz až 3 GHz s rozlišovacím filtrem 10 Hz až 10 MHz v širokém dynamickém rozsahu.

9 khz až 3 GHz s rozlišovacím filtrem 10 Hz až 10 MHz v širokém dynamickém rozsahu. (návod k měřicímu přístroji) Spektrální analyzátor FSP3 je typickým zástupcem moderních heterodynních spektrálních analyzátorů střední třídy. Je schopen zobrazovat spektrum signálu v kmitočtovém rozsahu

Více

Voltmetr pro elektromobil. Technická dokumentace

Voltmetr pro elektromobil. Technická dokumentace Voltmetr pro elektromobil Technická dokumentace EGMedical, s.r.o. Křenová 19, 602 00 Brno CZ www.strasil.net 2011 Obsah 1. Hardwarové řešení a technické parametry...3 2. Připojení měřených napětí a ovládání...4

Více

D M P 01 MANUÁL PRO NASTAVENÍ PROCESOROVÉHO PANELMETRU. 2 limitní / 4 limitní. Programovatelný procesní kontrolér DMP-návod

D M P 01 MANUÁL PRO NASTAVENÍ PROCESOROVÉHO PANELMETRU. 2 limitní / 4 limitní. Programovatelný procesní kontrolér DMP-návod Programovatelný procesní kontrolér DMP-návod MANUÁL PRO NASTAVENÍ PROCESOROVÉHO PANELMETRU D M P 01 2 limitní / 4 limitní A ZÁKLADNÍ PŘEHLED ADRES, PODADRES A JEJICH FUNKCÍ str. č. 1 B PODROBNÝ POPIS FUNKCÍ

Více

Základy práce s osciloskopem

Základy práce s osciloskopem Základy práce s osciloskopem 1 Cíle měření Cílem toho měření je seznámit se s generátorem funkcí a naučit se pracovat s osciloskopem. Pracovní úkoly 1. Zobrazení časového průběhu signálu pomocí osciloskopu.

Více

Binární data. Číslicový systém. Binární data. Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu

Binární data. Číslicový systém. Binární data. Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu 5. Obvody pro číslicové zpracování signálů 1 Číslicový systém počítač v reálném prostředí Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu Binární data

Více

MI Video rozhraní pro vozidla Renault. Přepínání mezi jednotlivými vstupy a ovládání přehrávání

MI Video rozhraní pro vozidla Renault. Přepínání mezi jednotlivými vstupy a ovládání přehrávání MI-1250 Video rozhraní pro vozidla Renault Tento adaptér (rozhraní) umožňuje zobrazit RGB signál o vysokém rozlišení, AV signál z externího zdroje (například DVD přehrávače) a video signál z kamery při

Více

M-142 Multifunkční kalibrátor

M-142 Multifunkční kalibrátor M-142 Multifunkční kalibrátor DC/AC napětí do 1000 V, přesnost 10ppm/rok DC/AC proud do 30A Odpor do 1000 MΩ, kapacita do 100 uf Simulace teplotních snímačů TC/RTD Kmitočtový výstup do 20MHz Funkce elektrického

Více

Laboratorní cvičení z předmětu Elektrická měření 2. ročník KMT

Laboratorní cvičení z předmětu Elektrická měření 2. ročník KMT MĚŘENÍ S LOGICKÝM ANALYZÁTOREM Jména: Jiří Paar, Zdeněk Nepraš Datum: 2. 1. 2008 Pracovní skupina: 4 Úkol: 1. Seznamte se s ovládáním logického analyzátoru M611 2. Dle postupu měření zapojte pracoviště

Více

2. Měření parametrů symetrických vedení

2. Měření parametrů symetrických vedení . ěření parametrů symetrických vedení. Úvod V praxi používáme jak nesymetrická vedení (koaxiální kabel, mikropáskové vedení) tak vedení symetrická (dvouvodičové vedení). Aby platila klasická teorie vedení,

Více

b) Vypočtěte frekvenci f pro všechny měřené signály použitím vztahu

b) Vypočtěte frekvenci f pro všechny měřené signály použitím vztahu 1. Měření napětí a frekvence elektrických signálů osciloskopem Cíl úlohy: Naučit se manipulaci s osciloskopem a používat jej pro měření napětí a frekvence střídavých elektrických signálů. Dvoukanálový

Více

Teorie: Voltampérovou charakteristiku měříme v propustném i závěrném směru.

Teorie: Voltampérovou charakteristiku měříme v propustném i závěrném směru. Pomůcky: Systém ISES, moduly: voltmetr, ampérmetr, křemíková germaniová, svítivá (LED) dioda, tři LED na panelu s rezistory, sada rezistorů, 2 spojovací vodiče s hroty, 6 spojovacích vodičů s banánky,

Více

NTIS-VP1/1: Laboratorní napájecí zdroj programovatelný

NTIS-VP1/1: Laboratorní napájecí zdroj programovatelný NTIS-VP1/1: Laboratorní napájecí zdroj programovatelný stejnosměrný zdroj s regulací výstupního napětí a proudu s programovatelnými funkcemi 3 nezávislé výstupní kanály výstupní rozsah napětí u všech kanálů:

Více

Popis přístroje AFG3000

Popis přístroje AFG3000 Popis přístroje AFG3000 EXT REF INPUT. Jedná se o vstupní BNC konektor pro připojení externí reference. Pokud chcete synchronizovat více AFG generátorů nebo synchronizovat s jinými přístroji. EXT REF OUTPUT.

Více

1. Měření parametrů koaxiálních napáječů

1. Měření parametrů koaxiálních napáječů . Měření parametrů koaxiálních napáječů. Úvod Napáječ je vedení, které spojuje zdroj a zátěž. Vlastnosti napáječe popisujeme charakteristickou impedancí Z [], měrnou fází [rad/m] a měrným útlumem [/m].

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

SIGNÁLNÍ GENERÁTORY DDS2, DDS7 A DDS20 - PROVOZNÍ MANUÁL

SIGNÁLNÍ GENERÁTORY DDS2, DDS7 A DDS20 - PROVOZNÍ MANUÁL SIGNÁLNÍ GENERÁTORY DDS2, DDS7 A DDS20 - PROVOZNÍ MANUÁL Signální generátory DDS slouží k vytváření napěťových signálů s definovaným průběhem (harmonický, trojúhelníkový a obdélníkový), s nastavitelnou

Více

Uživatelský Návod. Měřič Úrovně Zvuku HOLD S/F. S F db BAT. SOUND LEVEL: Lo=35~100dB Hi=65~130dB. 94dB

Uživatelský Návod. Měřič Úrovně Zvuku HOLD S/F. S F db BAT. SOUND LEVEL: Lo=35~100dB Hi=65~130dB. 94dB Uživatelský Návod Měřič Úrovně Zvuku Lo/Hi MAX / O A HOLD C CAL 94 OUND LEVEL: Lo=35~100 Hi=65~130 Obsah Kapitola trana I. Bezpečnostní Informace...3 II. Všeobecný Popis...3 III. pecifikace...4 IV. Názvy

Více

NÁVOD K OBSLUZE. Obj.č.: 12 09 80 / 12 12 02/ 12 12 89

NÁVOD K OBSLUZE. Obj.č.: 12 09 80 / 12 12 02/ 12 12 89 NÁVOD K OBSLUZE Obj.č.: 12 09 80 / 12 12 02/ 12 12 89 Příruční osciloskop HPS10 (PersonalScope) není jen grafický multimetr, ale kompletní přenosný osciloskop s cenou lepšího multimetru. Má vysokou citlivost

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Číslicové multimetry. základním blokem je stejnosměrný číslicový voltmetr

Číslicové multimetry. základním blokem je stejnosměrný číslicový voltmetr Měření IV Číslicové multimetry základním blokem je stejnosměrný číslicový voltmetr Číslicové multimetry VD vstupní dělič a Z zesilovač slouží ke změně rozsahů a úpravu signálu ST/SS usměrňovač převodník

Více

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,

Více

Kalibrátor termon AX-C830. Návod k obsluze

Kalibrátor termon AX-C830. Návod k obsluze Kalibrátor termon AX-C830 Návod k obsluze Bezpečnostní informace Abyste se vyhnuli úrazu elektrickým proudem nebo jinému zranění: - Nikdy nepřikládejte vyšší napětí než 30 V mezi dvě libovolné zdířky nebo

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_3_INOVACE_EM_.0_měření kmitočtové charakteristiky zesilovače Střední odborná škola a Střední

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: ME II 4.7.1. Kontrola,měření a opravy obvodů I Obor: Mechanik - elekronik Ročník: 2. Zpracoval: Ing. Michal Gregárek Střední průmyslová škola Uherský Brod,

Více

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory 1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou

Více

Proudové převodníky AC proudů

Proudové převodníky AC proudů řada MINI MINI série 10 Malé a kompaktní. Řada navržená pro měření proudů od několika miliampérů až do 150 A AC. Díky svému tvaru jsou velmi praktické a snadno použitelné i v těsných prostorech. Jsou navrženy

Více

Účinky elektrického proudu. vzorová úloha (SŠ)

Účinky elektrického proudu. vzorová úloha (SŠ) Účinky elektrického proudu vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud jako

Více

Bezkontaktní teploměry pyrometry AX-C850. Návod k obsluze

Bezkontaktní teploměry pyrometry AX-C850. Návod k obsluze Bezkontaktní teploměry pyrometry AX-C850 Návod k obsluze Bezpečnostní pokyny Abyste se vyhnuli úrazu elektrickým proudem nebo zranění: Nikdy nepřipojujte do dvou vstupních zdířek nebo do libovolné vstupní

Více

Číslicový zobrazovač CZ 5.7

Číslicový zobrazovač CZ 5.7 Určení - Číslicový zobrazovač CZ 5.7 pro zobrazování libovolné veličiny, kterou lze převést na elektrický signál, přednostně 4 až 20 ma. Zobrazovaná veličina může být až čtyřmístná, s libovolnou polohou

Více

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně Rozmanitost signálů v komunikační technice způsobuje, že rozdělení měřicích metod není jednoduché a jednoznačné.

Více

Tenzometrické měřidlo

Tenzometrické měřidlo Tenzometrické měřidlo typ Tenz2345 www.aterm.cz 1 Obsah 1. ÚVOD... 3 2. OBECNÝ POPIS ZAŘÍZENÍ... 4 3. POPIS OBSLUHY ZAŘÍZENÍ... 4 4. KALIBRACE ZAŘÍZENÍ... 5 5. BEZPEČNOSTNÍ OPATŘENÍ... 7 6. TECHNICKÉ PARAMETRY...

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

7. MĚŘENÍ LINEÁRNÍHO POSUVU

7. MĚŘENÍ LINEÁRNÍHO POSUVU 7. MĚŘENÍ LINEÁRNÍHO POSUVU Seznamte se s fyzikálními principy a funkcí následujících senzorů polohy: o odporový o optický inkrementální o diferenciální indukční s pohyblivým jádrem LVDT 1. Odporový a

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření přechodových dějů, část 3-4-3

MĚŘENÍ Laboratorní cvičení z měření. Měření přechodových dějů, část 3-4-3 MĚŘENÍ Laboratorní cvičení z měření Měření přechodových dějů, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 1 Číslo materiálu: VY_32_INOVACE_

Více

Unipolární tranzistor aplikace

Unipolární tranzistor aplikace Unipolární tranzistor aplikace Návod k praktickému cvičení z předmětu A4B34EM 1 Cíl měření Účelem tohoto měření je seznámení se s funkcí a aplikacemi unipolárních tranzistorů. Během tohoto měření si prakticky

Více

P1 Popis laboratorních přístrojů a zařízení

P1 Popis laboratorních přístrojů a zařízení P1 Popis laboratorních přístrojů a zařízení P1.1 Měřící přístroje P1.1.1 Analogový multimetr DU20 P1.1.1.1 Parametry přístroje: Vnitřní odpor stejnosměrného voltmetru: 50 kω / V Vnitřní odpor střídavého

Více

HC-EGC-3235A. Návod k použití

HC-EGC-3235A. Návod k použití HC-EGC-3235A Návod k použití Obsah Sekce 1 Bezpečnost... str.1. Sekce 2 Úvod... str.2. Sekce 3 Specifikace... str.3. Sekce 4 Začátek... str.9. Čelní panel... str.9. Zadní panel... str.12. Příprava... str.13

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

Elektronická zátěž EZ. Provedení EZ200/30

Elektronická zátěž EZ. Provedení EZ200/30 Elektronická zátěž EZ Provedení EZ200/30 EGMedical, s.r.o. Křenová 19, 602 00 Brno CZ www.strasil.net 2011 Obsah 1. Úvod...3 2. Technické parametry...4 3. Připojení testovaného zdroje...4 4. Připojení

Více

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH.

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. 1. Měření napětí ručkovým voltmetrem. 1.1 Nastavte pomocí ovládacích prvků na ss zdroji napětí 10 V. 1.2 Přepněte voltmetr na rozsah 120 V a připojte

Více

Frekvence. BCM V 100 V (1 MΩ) - 0,11 % + 40 μv 0 V 6,6 V (50 Ω) - 0,27 % + 40 μv

Frekvence. BCM V 100 V (1 MΩ) - 0,11 % + 40 μv 0 V 6,6 V (50 Ω) - 0,27 % + 40 μv Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: (23 ± 2) C 1. STEJNOSMĚRNÉ NAPĚTÍ generování BCM3751 0 mv 220 mv - 0,0010 % + 0,80 μv 220 mv 2,2 V - 0,00084 % + 1,2

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

Virtuální a reálná elektronická měření: Virtuální realita nebo Reálná virtualita?

Virtuální a reálná elektronická měření: Virtuální realita nebo Reálná virtualita? PEDAGOGICKÁ FAKULTA ZČU V PLZNI KATEDRA TECHNICKÉ VÝCHOVY Virtuální a reálná elektronická měření: Virtuální realita nebo Reálná virtualita? Pavel Benajtr 17. dubna 2010 Obsah 1 Úvod... 1 2 Reálná elektronická

Více

Knihovny součástek. Přidání knihovny. Cesta ke knihovnám pro Pspice

Knihovny součástek. Přidání knihovny. Cesta ke knihovnám pro Pspice Knihovny součástek Přidání knihovny Cesta ke knihovnám pro Pspice Analog.olb Možnost nastavení počáteční podmínky Pasivní prvky Řízené zdroje Spínače Source.olb V - napěťový zdroj I - proudový zdroj Parametry

Více

NÁVOD K POUŽÍVÁNÍ PU 590 ANALOGOVÝ MĚŘIČ IZOLAČNÍCH ODPORŮ PRO IZOLOVANÉ SÍTĚ IT.

NÁVOD K POUŽÍVÁNÍ PU 590 ANALOGOVÝ MĚŘIČ IZOLAČNÍCH ODPORŮ PRO IZOLOVANÉ SÍTĚ IT. NÁVOD K POUŽÍVÁNÍ PU 590 ANALOGOVÝ MĚŘIČ IZOLAČNÍCH ODPORŮ PRO IZOLOVANÉ SÍTĚ IT www.metra.cz 1. Základní informace:... 2 2. Popis přístroje:... 2 3. Podmínky použití PU590... 3 4. Technické parametry:...

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

Fotorezistor. , kde G 0 je vodivost fotorezistoru bez přítomnosti filtru a G je vodivost. vypočítáme 100%

Fotorezistor. , kde G 0 je vodivost fotorezistoru bez přítomnosti filtru a G je vodivost. vypočítáme 100% Pomůcky: Systém ISES, modul ohmmetr, fotorezistor, 2 spojovací vodiče, barevné filtry (modrý, zelený, žlutý, červený pro jedno pracoviště 8 filtrů stejné barvy), zářivka, soubory: fotorez1.icfg, fotorez2.icfg,

Více

ZÁSKOKOVÝ AUTOMAT MODI ZB pro jističe Modeion POPIS K790

ZÁSKOKOVÝ AUTOMAT MODI ZB pro jističe Modeion POPIS K790 ZÁSKOKOVÝ AUTOMAT MODI ZB pro jističe Modeion POPIS Aplikace Záskokový automat se používá k zajištění dodávky elektrické energie bez dlouhodobých výpadků v různých sektorech služeb, průmyslu apod. Automat

Více

Osciloskopy a jejich použití v průmyslových měřeních

Osciloskopy a jejich použití v průmyslových měřeních Osciloskopy a jejich použití v průmyslových měřeních Osciloskop zobrazuje na stínítku analogové obrazovky nebo LC displeji v časové (amplituda/čas) a většinou i v kmitočtové (amplituda/kmitočet) oblasti

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

Kalibrace: Nominální teplota pro kalibraci v laboratoři: (23 ± 2) C Nominální teplota pro kalibraci mimo laboratoř: (23 ± 5) C

Kalibrace: Nominální teplota pro kalibraci v laboratoři: (23 ± 2) C Nominální teplota pro kalibraci mimo laboratoř: (23 ± 5) C List 1 z 19 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci v laboratoři: (23 ± 2) C Nominální teplota pro kalibraci mimo laboratoř: (23 ± 5) C 1. Napětí stejnosměrné

Více

Amplitudová a frekvenční modulace

Amplitudová a frekvenční modulace Amplitudová a frekvenční modulace POZOR!!! Maximální vstupní napětí spektrálního analyzátoru je U pp = 4 V. Napěťové úrovně signálů, před připojením k analyzátoru, nejprve kontrolujte pomocí osciloskopu!!!

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0452 OV_1_37_měření DVB-C s

Více

Analyzátor vibrací Adash 4300 - VA3 Dvoukanálová měření

Analyzátor vibrací Adash 4300 - VA3 Dvoukanálová měření ! Uživatelský manuál Analyzátor vibrací Adash 4300 - VA3 Dvoukanálová měření FW 03.07 BETA Ref: 18022005 KM Obsah Před prvním zapnutím analyzátoru... 3 Indikace slabých napájecích článků... 3 Odkazy...

Více

Měření vlastností střídavého zesilovače

Měření vlastností střídavého zesilovače Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. Měření vlastností střídavého zesilovače Datum měření: 1. 11. 011 Datum

Více

11. MĚŘENÍ SŘÍDAVÉHO PROUDU A NAPĚTÍ

11. MĚŘENÍ SŘÍDAVÉHO PROUDU A NAPĚTÍ . MĚŘEÍ SŘÍDAVÉHO PROD A APĚTÍ Měření střídavého napětí a proudu: přehled použitelných přístrojů a metod měření Měřicí transformátory ( i, náhradní schéma, zapojení, použití, chyby) Číslicové multimetry

Více

T850 KVADRÁTOR BAREVNÝ HK-404

T850 KVADRÁTOR BAREVNÝ HK-404 T850 KVADRÁTOR BAREVNÝ HK-404 I. Návod k obsluze 1.Úvod: Děkujeme Vám, že jste si zakoupili náš nový výrobek, barevný digitální kvadrátor, který je vybaven mnoha kvalitními funkcemi. Návod popisuje vlastnosti

Více

Děkujeme, že jste si vybrali stejnosměrný spínaný napájecí zdroj Axiomet AX-3004H. Než jej začnete používat, přečtěte si prosím návod k obsluze.

Děkujeme, že jste si vybrali stejnosměrný spínaný napájecí zdroj Axiomet AX-3004H. Než jej začnete používat, přečtěte si prosím návod k obsluze. 1. Úvod Děkujeme, že jste si vybrali stejnosměrný spínaný napájecí zdroj Axiomet AX-3004H. Než jej začnete používat, přečtěte si prosím návod k obsluze. 2. Bezpečnost Návod k obsluze obsahuje důležité

Více

MĚŘENÍ NA ELEKTROINSTALACI NÍZKÉHO NAPĚTÍ

MĚŘENÍ NA ELEKTROINSTALACI NÍZKÉHO NAPĚTÍ Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB TU Ostrava MĚŘENÍ NA ELEKTROINSTALACI NÍZKÉHO NAPĚTÍ Návody do měření Říjen 2009 Ing. Tomáš Mlčák, Ph.D. 1 Úkol měření: V tomto laboratorním

Více

Poznámky: Na uvedenou adresu se můžete rovněž kdykoliv obrátit se svými dotazy a připomínkami ke konstrukci a provozním vlastnostem tohoto přístroje.

Poznámky: Na uvedenou adresu se můžete rovněž kdykoliv obrátit se svými dotazy a připomínkami ke konstrukci a provozním vlastnostem tohoto přístroje. Poznámky: Obsah: 1. Základní popis a použití...2 2. Konstrukce...3 2.1. Mechanická konstrukce...3 2.2. Elektrická konstrukce...3 2.3. Napájení přístroje...5 3. Technické údaje...6 3.1. Provozní podmínky...6

Více

MI Video rozhraní pro vozidla Rover a Jaguar (od roku 2011)

MI Video rozhraní pro vozidla Rover a Jaguar (od roku 2011) MI-1255 Video rozhraní pro vozidla Rover a Jaguar (od roku 2011) Tento adaptér (rozhraní) umožňuje zobrazit RGB signál o vysokém rozlišení, AV signál z externího zdroje (například DVD přehrávače) a video

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

MI Video rozhraní pro vozidla Hyundai a Kia

MI Video rozhraní pro vozidla Hyundai a Kia MI-1252 Video rozhraní pro vozidla Hyundai a Kia Tento adaptér (rozhraní) umožňuje zobrazit RGB signál o vysokém rozlišení, dva vstupy AV signálu z externích zdrojů (například DVD přehrávače) a video signál

Více

Bezpečnost práce, měření proudu a napětí, odchylky měření

Bezpečnost práce, měření proudu a napětí, odchylky měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 1 Bezpečnost práce, měření proudu

Více

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku Laboratorní měření 2 Seznam použitých přístrojů 1. Laboratorní zdroj stejnosměrného napětí Vývojové laboratoře Poděbrady 2. Generátor funkcí Instek GFG-8210 3. Číslicový multimetr Agilent, 34401A 4. Digitální

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...

2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník... Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0452 OV_1_47_měření DVB-S s

Více

Digitální tlakoměr PM 111, PM 111 - M

Digitální tlakoměr PM 111, PM 111 - M Digitální tlakoměr PM 111, PM 111 - M Návod k obsluze programové vybavení 1 Ovládaní PM 111 pomocí tlačítek na předním panelu Digitální tlakoměr PM 111 může být vybaven displejem v několika verzích s LED

Více

Tenzometrické měřidlo

Tenzometrické měřidlo Tenzometrické měřidlo typ www.aterm.cz 1 Obsah 1. ÚVOD... 3 2. OBECNÝ POPIS ZAŘÍZENÍ...4 3. POPIS OBSLUHY ZAŘÍZENÍ...5 4. KALIBRACE ZAŘÍZENÍ...5 5. BEZPEČNOSTNÍ OPATŘENÍ A ELEKTROMAGNETICKÁ KOMPATIBILITA...7

Více

AX-DG Návod k použití. 2. Bezpečnostní informace

AX-DG Návod k použití. 2. Bezpečnostní informace AX-DG105 1. Návod k použití Před použitím zařízení si přečtěte celý návod k použití. Při používání zařízení uchovávejte návod v blízkosti zařízení, aby było možné jej použit v případě potřeby. Při přemísťování

Více

Technická dokumentace. typ TENZ

Technická dokumentace. typ TENZ TENZOMETRICKÉ typ TENZ2301 MĚŘIDLO www.aterm.cz 1 Obsah 1. Úvod list 3 2. Obecný popis a připojení přístroje 4 3. Obsluha a nastavení přístroje 5 a) Obsluha přístroje 5 b) Poměrná deformace 5 c) Připojení

Více

6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU

6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU 6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU 6.1. Úkol měření 6.1.1. Měření krouticího momentu a úhlu natočení a) Změřte krouticí moment M k a úhel natočení ocelové tyče kruhového průřezu (ČSN 10340). Měření proveďte

Více

TENZOMETRICKÉ PŘEVODNÍKY

TENZOMETRICKÉ PŘEVODNÍKY TENZOMETRICKÉ PŘEVODNÍKY řady TZP s aktivním frekvenčním filtrem www.aterm.cz 1 Obsah 1. Úvod 3 2. Obecný popis tenzometrického převodníku 3 3. Technický popis tenzometrického převodníku 4 4. Nastavení

Více

Polovodičový usměrňovač

Polovodičový usměrňovač Polovodičový usměrňovač Zadání: 1. Zobrazte pulzní napětí na jednocestném usměrňovači, použijte filtraci kondenzátorem. 2. Zobrazte pulzní napětí na dvoucestném usměrňovači, použijte filtraci kondenzátorem.

Více