Rovnoměrně zrychlený pohyb v příkladech IV

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV"

Transkript

1 8 Rovnoměně ychlený pohyb v příkladech IV Předpoklady: 7 Pedagogická ponámka: Česká škola v současné době budí ve sudenech předsavu, že poblémy se řeší ásadně najednou Sudeni ak mají obovské poblémy v příkladech v éo hodině, keé vyžadují posupné řešení a oložení na menší čási, keé se pak řeší samosaně Siuace se nedá měni během éo jediné hodiny a poáhne se delší dobu Každopádně je řeba sudeny hlída a vždy v akových siuacích důaňova podsau poblém (není ve fyice) a jak posupnos řešení (můžu řeši i v případě, že na ačáku nevím, jak dojí až do konce), ak okládání na podpříklady (eď se budeme abýva poue pvní čásí pohybu) Nácvik obou dovednosí chvíli vá, ale moje kušenosi ukaují, že při cíleném aměření ímo směem je možné dosáhnou načného pokoku Pedagogická ponámka: Sudeni mají už s pvním příkladem akové poblémy, že je lepší je poskova u abule než necha celé příklady řeši samosaně a pomáha poue v lavicích Po každém poaeném koku by však měli dosa čas na přemýšlení Př : Sojící auo nejdříve 00 meů ovnoměně ychlovalo a pak jelo dvě hodiny přibližně ovnoměně Jakou ujelo vdálenos, když se ojíždělo dvace sekund? s = 00 m = 0s = h s Auo se pohybovalo ovnoměným pohybem: s = v Rychlos, keou se auo pohybovalo při ovnoměné čási svého pohybu, se ovná ychlosi, keou mělo na konci ychlování odělíme řešení na dvě čási: počáeční ovnoměně ychlené čási pohybu spočeme konečnou ychlos spočenou ychlos použijeme jako ychlos ovnoměného pohybu v duhé čási Auo se ojíždělo klidu po ychlený pohyb použijeme jednodušenou sousavu: v = a, s = a v Z pvní ovnice vyjádříme ychlení a dosadíme ho do duhé: v = a a = v s = a = s = v s v = s Vypočená ychlos je aké ychlosí ovnoměného pohybu: v = v = s s = v =

2 s 00 s = = 700m = 44000m = 44 km 0 Auo ujelo během ovnoměné čási svého pohybu 44 km Ponámka: Výsledek bychom mohli aké íska méně eleganně, ale přioeněji posupným s 00 výpočem: v = = = 0 m/s = 7 km/h 0 s = v = 7 km = 44 km Pedagogická ponámka: Sudeni mají endenci nepsa indexy, poo v případě, že se snaží s doáhnou příklad do obecného řešení dojdou k výsledku s = v = = s Myslím, že eno výsledek je poměně přesvědčivým důkaem, že indexy svoji cenu mají Př : Auomobil jede ychlosí 60 km/h, když před něj neočekávaně vběhne chodníku díě Uči vdálenos, keou auo ujede než asaví, pokud řidiči vá 0,8 s než aeaguje a ačne bdi (Tomuo času se říká eakční doba a ávisí na kondici a éninku řidiče Reakční doba se podlužuje po požií alkoholických nápojů) Zpomalení aua je 6m/s (jeho hodnoa ávisí na pověnosních podmínkách, ypu povchu a pneumaik) Jak se dáha, keou ujede auo mění při počáeční ychlosi 50 km/h? v = 60 km/h = 6,7 m/s v = 50 km/h = 3,9 m/s = 0,8s v = 0m/s s s a = 6m/s Příklad má dvojí adání odvodíme si obecné řešení, aby sačilo poue měni dosaované hodnoy: Pohyb (a ím aké uažená dáha) aua se skládá e dvou čásí: nejdříve se auo pohybuje 0,8 s ovnoměně (než řidič ačne bdi): s = v (všechno náme) pak se auo pohybuje ovnoměně pomaleně: s = + a, dáhu pomaleného pohybu musíme vypočía: Dobu, po keou auo pomaluje, musíme uči ovnice po ychlos: v v = + a = = (auo asaví plaí v = 0 ) a a s = + a = + a a a s = + a = + = a a a a a Sečeme vahy po obě dáhy: s = s + s = v a plaí: v = (auo pomaluje ychlosi, keou jelo předím ovnoměně) v s = v a

3 dosadíme: 6,7 s60 = = 6,7 0,8 m = 36,6 m a 6 s ,9 = v = 3,9 0,8 m = 7,m a 6 Auomobil asaví při počáeční ychlosi 60 km/h na dáe 36,6 m, při počáeční ychlosi 50 km/h na dáe 7, m Ponámka: Všimněe si, že ačkoliv se ychlos auomobilu menšila o šesinu dáha se menšila o více než čvinu Teno fak je hlavním důvodem po snížení povolené ychlosi v obcích 60 km/h na 50 km/h Př 3: Vlak se ojížděl po dobu 75 s se sálým ychlením v poslední veřině? 0,m s Jakou dáhu uail = 75s a = 0,m s s Ze vahů po ovnoměně ychlený pohyb můžeme snadno spočía dáhu, keou vlak uaí od počáku ychlování do libovolného okamžiku Dáhu, keou uaí v poslední veřině, ak nejsnáe učíme jako odíl dáhy, keou ujel vlak od ačáku ychlování do konce poslední veřiny, a dáhy, keou ujel od ačáku ychlování do konce předposlední veřiny Dáha ujeá do konce předposlední veřiny (edy a čas ): s - = a Dáha ujeá do konce poslední veřiny (edy a čas ): s = a s = s s = a a - s = a ( -) s = a + - s = a ( -) s = 0, ( 75 ) = 0, 49 = 4,9m Vlak uail v poslední veřině ychlování dáhu 4,9 m Ponámka: Na pvní pohled by se mohlo dá, že vah s = a ( -) není oměově v pořádku, poože na pavé saně není čas v duhé mocnině Je pořeba si uvědomi, že eno vah vnikl čásečným dosaením a čas a ve skuečnosi namená: s = a ( ), kde přidané jedničku předsavují o jednu sekundu kaší čas dáhy do konce předposlední sekundy 3

4 Př 4: Sojící spoovní auomobil ačal ovnoměně ychlova a během čvé sekundy svého pohybu uail m Uči jeho ychlení s = m v 0 = 0m/s a Dáhu uaženou během čvé sekundy můžeme uči jako odíl dáhy uažené od počáku pohybu do konce čvé sekundy ( s 4 ) a dáhy uažené od počáku pohybu do konce řeí sekundy ( s 3 ) Tyo dáhy můžeme uči pomocí voců po ovnoměně ychlený pohyb a s jejich pomocí uči ychlení s4 = a4, s3 = a3 s = s4 s3 = a4 a3 s = a( 4 3 ) s = a 4 3 s a = = m/s = 6m/s Auo se pohybovalo se ychlením 6m/s Pedagogická ponámka: Diskusi o příkladu ačínáme pávě ím, jaký výnam má dáha m Jakmile sudeni jisí, že jde o měnu dáhy, je všechno jednodušší Př 5: Uči ychlos, keou běžel D Bailey v duhé čási svého ekodního běhu na 00 m Jeho ehdejší čas byl 989 s Předpokládej, že ychloval pvní ři sekundy a pak již běžel ovnoměně = 9,89s s = 00m = 3s v Podle adání se ekodmanův běh dá oděli na dvě čási čás ovnoměně ychlenou (budeme používa index ) a čás ovnoměnou (index ) Dáhy obou čásí dají dohomady 00 m, časy pak 9,89 s K výpisu veličin pak můžeme ihned doda = 7,89s Výay po dáhy obou čásí pohybu budeme upavova ak, aby v nich ůsaly poue hodnoy času a konečné ychlosi ychlené čási (je áoveň ychlosí ovnoměné čási) Dáha běhu s = s + s Plaí s = a (ovnoměně ychlený pohyb s nulovou počáeční ychlosí) a s = v Dosadíme: s = a + v V ovnici máme dvě nenámé (a a v) jednu nich musíme vyjádři pomocí duhé: hodnou ychlení učíme pomocí voce po ychlos ychleného v pohybu: v = a a = Dosadíme: v s = + v s = v + v / 4

5 s = v + v s = v + s = v + s 00 v = = m/s =, 9 m/s = 4,9 km/h ,89 D Bailey běžel v duhé čási svého ekodního běhu ychlosi 4,9 km/h Shnuí: Složiější úlohy je nuné řeši posupným dosaováním 5

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I ..5 Řešení příkldů n ronoměrně zrychlený pohyb I Předpokldy: 4 Pedgogická poznámk: Cílem hodiny je, by se sudeni nučili smosně řeši příkldy. Aby dokázli njí zh, kerý umožňuje příkld yřeši, dokázli ze zhů

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

Koncepce penzijní reformy hledání základních parametrů

Koncepce penzijní reformy hledání základních parametrů Analýza říjen 2004 Koncepce penzijní efomy hledání základních paameů Téma penzí neusále nabývá na významu. Takzvaný důchodový úče nespasily ani změny paameů povedené v ámci efomy veřejných ozpočů a hlavní

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Manuál k vyrovnávacímu násroji pro vorbu cen pro vodné a sočné MINISTERSTVO

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

Univerzita Pardubice. Dopravní fakulta Jana Pernera

Univerzita Pardubice. Dopravní fakulta Jana Pernera Univerzia Pardubice Dopravní fakula Jana Pernera Fakory ovlivňující popávku po osobních auomobilech v ČR Bc. Tomáš Mikas Diplomová práce 2011 Prohlašuji: Tuo práci jsem vypracoval samosaně. Veškeré lierární

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

2.1 POHYB 2.2 POLOHA A POSUNUTÍ

2.1 POHYB 2.2 POLOHA A POSUNUTÍ 2 P ÌmoËar pohyb V roce 1977 vyvo ila Kiy OíNeilov rekord v z vodech dragser. Dos hla ehdy rychlosi 628,85 km/h za pouh ch 3,72 s. Jin rekord ohoo ypu zaznamenal v roce 1958 Eli Beeding ml. p i jìzdï na

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s. PEZIJÍ PLÁ Allianz ransformovaný fond, Allianz penzijní společnos, a. s. Preambule Penzijní plán Allianz ransformovaného fondu, Allianz penzijní společnos, a. s. (dále jen Allianz ransformovaný fond ),

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

Nové indikátory hodnocení bank

Nové indikátory hodnocení bank 5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 2010 Nové indikáory hodnocení bank Josef Novoný 1 Absrak Příspěvek je

Více

RENTABILITA INVESTIC A POKRAČUJÍCÍ HODNOTA PŘI OCEŇOVÁNÍ PODNIKU

RENTABILITA INVESTIC A POKRAČUJÍCÍ HODNOTA PŘI OCEŇOVÁNÍ PODNIKU Pof. ng. Mloš Mařík, CSc. ng. Pavla Maříková, CSc. RENTABLTA NVESTC A PORAČUJÍCÍ HODNOTA PŘ OCEŇOVÁNÍ PODNU Článek byl zpacován jako součás výzkumného záměu MSM 638439903 Rozvoj fnanční a účení eoe a její

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Zásady hodnocení ekonomické efektivnosti energetických projektů

Zásady hodnocení ekonomické efektivnosti energetických projektů Absrak Zásady hodnocení ekonomické efekivnosi energeických projeků Jaroslav Knápek, Oldřich Sarý, Jiří Vašíček ČVUT FEL, kaedra ekonomiky Každý energeický projek má své ekonomické souvislosi. Invesor,

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

í ý á ř ů ř ě í Ď ě ě ě á ě á ří ý ě í á ř ů ň á ó Š á ř ů ř ě í ě ě ě á ě á íí ý í á á ř ů ř ě í ě ě ě á ě á ří ý ě í Ó ří á ř ů ř ě í ě ě ě á ě á ří ý á ř ů ř ě í ř ý ří í á ř ů ř ě í ě ě ě á ě á ý ě

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 10/2003 Konvergence nominální a reálné výnosnosi finančního rhu implikace pro poby koruny v mechanismu ERM II Vikor Kolán INSTITUT PRO EKONOMICKOU A EKOLOGICKOU

Více

Disertační práce NOVÉ METODY HOSPODÁRNÉHO DIMENZOVÁNÍ SYSTÉMŮ S TEPELNÝM ČERPADLEM A SVISLÝMI ZEMNÍMI VRTY

Disertační práce NOVÉ METODY HOSPODÁRNÉHO DIMENZOVÁNÍ SYSTÉMŮ S TEPELNÝM ČERPADLEM A SVISLÝMI ZEMNÍMI VRTY České vysoké učení echncké v Paze Fakula sojní Úsav echnky posředí Dseační páce NOVÉ METODY HOSPODÁRNÉHO DIMENZOVÁNÍ SYSTÉMŮ S TEPELNÝM ČERPADLEM A SVISLÝMI ZEMNÍMI VRTY Ing. Robe Kane Technka posředí

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3 Fyzikajekolemnás(Polohaajejízměny) Sudijní ex pro řešiele FO a osaní zájemce o fyziku Ivo Volf Miroslava Jarešová Obsah Slovo úvodem 3 1 Popis polohy ělesa 4 1.1 Jednorozměrnýprosor.......................

Více

Ř Č Č ž ž žž ž Ž ž ž ž ž Ú ž ž ž Ú ČŠ ň Š Ú Š Ú ČŠ ď ň ň Ř Ř Š Č Š Č Ú ČŠ Ú Ž Ú ČŠ Č Ž Ú ČŠ Č Ž Ž Ú Ú ČŠ Ú Ú Ú Č Ž Ú Ž Ž ž Ž Ž Ž ú ž ž Ž ú Ž Č Č Č Ú ž Ž ď ž ž ž Ú ČŠ Ú ČŠ ú ú ú Ú ČŠ ú Ž ž ž ž ž ž ž ž Š

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

Ekonomické aspekty spolehlivosti systémů

Ekonomické aspekty spolehlivosti systémů ČESKÁ SPOLEČNOST PRO JAKOST Novoného lávka 5, 116 68 Praha 1 43. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST pořádané výborem Odborné skupiny pro spolehlivos k problemaice Ekonomické aspeky spolehlivosi sysémů

Více

Téma Pohyb grafické znázornění

Téma Pohyb grafické znázornění Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

Rozklad přírodních surovin minerálními kyselinami

Rozklad přírodních surovin minerálními kyselinami Laboatoř anoganické technologie Rozklad příodních suovin mineálními kyselinami Rozpouštění příodních mateiálů v důsledku pobíhající chemické eakce patří mezi základní technologické opeace řady půmyslových

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Důchodová reforma ve Spolkové republice roku 2001

Důchodová reforma ve Spolkové republice roku 2001 Důchodová reforma ve Spolkové repulice roku 2001 Ing. Rudolf F. Heidu, Deparmen of Law and Social Sciences, Mendel Universiy in Brno, rudi.heidu@seznam.cz Asrak Ve Spolkové repulice převažuje názor, že

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

É á ž ž ý Ů Ů ý Ů ř ž š ě á ň č ř ž ý Ů Ž É Á á á š á ř ú ř Č ě š ř š ň ů ě ěž ý ů á ří ář č ě Ů ář Á á ř č á á Č á ě ÍÁ á č ř áž Š ě á ě á á á Š ř řá ě ě ý ř á á á ý ě ě Ž á ž ý č á á ý ů á č č ě č á

Více

5.3.4 Využití interference na tenkých vrstvách v praxi

5.3.4 Využití interference na tenkých vrstvách v praxi 5.3.4 Využití intefeence na tenkých vstvách v paxi Předpoklady: 5303 1. kontola vyboušení bousíme čočku, potřebujeme vyzkoušet zda je spávně vyboušená (má spávný tva) máme vyobený velice přesný odlitek

Více

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Ze serveru www.czso.cz jsme sledovali sklizeň obilovin v ČR. Sklizeň z několika posledních le jsme vložili do abulky 7.1. a) Jaké plodiny paří mezi obiloviny?

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001,

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001, 213/2001 ve znění 425/2004 VYHLÁŠKA Minisersva průmyslu a obchodu ze dne 14. června 2001, kerou se vydávají podrobnosi náležiosí energeického audiu Minisersvo průmyslu a obchodu sanoví podle 14 ods. 5

Více

Deset přednášek z teorie statistického a strukturního rozpoznávání

Deset přednášek z teorie statistického a strukturního rozpoznávání Monografie Deset přednášek teorie statistického a strukturního roponávání Michail I. Schlesinger, Václav Hlaváč Praha 1999 Vydavatelství ČVUT 1. přednáška Bayesovská úloha statistického rohodování 1.1

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Prognózování vzdělanostních potřeb na období 2006 až 2010

Prognózování vzdělanostních potřeb na období 2006 až 2010 Prognózování vzdělanosních pořeb na období 2006 až 2010 Zpráva o savu a rozvoji modelu pro předvídání vzdělanosních pořeb ROA - CERGE v roce 2005 Vypracováno pro čás granového projeku Společnos vědění

Více

SVAŤA BOŽÁK EXTREME CYCLING

SVAŤA BOŽÁK EXTREME CYCLING SVAŤA BOŽÁK EXTREME CYCLING P edstavení : Jmenuji se Svatopluk Bo ák a je mi 34let. Vytrvalostní cyklistice se věnuji intenzivně ji od roku 2003. Začínal jsem na 24 hodinových závodech na horském kole.

Více

1/77 Navrhování tepelných čerpadel

1/77 Navrhování tepelných čerpadel 1/77 Navrhování epelných čerpadel paramery epelného čerpadla provozní režimy, navrhování akumulace epla bilancování inervalová meoda sezónní opný fakor 2/77 Paramery epelného čerpadla opný výkon Q k [kw]

Více

Jan Jersák Technická univerzita v Liberci. Technologie III - OBRÁBĚNÍ. TU v Liberci

Jan Jersák Technická univerzita v Liberci. Technologie III - OBRÁBĚNÍ. TU v Liberci EduCom Teno maeriál vznikl jako součás projeku EduCom, kerý je spolufinancován Evropským sociálním fondem a sáním rozpočem ČR. ŘEZÉ PODMÍKY Jan Jersák Technická univerzia v Liberci Technologie III - OBRÁBĚÍ

Více

Úhrada za ústřední vytápění bytů II

Úhrada za ústřední vytápění bytů II Úhrada za úsřdní vyápění byů II Anoac Článk j druhým z séri příspěvků, krými jsou prsnovány dlouholé výsldky prác na Tchnické univrziě v Librci v oblasi rozpočíávání nákladů na vyápění pomocí poměrových

Více

Stochastické modelování úrokových sazeb

Stochastické modelování úrokových sazeb Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo

Více

ROTORŮ TURBOSOUSTROJÍ

ROTORŮ TURBOSOUSTROJÍ ZJIŠŤOVÁNÍ PŘÍČIN ZVÝŠENÝCH VIBRACÍ ROTORŮ TURBOSOUSTROJÍ Prof Ing Miroslav Balda, DrSc Úsav ermomechaniky AVČR + Západočeská univerzia Veleslavínova 11, 301 14 Plzeň, el: 019-7236584, fax: 019-7220787,

Více

Podzim 2004. Výzkumná práce 2 Sektorové produktivity a relativní cena neobchodovatelných statků: Opravdu příliš mnoho povyku pro nic?

Podzim 2004. Výzkumná práce 2 Sektorové produktivity a relativní cena neobchodovatelných statků: Opravdu příliš mnoho povyku pro nic? Podzim 24 Výzkumná práce 2 Sekorové produkiviy a relaivní cena neobchodovaelných saků: Opravdu příliš mnoho povyku pro nic? Makroekonomický vývoj 15 Akuální makroekonomický vývoj České republiky 32 Prognóza

Více

MODELOVÁNÍ A KLASIFIKACE REGIONÁLNÍCH TRHŮ PRÁCE

MODELOVÁNÍ A KLASIFIKACE REGIONÁLNÍCH TRHŮ PRÁCE VYSOKÁ ŠKOL BÁNSKÁ - TECHNICKÁ UNIVERZIT OSTRV EKONOMICKÁ FKULT MODELOVÁNÍ KLSIFIKCE REGIONÁLNÍCH TRHŮ PRÁCE Jana Hančlová Ivan Křivý Jaromír Govald Miroslav Liška Milan Šimek Josef Tvrdík Lubor Tvrdý

Více

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva Vysoká škola báňská Tehniká univerzia Osrava MODULOVANÉ SIGNÁLY učební ex Zdeněk Maháček, Pavel Nevřiva Osrava Reenze: Ing. Jiří Kozian, Ph.D. RNDr. Miroslav Liška, CS. Název: Modulované signály Auor:

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP NVEZTA PADBCE FAKLTA CHEMCKO-TECHNOLOGCKÁ Kadra fyzky ZÁKLADY FYZKY Pro obory DMML, TŘD a AD prznčního suda DFJP NDr. Jan Z a j í c, CSc., 005 3. ELEKTCKÝ POD 3. ZÁKLADNÍ POJMY Pod pojmm lkrcký proud chápm

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper o. 1/24 ondový penzijní sysém v konvergující ekonomice Jan Kubíček ISIU PRO EKOOMICKOU A EKOLOGICKOU POLIIKU VYSOKÁ ŠKOLA EKOOMICKÁ V PRAZE AKULA ÁROOHOSPOÁŘSKÁ

Více

Semestrální Projekt 1 Měření rychlosti projíždějících vozidel za použití jedné kalibrované kamery

Semestrální Projekt 1 Měření rychlosti projíždějících vozidel za použití jedné kalibrované kamery 1 Semestrální Projekt 1 Měření rchlosti projíždějících voidel a použití jedné kalibrované kamer (version reprint 2005) Jaromír Brambor 17.5.2000 2 1. ÚVOD Tento semestrální projekt se abývá měřením rchlosti

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Gravitace. Kapitola 8. 8.1 Gravitační zákon. 8.1.1 Isaac Newton a objev gravitačního zákona

Gravitace. Kapitola 8. 8.1 Gravitační zákon. 8.1.1 Isaac Newton a objev gravitačního zákona Kapitola 8 Gavitace 8.1 Gavitační zákon 8.1.1 Isaac Newton a objev gavitačního zákona Keple objevil své evoluční zákony o pohybu planet v oce 1609 a 1619. Dlouho však byly jeho výsledky přijímány s nedůvěou.

Více

NA POMOC FO KATEGORIE E,F

NA POMOC FO KATEGORIE E,F NA POMOC FO KATEGORIE E,F Výledky úloh 46. ročníku FO, ka. E, F Io Volf *, ÚV FO, Unierzia Hradec Králoé Mirola Randa **, ÚV FO, Pedagogická fakula ZČU, Plzeň Jak je již naší ouěži obyklé, uádíe pouze

Více

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1 Výnosnos obchodních sraegií echnické analýzy Michal Dvořák Srovnání výnosnosi základních obchodních sraegií echnické analýzy při obchodování měn CZK/USD a CZK/EUR Verze 3 03 Michal Dvořák Záměr Na přednáškách

Více

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Masarykova univerzia Přírodovědecká fakula VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Bakalářská práce Lucie Pečinková Vedoucí bakalářské práce: Mgr. Per ČERVINEK Brno 202 Bibliografický záznam

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Získejte nové zákazníky a odměňte ty stávající slevovým voucherem! V čem jsme jiní? Výše slevy Flexibilní doba zobrazení Délka platnosti voucheru

Získejte nové zákazníky a odměňte ty stávající slevovým voucherem! V čem jsme jiní? Výše slevy Flexibilní doba zobrazení Délka platnosti voucheru J s m e j e d i n ý s l e v o v ý s e r v e r B E Z P R O V I Z E s v o u c h e r y p r o u ž i v a t e l e Z D A R M A! Z í s k e j t e n o v é z á k a z n í kzy v! i d i t e l n t e s e n a i n t e r!

Více

ENERGETICKÝ AUDIT. Realizace úspor energie Střední škola zemědělství a služeb, Město Albrechtice. Nemocniční 11, Město Albrechtice

ENERGETICKÝ AUDIT. Realizace úspor energie Střední škola zemědělství a služeb, Město Albrechtice. Nemocniční 11, Město Albrechtice Miroslav Baručák ENERGOS Sídlišě Beskydské 1199 744 01 FRENŠTÁT POD RADHOŠTĚM ENERGETICKÝ AUDIT Realizace úspor energie, Nemocniční 11, název předměu EA daum vypracování 24. srpna 2013 energeický specialisa

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a

Více

Č ó š ě š ě Í šť Č šť Č Č Č ř ě ž š ě ř Č Č ř š ě ř š ě ř š š ě ř Ň š ň š ě š ě š ě š ě š ě ě š ě š ě ě šť šť š ě ě ř ě šť š ě š ě Č š ě Č š ě š ě ě š ě š ě ě šť šť š ě Ě ř ě šť š ě š ě Č š ě Č š ě š ě

Více

Í ý ú ú Ž Í Ž Í ů é ů Ž ů Ž ů Ž Í ů Ž ů Ž ů é ů é é éó ě ě ě ď ů ě ě š Í ů ě ý ě é ě ě ý ú ě Í ý ě ě š ů Š ě ě Ě ě ě ů ý é é ě ě Ó ú ú é ě é ů š ě Ž Ž Š ě ě ý é ů š ě š ě ž ý é ě ýš é Š ý ů ý ý Í Ž Ř ě

Více

VYUŽITÍ NANOSORBENTŮ NA BÁZI MnO 2 PRO ODSTRAŇOVÁNÍ As (V) Z VOD

VYUŽITÍ NANOSORBENTŮ NA BÁZI MnO 2 PRO ODSTRAŇOVÁNÍ As (V) Z VOD Citace Stnadová N., Dong Nguyen Thanh, Sang Nguyen Thi Minh, Ulbich P., Mandeep Singh: Využití nanosobentů na bázi MnO 2 po odstaňování As(V) z vod. Sboník konfeence Pitná voda 2010, s.151-156. W&ET Team,

Více

Cost benefit analýza projektu Sociální integrace vybraných skupin obyvatel v obci Ralsko, ARR Agentura regionálního rozvoje, spol. s r.o.

Cost benefit analýza projektu Sociální integrace vybraných skupin obyvatel v obci Ralsko, ARR Agentura regionálního rozvoje, spol. s r.o. Obsah Obsah...1 1. Úvod...2 Iformace o zpracovaeli, zadavaeli, realizáorovi...2 2. Podsaa projeku...3 3. Srukura beeficieů...6 3.1 Vymezeí zaieresovaých subjeků...6 4. Popis ivesičí a ulové variay...7

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

OBECN ZÁVAZNÁ VYHLÁ KA. Obce Plavsko. O fondu rozvoje bydlení

OBECN ZÁVAZNÁ VYHLÁ KA. Obce Plavsko. O fondu rozvoje bydlení OBECN ZÁVAZNÁ VYHLÁ KA Obce Plavsko O fondu rozvoje bydlení. 7/2000 V Y H L Á K A.7/2000 Obce Plavsko O fondu rozvoje bydlení Obecní zastupitelstvo v Plavsku schválilo dne 21.7.2000 tuto obecn závaznou

Více

Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý

Více

ž ú Ď ň ň ú Á É ž Ý Ě É ň Ě É É ž Ť Ť Ť ú Ň ŤŤ Ť ó Á ú ú Ť ň ú ň ž É Š Š ž ó ó Ť É Ť Ě Ť ň Ťň Ť ž ňž Ť Ó Ť ú ž Ť ú ž Ť ó ž ž Ť Ť ž Ě Š ú ž ž ň Č ž ž ž ž Ť Ť Ť Č Ň Á Ť Ý ú Ť ž ň ž Ť Ý Ť Ť ž ň Ťň Š ž ú ž

Více

ř ž ř š ř ů ř ž ř ř ž ž ř Č Ú Č Ř Ě Ř É Á ř ř ž ř ř ř ř ž Č ú ž Č ř š ř Č ž ř ň ř ž ř ů Ů ř ž ž ú ř š ř úř ř ř ň ř ů ů ř ř ž ů Č ž ř š ř ň ů ú ů ž ů ů š ž ř ů ů š ó š ů ů ř š ů ů ř ů ř ž š ř ú ůč Ú š ú

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. /003 Hyperbolické diskonování a jeho význam v ekonomickém modelování Michal Andrle Jan Brůha INSTITUT PRO EKONOMICKOU A EKOLOGICKOU POLITIKU A KATEDRA HOSPODÁŘSKÉ

Více

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

2.1.15 Slovní úlohy na lineární funkce

2.1.15 Slovní úlohy na lineární funkce 2.1.15 Slovní úloh na lineární funkce Předpoklad: 2108 Pedagogická poznámka: Obsah hodin přesahuje 45 minut (pokud necháte student pracovat samostatně). Poslední příklad tak zůstává na další hodinu nebo

Více

Ú ú ú ú Ž Ž ŽÁ ú ň Í ú ú ť Ž Ž ú Ó ú ú ú Í Í Í ú ú ú ú ť ú Ž ň Á Í ň ť Ú Ž Ř Š Í ú Ú ť Ž ú ú ú ú ú ť Ž ú Á Í Í ť Ž ň Á ň Ó ú Š Ž Ž ň ú ť Ž ú ú ú ň Ž Ž Í ú Ž Ž ú Ž ú ň ť ň ú ň ú ú ň ú Ž Ž Ž Ž Ť ú Ž ú ň

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS LKTŘINA A MAGNTIZMUS II. Coulombův zákon Obsah COULOMBŮV ZÁKON.1 LKTRICKÝ NÁBOJ. COULOMBŮV ZÁKON.3 PRINCIP SUPRPOZIC 4.4 LKTRICKÉ POL 5.5 SILOKŘIVKY LKTRICKÉHO POL 6.6 SÍLA PŮSOBÍCÍ NA NABITOU ČÁSTICI

Více

NA POMOC FO KATEGORIE E,F

NA POMOC FO KATEGORIE E,F NA POMOC FO KATEGOIE EF Výledky řešení úlo 45. ročníku FO ka. E F Ivo Volf * ÚV FO Univerzia Hradec Králové Mirolav anda ** ÚV FO Pedagogická fakula ZČU Plzeň Jak je již v naší ouěži obvyklé uvádíme pouze

Více

ů ř ň ř ř ě ř ě ů ě š šť ě é é ž ř é ž ř é ž ů ů ě šť ě ú ž šť ž šť ů ů é ů ů ů é ž é ů ú ř ě ů é é é é ů ř é ě Ť ě ů šť ě é šť š ě ů ě š ů š ř ů Šť ě é é ř š é é ř ě ů ů é ř ě š ř ě ů ů šť ů é ř ě š ř

Více

MODEL KULTURNÍ ROVNOSTI V OBLASTI VZDĚLÁVÁNÍ DOSPĚLÝCH CEM-AE

MODEL KULTURNÍ ROVNOSTI V OBLASTI VZDĚLÁVÁNÍ DOSPĚLÝCH CEM-AE MODEL KULTURNÍ ROVNOSTI V OBLASTI VZDĚLÁVÁNÍ DOSPĚLÝCH CEM-AE PEDAGOGICKÉ POSTUPY PRO UČITELE / VZDĚLATELE ŽEN MIGRANTEK A ŽEN Z ETNICKÝCH MENŠIN Vytvořeno konsorciem v rámci Grundtvig projektu ALMA-DC

Více