Úvod do korelační a regresní analýzy

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do korelační a regresní analýzy"

Transkript

1 Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou hojva a výosem Jeda velča je považováa za ezávslou vsvětlující začíme. Já velča je považovaá za závslou vsvětlovaou, obvkle j začíme.

2 Pokud děláme ějaký epermet pokus, jedu velču vějším zásahem měíme a sledujeme, co se děje s druhou velčou. Statstka se zabývá zkoumáím, zda se př změě prví velč změí druhá velča tak, že změu elze vsvětlt pouhou áhodou. Přestože b blo vhodější používat pojm vsvětlující a vsvětlovaá velča, budeme pro ázorost používat pojm závslá a ezávslá velča. Naší sahou je obvkle prokázat závslost velč. Nezávslost edokazujeme - pouze v ěkterých případech eumíme statstck prokázat závslost. V souladu s teorí testováí hpotéz bude ulová hpotéza H 0 zameat ezávslost velč a alteratví hpotéza H A závslost velč.

3 Pro statstcké sledováí vztahu musíme mít k dspozc výběr s hodotam jedé proměé a tomu odpovídajícím hodotam druhé proměé resp. dalších proměých. Jedá se o data: dvourozměrá: apř. př sledováí spotřeb palva v závslost a rchlost - vžd dostaeme uspořádaou dvojc hodot vícerozměrá vektor, kd pro jede prvek výběru jsou současě zjště hodot více proměých: apř. př zjšťováí závslost příjmů a vzděláí, délce prae a pohlaví jsou to čtř hodot pro každého vbraého jedce.

4 Př sledováí vztahu mez zjštěým hodotam závsle a ezávsle proměé můžeme ve statstce řešt otázk: Zda estuje č eestuje závslost vztah, korelace mez velčam Pokud závslost estuje, sledujeme míru tezt těsost tohoto vztahu: - zda je vztah blízký fukčí závslost - ebo se aopak se blíží ezávslost Statstcký obor, který se zabývá estecí závslost a mírou těsost vztahu velč, pokud estuje, se azývá korelačí aalýza. V případě, že prokážeme závslost, může ás zajímat tvar této závslost. Matematckým popsem závslost velč se zabývá regresí aalýza.

5 Př statstckém šetřeí závslost bchom ejprve měl řešt problém korelace sledovaých velč. Např. kdž měříme velč a stejé úrov hladu cholesterolu, HDL-cholesterolu, trglcerdů v krv. Pokud se mez sledovaým velčam prokáže závslost tj. zalost ezávslé velč ám pomůže odhadout hodot závslé velč, pak se sažíme j vjádřt matematckým vztahem, tj. řešt otázku regrese. podle výšk otců odhadujeme výšku sů a základě výšk odhadujeme váhu výška dítěte závsí a jeho věku kreví tlak souvsí s věkem a dalším velčam

6 Podle těsost vazb, příp. síl závslost, můžeme rozlšt. fukčí závslost pevá. stochastcká závslost volá 3. ezávslost áhodá souvslost Podle tpu vztahu můžeme rozlšt. leárí závslost. eleárí závslost

7 . Fukčí pevá závslost. Kd určté hodotě vsvětlující proměé odpovídá právě jeda hodota vsvětlovaé proměé. Lze vjádřt vztahem f výsvětlovaá proměá fukčí závslost vsvětlující proměá

8 . Závslost stochastcká volá. Závslost, kd vsvětlovaá proměá, případě vsvětlující proměá jsou áhodé velč. Určté hodotě vsvětlující proměé pak přísluší možé hodot vsvětlovaé proměé vbraé z určtého rozděleí. Lze vjádřt E f středí hodota áhodé velč je fukcí proměé. výsvětlovaá proměá stochastcká závslost vsvětlující proměá

9 3. Nezávslost. Náhodá velča sledovaá jako vsvětlovaá se měí pouze áhodě bez ohledu a vsvětlující proměou; středí hodota jedé velč se eměí, kdž se hodot druhé velč měí. výsvětlovaá proměá 5,5 0 -,5-5 ezávslost vsvětlující proměá

10 ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN - aaloge Př aalýze jedotlvých velč zjšťujeme - mír poloh - mír měřítka v případě ormálě rozložeých velč - průměr - rozptl Pokusme se ajít mír vztahu mez dvěm spojtým ormálě rozložeým velčam u kterých předpokládáme leárí závslost. - Aalogí mír poloh bude přímka ejlépe vsthující průběh jejch závslost - Aalogí mír měřítka bude míra těsost dat vzhledem k této přímce. Tuto charakterstku budeme azývat kovarace.

11 KOVARIANCE míra leárího vztahu dvou velč Matematck je kovarace zobecěím pojmu rozptlu: výběrovou kovarac vpočteme vzorcem cov, a tutvě s j můžeme vsvětlt podobě jako u rozptlu epracujeme přímo s hodotam sledovaých velč, ale s jejch odchlkam od průměru Z defce kovarace ple: cov, cov, může abývat kladých záporých hodot pokud cov, 0... eestuje leárí vazba mez,

12 Omezeí: kovarace je mírou pouze leárí vazb eumí charakterzovat eleárí závslost. Musíme předem ověřt leárí závslost dat. Kovarace je závslá a rozptlu velč, kolem jejch středích hodot. Čím je rozptl zkoumaých velč větší, tím je hodota kovarace větší. Stejou úvahu jako jsme provedl pro zobecěí rozptlu, můžeme provést pro tzv. z-skór s, s a výraz po úpravě je tzv. Pearsoův korelačí koefcet, ebol koefcet leárí korelace, ebol výběrový Pearsoův leárí korelačí koefcet. s s r, r,

13 ,, cov s s r Z-skór jsou kostruová tak, ab jejch rozptl bl rove jedé, proto korelačí koefcet eí závslý a varabltě velč a a abývá hodot z tervalu < -, + > KOEFICIENT LINEÁRNÍ KORELACE je ěco jako "ormovaá" ebol "stadardzovaá" míra kovarace a můžeme ho odvodt také dosazeím do vztahu r,

14 Po úpravě se zjedoduší a tvar r,

15 Korelačí aalýza pomocí leárího korelačího koefcetu. Zjšťujeme estec závslost mez,. Určujeme těsost závslost korelačí koefcet kladý r > 0 roste s rostoucím přímá úměra korelačí koefcet záporý r < 0 s rostoucím klesá epřímá úměra leárí závslost se záporou směrcí teoretcká hodota koefcetu korelace ρ emprcký výběrový koefcet vpočteý z výsledků výběru r

16 Je l ρ r fukčí závslost tj. je-l absolutí hodota koefcetu korelace, jde o fukčí závslost -> bod leží a přímce Je l ρ0 resp. r 0 aprostá ezávslost tj. pokud je parametr ρ rove 0, jedá se o aprostou ezávslost mez velčam -> bod jsou rozhoze v elpse, jejíž osa je rovoběžá s osou Čím je r blíže, tím těsější je závslost. Pozor! Vztah je všetřová pouze jako leárí závslost!

17 Př složtější fukčí závslost může astat kurózímu případ, kd př jasé závslost je korelačí koefcet ulový apř. fukčí závslost ve tvaru parabol r, Př výpočtech odhadu korelace základího souboru použjeme výběrový Pearsoův leárí korelačí koefcet: ze vzorce je zřejmé, že se eměí, zaměíme-l za je stejý pro závslost a pro závslost a. Př určováí koefcetu korelace mohou být obě velč áhodé.

18 Výpočt koefcetu lze provést v programu EXCEL: fukce CORREL ebo Korelace v Aalýze dat Př malých výběrech je odhad koefcetu korelace základího souboru ρ výběrovým koefcetem r zkresleý, eboť r adhodocuje teztu závslost. Nezkresleý odhad získáme ze vztahu ρ r

19 Test ezávslost velč a ρ 0 korelačí koefcet základího souboru má hodotu ula, kdž eí mez velčam závslost. Jestlže ted statstck prokážeme, že se vpočteá hodota výběrového koefcetu r výzamě lší od ul, prokážeme tím, že mez velčam je leárí závslost K tomu potřebujeme: hodotu výběrového korelačího koefcetu r krtckou hodotu korelačího koefcetu r k pro zvoleou hladu výzamost α a počet stupňů volost -, kde je počet měřeí a je počet odhadovaých parametrů odhadujeme a

20 ebo r t r testovací statstku t, která má Studetovo t-rozděleí s stup volost krtckou hodotu Studetova rozděleí t k zjstíme v Ecelu fukcí TINVα, - Příklad: Na hladě výzamost 0,05 testujte, zda estuje statstck výzamý vztah mez výrobím áklad a hektarovým výosem oblí; data bla zjštěa v růzých zemědělských podcích

21 výr. áklad v ts. Kč a ha 9,5 40,5 3,8 34,0 46, 4,5 3,9 38, 3,0 3,0 33,0 hektarový výos oblí v tuách 3,5 3,9 3,4 3,7 4,5 4,9 3,5 3,9 4,8 4,6 4,6 Výběrový korelačí koefcet r 0,43, α 0,05 krtcká hodota r k z tabulek 0,60 r < r k -> elze zamítout hpotézu H 0, ebla prokázáa statstck výzamá závslost mez áklad a výosem.

22 Mír mootóího vztahu - robustí varat koefcetů korelace V ěkterých případech eí vhodé ebo přímo elze použít klascký korelačí koefcet pro sledováí závslost mez dvěma zak. Nevhodé je použtí apř. tehd, kdž mez aměřeým hodotam jsou hodot odlehlé eí splě předpoklad ormálího rozděleí, ebo kdž hodot sledovaých zaků je možé ebo vhodé matematck srovat pouze pořadím. Např. sledujeme, zda estuje vztah mez umístěím určtých závodíků a mstrovství světa a a Olmpjských hrách. Nebo hledáme vztah mez pořadím dokoalost vpráí prádla ohodoceo čísl a ceou použtého pracího prášku. V těchto případech lze s výhodou použít Spearmaův ebo Kedalův pořadový korelačí koefcet.

23 Spearmaův korelačí koefcet porovává do jaké mír je uspořádáí aalzovaých dat podle velč X stejé jako podle velč Y. Je vhodý pro mootóí závslost - evžaduje leartu. Kedalův koefcet Všech bod rozdělíme pomocí medáů velč X a Y do čtř kvadratů a uděláme součet počtu bodů v I. a III. kvadratu C a ve II. a IV. kvadratu D. Rozdíl C - D je uprave tak, ab kostruovaý koefcet bl v rozsahu < -; +> τ j sg R R j sg Q Q j

24 Spearmaův korelačí koefcet pořadový a test ezávslost - postup Sledujeme výzamost korelace mez dvěma zak,. Pro oba zak určíme podle velkost pořadí a z párů pořadí, vpočteme Spearmaův koefcet korelace r s dle vztahu r s 6 Krtckou hodotu koefcetu r sα, pro daý počet sledovaých dvojc a hladu výzamost α můžeme ajít v tabulkách. Je-l vpočteé r s větší ež krtcká hodota, zamítáme hpotézu o ezávslost obou zaků o ulové hodotě r s. Hodota r s rověž formuje o teztě závslost mez oběma sledovaým zak.

25 Příklad: Pro áhodý výběr šest států USA bl zjště spotřeb cgaret a hlavu a ročí míra úmrtost a ldí ásledkem rakov plc. Určete, zda estuje výzamá korelace mez Spotřeba cgaret Úmrtost těmto zak. Stát USA - Suma kvadrátů 0,5 v posledím sloupc r s 6 * 0,5 / [6.6 -] 0,7 Krtcká hodota r sα, 0,89 pro α 0,05, 6 Delaware Idaa ,5 0,5 Iowa 00 7 Motaa New Yers Washgto ,5 6,5 Závěr: r s 0,7 < 0,89, korelace ted ebla prokázáa.

26 Pozámk ke korelačí aalýze Krtcká hodota korelačího koefcetu klesá s počtem bodů! podle ν- Přímka určea dvěma bod pro dvojce, vžd jedozačě určeá přímka fukčí závslost r b všlo ebo - r eí v tomto případě defováo, kdž žádá závslost mez, emusí být Čím větší počet bodů tím větší možost alezeí případé závslost bez ohledu a chb měřeí hodota krtcké hodot koefcetu klesá. Jým slov: žší hodota korelačího koefcetu z více měřeí může prokázat větší míru závslost ež všší hodota korelačího koefcetu z malého počtu měřeí.

27 Přítomost vchýleého bodu v datech Př korelačí aalýze hledáí, zda estuje výzamá přímková závslost jedý bod vzdáleý odlehlý od ostatích může zajstt alezeí výzamé korelace, ač zblé bod mohou vkazovat aprostou ezávslost mez,., 0,8 0,6 0,4 0, 0-0, -0, Velký počet shluklých bodů jevících jasou ezávslost zajstí ízkou krtckou hodotu korelačího

28 koefcetu a jedý vzdáleý, možá problematcký bod, ovlví hodotu korelačího koefcetu tak, že může překročt krtckou hodotu. V takovém případě elze brát výsledek testu přílš vážě rozděleí bodů zřejmě odporuje předpokladu o ormálím rozděleí. Z tohoto důvodu musí korelačí aalýze předcházet aalýza vstupích dat s výpočtem základích charakterstk mír poloh a mír měřítka, abchom zjstl, zda data splňují předpoklad použtí daých statstckých metod. r -0,055 r 0,74 bez odlehlého bodu s odlehlým bodem Pro α 5% a 0 je krtcká hodota korelačího koefcetu 0,444.

29 SOUHRN KORELACE je matematcký postup, který vjadřuje číselě zjštěí o souvslostech dvou velč. Neřeší, zda mez velčam estuje závslost a rozdíl od REGRESE. Může estovat áhodá, zdálvá ebo bezvýzamá korelace? ANO Může estovat úplá matematcká ezávslost dvou proměých zaků? NE a v případě, kd prokazatelě eestují žádé souvslost Zdálvé a áhodé korelace vzkají pokud výběrové soubor mají malý rozsah. A zřetelá korelace evpovídá o vtří přímé souvslost.

30 Pearsoův koefcet leárí korelace r Žlutě vzače úhel obou regresích přímek: - malý úhel - vsoká korelace - velký úhel - ízká korelace r N N N - r Výška sa Výška otce

31 Tvar závslostí r,000 r -,000 r 0,000 r 0,934 r 0,967 r 0,857 r -0,43 r 0,608

32 Tvar závslostí Korelačí koefcet r Pearsoův s Spearmaův k - Kedalův r,000 s,000 k,000 r -,000 s -,000 k -,000 r 0,000 s 0,000 k 0,000 r 0,934 s,000 k,000 r 0,967 s 0,836 k 0,966 r 0,857 s 0,7 k 0,889 r -0,43 s -0,099 k -0,50 r 0,608 s 0,953 k 0,964

33 Další past a pastčk u Pearsoova korelačího koefcetu Problém rozložeí hodot Problém tpu modelu Y Y r 0,98 p < 0,00 r 0,76 p < 0,03 X X Y Problém velkost vzorku Y r 0, p < 0,008 r 0,89 p < 0,4 X X

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK 04 prof. Ig. Bohuml Mařík, CSc. STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH.

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech) Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

ÚVOD DO PRAKTICKÉ FYZIKY I

ÚVOD DO PRAKTICKÉ FYZIKY I JIŘÍ ENGLICH ÚVOD DO PRAKTICKÉ FYZIKY I ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ Jede z epermetů, které změly vývoj fyzky v mulém století. V roce 9 prof. H. Kamerlgh Oes ve své laboratoř v Leydeu měřl teplotí závslost

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

VÍCEKRITERIÁLNÍ ANALÝZA VARIANT ZA JISTOTY

VÍCEKRITERIÁLNÍ ANALÝZA VARIANT ZA JISTOTY VÍCEKRITERIÁLNÍ ANALÝZA VARIANT ZA JISTOTY Záklaí pom Rozhoutí výběr eé ebo více varat z mož všech přípustých varat. Rozhoovatel subekt, který má za úkol učt rozhoutí. V úlohách vícekrterálí aalýz varat

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Jednoduchá lineární závislost

Jednoduchá lineární závislost Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí

Více

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC Jří HŘEBÍČEK, Mchal HEJČ, Jaa SOUKOPOVÁ ECO-Maagemet,

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze. Lukáš Kleňha

Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze. Lukáš Kleňha Vysoká škola ekoomcká v Praze Fakulta formatky a statstky Vyšší odborá škola formačích služeb v Praze Lukáš Kleňha egresí aalýza acetovy rogrese o rví hostalzac s CHOPN 0 Prohlášeí Prohlašuj, že jsem

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Fraktálová komprese. Historie

Fraktálová komprese. Historie Fraktálová komprese Hstore Prví zmíky o tzv. fraktálové kompres jsem ašel kdys v bezvadé a dodes aktuálí kížce!! Grafcké formáty (Braslav Sobota, Já Mlá, akl. Kopp), kde však šlo spíše o adšeý úvod a pak

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Dvourozměrná tabulka rozdělení četností

Dvourozměrná tabulka rozdělení četností ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák Zálad eore chb a zpracováí zálích měřeí Jří ová Teo e je zamýšle jao pomůca pro vpracováí laboraorích úloh z z Je urče pouze pro sudjí účel a jeho účelem je objas meod zpracováí měřeí Chb měřeí Druh chb

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

2.1.15 Slovní úlohy na lineární funkce

2.1.15 Slovní úlohy na lineární funkce 2.1.15 Slovní úloh na lineární funkce Předpoklad: 2108 Pedagogická poznámka: Obsah hodin přesahuje 45 minut (pokud necháte student pracovat samostatně). Poslední příklad tak zůstává na další hodinu nebo

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

2.1.17 Parametrické systémy lineárních funkcí II

2.1.17 Parametrické systémy lineárních funkcí II .1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

DLUHOPISY. Třídění z hlediska doby splatnosti

DLUHOPISY. Třídění z hlediska doby splatnosti DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

SPOŘENÍ. Spoření krátkodobé

SPOŘENÍ. Spoření krátkodobé SPOŘENÍ Krátkodobé- doba spořeí epřesáhe jedo úrokové období (obvykle 1 rok). Úroky jsou přpsováy a koc doby spořeí. Jedotlvé složky jsou úročey a základě jedoduchého úročeí. Dlouhodobé doba spořeí bude

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí

2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí . Měřeí základích optických vlastostí materiálů idex lomu a disperze propustost, absorpce kvalita optických prostředí .1. Měřeí idexu lomu a disperze Sellmeierův vztah i ( ) = 1+ i B C i Coruův vzorec

Více

Beta faktor a ekvitní prémie z cizího trhu: přenositelnost a statistická spolehlivost

Beta faktor a ekvitní prémie z cizího trhu: přenositelnost a statistická spolehlivost Beta fakto a ekvtí péme z czího thu: přeostelost a statstcká spolehlvost Veze 15. 4. 014 chal Dvořák Abstakt Cílem textu je lustovat že český buzoví th eobsahuje dostatečý počet ttulů ke koektímu staoveí

Více