DYNAMIKA ROTAČNÍ POHYB

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "DYNAMIKA ROTAČNÍ POHYB"

Transkript

1 DYNAMIKA ROTAČNÍ POHYB

2 Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu) působí na hmotný bod odstředivá síla, která je reakcí k síle dostředivé - aby se bod pohyboval po kružnici musí dostředivá síla hmotnému bodu udílet stálé dostředivé neboli normálové zrychlení do středu pohybu; - jak bylo vysvětleno v části Kinematika, při rovnoměrném rotačním pohybu bodu mění obvodová rychlost pohybu neustále svůj směr a postupně otáčí ke středu otáčení;

3 Dynamika rotačního pohybu hmotného bodu kolem pevné osy -z toho plyne, že rotující hmotný bod je neustále urychlován do středu kružnice a proto při rotačním pohybu bodu mu musí být udělováno směrem ke středu zrychlení nazývané dostředivé nebo normálové zrychlení a n, protože působí ve směru normály pohybu; -v Kinematice byl odvozen vztah v závislosti : v je obvodová rychlost hmotného bodu ω je úhlová rychlost hmotného bodu; - obvodová rychlost je vπ.d.n 2π.R.n, kde n[s -1 ] jsou otáčky hmotného bodu,d [m] je průměr dráhy pohybu a R [m] je poloměr dráhy

4 Dynamika rotačního pohybu hmotného bodu kolem pevné osy - úhlová rychlost hmotného bodu je ω2π.n (s -1 ) - po dosazení za v a ω dostaneme vztah a n 2 [ m ] v R ω s R 2 2 F m m R ω [ N ] - síla odstředivá C n je dle třetího Newtonova zákona reakcí dostředivé síly; a 2

5 Dynamika rotačního pohybu hmotného bodu kolem pevné osy m F c F d a n - u rotačního pohybu hmotného bodu kolem stálé osy musíme rozlišit případ rotace stálými otáčkami kolem svislé a vodorovné osy;

6 Rotační pohyb hmotného bodu kolem svislé osy - rotace ve vodorovné rovině - působení odstředivé síly - ve svislém směru působí stálá tíhová síla - například průjezd vozidla zatáčkou

7 Příklad : Průjezd vozidla zatáčkou Vypočtěte, jak velkou rychlostí může projet automobil o hmotnosti 1000 kg vodorovnou neklopenou zatáčkou o poloměru 25 m, jestliže rozchod kol je 1400 mm, těžiště vozidla je 800 mm nad vozovkou a součinitel smykového tření je 0,2.

8 Rotační pohyb hmotného bodu kolem vodorovné osy - při rotaci hmotného bodu ve svislé rovině kolem pevné osy stálou úhlovou rychlostí působí odstředivá síla vždy ze středu otáčení ve směru normály ; - neustále se měnící se směr odstředivé síly způsobuje, že výsledná síla působící na hmotný bod (je dána vektorovým součtem odstředivé a gravitační síly, viz obr) s úhlem natočení a mění svůj směr i velikost; - pak výsledná síla je 2 2 F F + G + 2 F G cosα V C - například rotace tělesa kolem pevné vodorovné osy, centrifuga nebo přejezd vozidla přes terénní nerovnosti C

9 Rotační pohyb hmotného bodu kolem vodorovné osy - aby se bod udržel na kruhové dráze (např. lano stále napnuto, voda nevyteče z nádoby): horní poloha : F C G m.r. ω 2 m.g

10 Zadání příkladu : Nádoba s vodou se otáčí ve svislé rovině v kruhu o poloměru 800 mm. Určete nejmenší počet otáček, aby voda z nádoby nevytékala.

11 Zadání příkladu : Na vodorovné desce leží ve vzdálenosti R 300 mm od středu otáčení těleso o hmotnosti m 20 kg. Určete max. otáčky, nemá-li těleso z desky sklouznout (f 0,1).

12 Rotující deska

13 Zadání příkladu : Jeřábový vozík s břemenem o hmotnosti m 300 kg zavěšeným na laně o délce l 5 m se náhle zastaví při dopravní rychlosti v 2 m/s. Určete vzdálenost x, do jaké se vychýlí břemeno následkem setrvačnosti.

14 v 5 m m z x

15 Příklad : Průjezd moto zatáčkou Vypočtěte, s jakým sklonem může projet motocyklista vodorovnou neklopenou zatáčkou o poloměru 20 m. Hmotnost motocyklu s řidičem je 200 kg, těžiště motocyklu je b 800 mm nad vozovkou a součinitel smykového tření je 0,2.

16 Dynamika - rotační pohyb tělesa představme si pohyb plného dokonale tuhého rotujícího válce kolem pevné osy způsobený kroutícím momentem; celý válec rozdělíme na části stejné hmotnosti m;

17 Dynamika rotační pohyb tělesa pokud je osa rotace v těžišti, můžeme zanedbat tíhu hmotných elementů, protože se dynamický účinek tíhy vyruší; při uložení válce v jeho těžišti, se odstředivé síly F C a dostředivé síly F d všech elementárních částí tělesa vyruší, nebo-li jsou v rovnováze;

18 Dynamika - rotační pohyb tělesa -tečná nebo-li obvodová síla F t je způsobena momentem M a způsobuje zvyšování obvodové rychlosti elementu a tím také otáček válce; -pak M F t.r, po dosazení za sílu z druhého pohybového zákona dostaneme M m.a t.r a pokud dosadíme za tečné zrychlení vztah a t r.ε, získáme výraz pro elementární kroutící moment M m.r.ε.r m.r 2.ε.; -nyní sečteme všechny dílčí kroutící momenty všech částí válce a získáme celkový zrychlující moment:

19 Dynamika - rotační pohyb tělesa -tečná nebo-li obvodová sila F t je způsobena momentem M a způsobuje zvyšování obvodové rychlosti elementu a tím také otáček válce; -pak M F t.r, po dosazení za sílu z druhého pohybového zákona dostaneme M m.a t.r a pokud dosadíme za tečné zrychlení vztah a t r.ε, získáme výraz pro elementární kroutící moment M m.r.ε.r m.r 2.ε.; -nyní sečteme všechny dílčí kroutící momenty všech částí válce a získáme celkový zrychlující moment: M n i 1 M i n i 1 m i r 2 i ε ε n i 1 m i r 2 i

20 Dynamika - rotační pohyb tělesa -kde vztah I o n i 1 m i r i 2 je moment setrvačnosti hmoty tělesa k ose rotace a má jednotky [kg.m 2 ] -zrychlující moment: M I o. ε vztah je analogický druhému pohybovému zákonu o zrychlující síle u přímočarého pohybu F m. a;

21 Dynamika - rotační pohyb tělesa -pohybová rovnice rotačního pohybu má tvar M n K I0 ε M Pi 0 i 1, kde M K [N.m] je hnací moment, I 0 [kg.m 2 ] je moment setrvačnosti tělesa, ε [s -2 ] je úhlové zrychlení tělesa, M Pi [Nm] je moment odporů při pohybu překonávaných. (například moment čepového tření, vnější zatěžující momenty lan, řemenů, pásů, řetězů, ozubených kol

22 Dynamika - rotační pohyb tělesa I 0 [kg.m 2 ] - moment setrvačnosti tělesa, - je fyzikálně veličina obdobná kvadratickému momentu plochy (viz Mechanika PP) a pro výpočet momentu setrvačnosti platí obdobné principy jako pro stanovení kvadratického momentu plochy; -momenty setrvačnosti dílčích hmot (těles) I 01, I 02, I 03, až I 0n lze algebraicky sčítat nebo odčítat ; -moment setrvačnosti hmoty, jejíž těžiště neleží na ose rotace o se počítá pomocí Steinerovy věty, která zní: moment setrvačnosti hmoty tělesa k ose neprocházející jeho těžištěm (osa o ) se rovná momentu setrvačnosti hmoty tělesa k ose procházející těžištěm tohoto tělesa (osa o T ) rovnoběžné s osou o, zvětšenému o součin hmotnosti tělesa a druhé mocniny vzdálenosti obou os;

23 Dynamika - rotační pohyb tělesa I + T I m a m T o T a o

24 Dynamika - rotační pohyb tělesa - moment setrvačnosti válce k jeho ose z materiálu o hustotě ρ [kg.m -3 ] je: I O π 4 D B 32 ρ D [m] je průměr válce, B [m] je výška válce, -moment ; setrvačnosti hranolu o rozměrech a x b x c k jeho ose rovnoběžné s rozměrem c a procházející těžištěm: ( 2 2 ) a b c a b I + O 12 ρ

25 Dynamika - rotační pohyb tělesa - moment setrvačnosti válce k jeho ose z materiálu o hustotě ρ [kg.m -3 ] je: I O π 4 D B 32 ρ D [m] je průměr válce, B [m] je výška válce, -moment ; setrvačnosti hranolu o rozměrech a x b x c k jeho ose rovnoběžné s rozměrem c a procházející těžištěm: ( 2 2 ) a b c a b I + O 12 ρ

26 Dynamika - rotační pohyb tělesa -moment setrvačnosti kužele k jeho ose z materiálu o hustotě ρ [kg.m -3 ] I O π 4 D H 160 ρ D [m] je průměr kužele H [m] je výška kužele ;

27 Příklad : moment setrvačnosti tělesa Vypočtěte moment setrvačnosti součásti dle obr. z oceli o hustotě 7850 kg.m -3 k ose o T, jestliže D mm, D 2 80 mm, D3 40 mm, h 1 40 mm a h 2 30

28 Příklad : moment setrvačnosti kliky Vypočtěte moment setrvačnosti kliky dle obrázku z materiálu o hustotě 7850 kg.m -3 k ose rotace, jestliže D 200mm, d 1 60mm, d 2 30mm, a 50mm, b 40mm a výstřednost e 75mm. Dále vypočtěte velikost kroutícího momentu, jestliže se roztáčí rovnoměrně zrychleně působením stálého kroutícího momentu z klidu a za 30 s setrvačník dosáhne otáček 300 min -1.

29 Impulsové věty první impulsová věta řeší přímočarý pohyb tělesa - je odvozena z druhého Newtonova pohybového zákona - zákona zrychlující síly, tj. Fm.a; vztah Fm.a vynásobíme přírůstkem času t a pak dostaneme: kde účinku síly; m F t v I H F m m, se nazývá impuls síly a je mírou časového, se nazývá změna hybnosti hmoty; první impulsová věta zní: Impuls síly se rovná změně hybnosti hmoty t a t v

30 Impulsové věty uvádíme-li těleso do pohybu z klidu, pak impuls síly se rovná hybnosti hmoty z nulové počáteční rychlosti a dostaneme vztah F t m v U druhé impulsové věty vyjdeme ze zrychlujícího momentu M k I O a opět vynásobíme časem ε t M k t I O ε t I O ω

31 Impulsové věty druhá impulsová věta zní: Impuls momentu se rovná změně momentu hybnosti M k t L se nazývá impuls momentu; I 0 ω b se nazývá změna momentu hybnosti;. pro pohyb z klidu dostaneme vztah M k t I O ω

32 Příklad : impulsová věta Jak dlouho musí působit na ocelový kotouč o hustotě 7850 kg.m -3, průměru 500mm a tloušťce 50 mm kroutící moment 50 N.m, aby kotouč získal z klidu otáčky 1500 min-1.

33 Mechanická práce mechanickou práci konáme, překonáváme-li odpory silou působící po určité dráze. Velikost mechanické práce je rovna součinu síly působící na hmotný bod a dráhy hmotného bodu ve směru síly; pak W F s [ J ], kde F[N] je hnací síla ve směru dráhy pohybu tělesa a s[m] je dráha pohybu tělesa;. jednotkou mechanické práce je joule [J]; pokud stálá síla působí v nesouhlasném směru k dráze, musíme počítat se složkou síly ve směru dráhy; pro určení velikosti mechanické práce síly proměnné velikosti využíváme grafu F-s, kde plocha grafu je úměrná velikosti práce

34 Mechanická práce.

35 Mechanická práce při rotačním pohybu síla F mění neustále svůj směr a tudíž stále působí ve směru dráhy, síla F na dráze odpovídající úhlu natočení ϕ s W R ϕ F R ϕ dosadíme-li za [ N m J ] W M k ϕ vykoná práci. F R M k dostaneme vztah pro práci při rotačním pohybu kde M k [Nm] je kroutící moment, ϕ[rad] je úhlová dráha pohybu tělesa.

36 Mechanická práce -ke stejnému vztahu dospějeme při odvození práce obvodové síly F za jednu otáčku, kdy dráha je rovna obvodu kružnice o 2 π -pak práce při jedné otáčce R W W 1 F o F 2 π. -celková práce při rotačním pohybu je dána jako práce při jedné otáčce vynásobené počtem otáček, pak. R W i F 2π R i F R 2π 1, kde i počet otáček; dosadíme-li za 2π i ϕ dostaneme i W M ϕ k [ J ]

37 Příklad : práce při rotačním pohybu Ocelový kotouč o hustotě 7850 kg.m -3 tvaru kotouče o průměru 200 mm a tloušťce 20 mm se roztáčí z klidu a za 20 s získá otáčky 120 min -1. Vypočtěte velikost kroutícího momentu potřebného k rozběhu tělesa a množství vynaložené práce.

38 Výkon Výkon je mechanická práce vykonaná za jednotku času. P W t W [J] vykonaná mechanická práce t [s] čas konání mechanické práce jednotkou mechanické výkonu watt, který má rozměr.. W J s kg m při přímočarém pohybu můžeme vztah pro výpočet výkonu upravit tak, že za dosadíme za práci a dostaneme P W t F s t F v F[N] - hnací síla ve směru pohybu tělesa, v [m.s -1 ] - rychlost pohybu tělesa (v s/t) 2 s 3

39 Energie rotačního pohybu 2 po dosazení za m r I n i 1 i i O, což je moment setrvačnosti tělesa, dostaneme vztah pro kinetickou energii rotujícího tělesa ve tvaru I O ω 2 E [ 2 2 J kg m s ] R 2. - rozdíl kinetických energii počáteční a konečné je roven práci zrychlujících sil vynaložené na zvýšení otáček tělesa nebo práci vykonané při snížení jeho otáček (princip práce setrvačníku);. - pak práce daná změnou energie se vypočte ze vztahu I O W E R2 E R1 2 2 ( 2 ω ω 2 ) 1 [ J]

40 Obecný rovinný pohyb obecný rovinný pohyb je vlastně rotačním pohybem kolem okamžité osy otáčení úhlovou rychlostí ω, respektive kolem pólu otáčení P, kdy osa otáčení (pól) neustále mění svou polohu. valení válce ( jednodušší obecný rovinný pohyb) po vodorovné podložce si lze představit jako současně probíhající pohyb přímočarý. posuvný rychlostí v T a rotační pohyb kolem osy válce procházející jeho těžištěm T úhlovou rychlostí otáčení ω R

41 Obecný rovinný pohyb celková pohybová energie valivého pohybu je dána jako součet kinetické energie posuvného pohybu tělesa E KP a kinetické energie rotačního pohybu kolem okamžité osy otáčení E R E K 2 m v T I 0 ω R. m [kg] - hmotnost tělesa, v T [m.s -1 ] - rychlost posuvného pohybu tělesa; I 0 [kg.m 2 ] - moment setrvačnosti tělesa, ω R [s -1 ] - úhlová rychlost rotačního pohybu tělesa k ose tělesa..

42 Příklad - obecný rovinný pohyb Jakou pohybovou energii má ocelový válec o hustotě 7850 kg.m -3, průměru 100 mm a délce 500 mm, který se valí po vodorovné rovině stálou rychlostí 5 m.s -1...

43 Vyvažování Zajištění klidného chodu zařízení je velmi důležité : - stroj bez vibrací a hluku působí z fyziologického hlediska lépe na obsluhu - klidný chod dlouhodobý bezporuchový provoz klesají náklady na opravy, zkracují se prostoje - nevyváženost otáčejících se částí vzniká nerovnoměrným rozložením hmoty součásti. vzhledem o ose rotace - neváženost odstředivé síly chvění Vyvažování rotujících hmot. a) dynamické náročné metody na specielních vyvažovacích strojích na principu pružných rámů (viz VŠ)

44 Vyvažování rotujících hmot b) statické jednoduché, ale jen na hrubo pomocným vývažkem při konstrukci účinek odstředivé síly otáčející se hmoty nevyvážené části tělesa F C vyrušíme odstředivou silou jiné rotující hmoty F V,tak zvaného. vývažku;. podmínkou takovéhoto způsobu vyvážení je, že síly F C a F V musí být v rovnováze n Fi 0 F F 0 F F i 1 C V C V

45 .. Vyvažování rotujících hmot úhlová rychlost rotačního pohybu tělesa i vývažku musí být stejná 2 ω R m F C 2 ω V V V R m F V V V V V C R m R m R m R m F F 2 2 ω ω

46 1) volíme poloměr dráhy rotačního pohybu vývažku a počítáme hmotnost vývažku.. Vyvažování rotujících hmot Možnosti výpočtu : V V V V m m R R R m R m V V V V R R m m R m R m 2) zvolíme hmotnost vývažku a vypočítáme poloměr dráhy rotačního pohybu

47 Příklad - vyvažování rotujících hmot Navrhněte rozměry vývažku tvaru válce (o průměru D V a výšce H V ) u součásti dle obrázku, jestliže nevyvážená hmota má také tvar válce o průměru D1 40mm a výšce H1 50mm. Součást je z materiálu o hustotě 7850kg.m -3 a má otáčky 600min -1. Těžiště nevyvážené hmoty se pohybuje o. kružnici o poloměru R 120mm, poloměr dráhy vývažku je R V 150mm a průměr vývažku je D V 50mm..

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

TŘENÍ A PASIVNÍ ODPORY

TŘENÍ A PASIVNÍ ODPORY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla

Více

Mechanická práce při rotačním pohybu síla F mění neustále svůj směr a tudíž stále působí ve směru dráhy, síla F na dráze odpovídající úhlu natočení ϕ s W = R ϕ = F R ϕ dosadíme-li za [ N m J ] W = M k

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz,

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Moment síly Statická rovnováha

Moment síly Statická rovnováha Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického. Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

Experimentální hodnocení bezpečnosti mobilní fotbalové brány

Experimentální hodnocení bezpečnosti mobilní fotbalové brány ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky, biomechaniky a mechatroniky Odbor mechaniky a mechatroniky Název zprávy Experimentální hodnocení bezpečnosti mobilní fotbalové brány

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #11 Dynamika rotačního pohybu Jméno: Ondřej Finke Datum měření: 24.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě odvoďte

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

DYNAMIKA DYNAMIKA. Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky jsou tři Newtonovy pohybové zákony.

DYNAMIKA DYNAMIKA. Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky jsou tři Newtonovy pohybové zákony. Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 30. 8. 2012 Název zpracovaného celku: DYNAMIKA DYNAMIKA Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky

Více

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ.1.07/2.3.00/45.0029 V

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA IV DYNAMIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání pro

Více

Jednoduché stroje. Mgr. Dagmar Panošová, Ph.D. KFY FP TUL

Jednoduché stroje. Mgr. Dagmar Panošová, Ph.D. KFY FP TUL Vzdělávání pro efektivní transfer technologií a znalostí v přírodovědných a technických oborech (CZ.1.07/2.3.00/45.0011) Jednoduché stroje Mgr. Dagmar Panošová, Ph.D. KFY FP TUL TENTO PROJEKT JE SPOLUFINANCOVÁN

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D. 1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Mechanika úvodní přednáška

Mechanika úvodní přednáška Mechanika úvodní přednáška Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je

Více

Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků

Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků Zadané hodnoty: n motoru M motoru [ot/min] [Nm] 1 86,4 15 96,4 2 12,7 25 14,2 3 16 35 11 4 93,7 45 84,9 5 75,6 55 68,2 Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků m = 1265 kg (pohotovostní hmotnost

Více

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV DYNAMIKA

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV DYNAMIKA STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA IV DYNAMIKA Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Měření momentu setrvačnosti prstence dynamickou metodou

Měření momentu setrvačnosti prstence dynamickou metodou Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano

hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Tuhé těleso, hmotný bod, počet stupňů volnosti hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Stupně volnosti konstanta určující nejmenší

Více

PŘEVODY S OZUBENÝMI KOLY

PŘEVODY S OZUBENÝMI KOLY PŘEVODY S OZUBENÝMI KOLY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

BIOMECHANIKA SPORTU ODRAZ

BIOMECHANIKA SPORTU ODRAZ BIOMECHANIKA SPORTU ODRAZ Co je to odraz? Základní činnost, bez které by nemohly být realizovány běžné lokomoční aktivity (opakované odrazy při chůzi, běhu) Komplex multi kloubních akcí, při kterém spolupůsobí

Více

1 ŘÍZENÍ AUTOMOBILŮ. Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy.

1 ŘÍZENÍ AUTOMOBILŮ. Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy. 1 ŘÍZENÍ AUTOMOBILŮ Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy. ÚČEL ŘÍZENÍ natočením kol do rejdu udržovat nebo měnit směr jízdy, umožnit rozdílný úhel rejdu rejdových kol při

Více

Jednoduché stroje JEDNODUCHÉ STROJE. January 11, 2014. 18. jednoduché stroje.notebook. Páka

Jednoduché stroje JEDNODUCHÉ STROJE. January 11, 2014. 18. jednoduché stroje.notebook. Páka Jednoduché stroje Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Název materiálu:

Více

Tematický celek: Jednoduché stroje. Úkol:

Tematický celek: Jednoduché stroje. Úkol: Název: Kladka jako jednoduchý stroj. Tematický celek: Jednoduché stroje. Úkol: 1. Kladka jako jednoduchý stroj. 2. Navrhněte konstrukci robota s pevnou kladkou. 3. Určete, jakou silou působil při zvedání

Více

F - Jednoduché stroje

F - Jednoduché stroje F - Jednoduché stroje Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA SOUBOR PŘÍPRAV PRO 2. R. OBORU 26-41-M/01 ELEKTRO- TECHNIKA - MECHATRONIKA Vytvořeno

Více

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením

Více

SPOJE OCELOVÝCH KONSTRUKCÍ

SPOJE OCELOVÝCH KONSTRUKCÍ 2. cvičení SPOJE OCELOVÝCH KONSTRUKCÍ Na spojování prvků ocelových konstrukcí se obvykle používají spoje šroubové (bez předpětí), spoje třecí a spoje svarové. Šroubové spoje Základní pojmy. Návrh spojovacího

Více

Sbírka úloh z fyziky se zaměřením na oborovou problematiku

Sbírka úloh z fyziky se zaměřením na oborovou problematiku Sbírka úloh z fyziky se zaměřením na oborovou problematiku RNDr. František Staněk, Ph.D, Ph.D., Doc. RNDr. Karla Barčová, Ph.D., Doc. Dr. Ing. Michal Lesňák., Mgr. Jana Trojková. VŠB-TU Ostrava, HGF-Institut

Více

Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy

Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Sekunda 2 hodiny týdně Pomůcky, které poskytuje sbírka

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

Statika s pasivními odpory čepové, valivé a pásové tření

Statika s pasivními odpory čepové, valivé a pásové tření Statika s pasivními odpory epové, valivé a pásové tření Petr Šidlo TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, inormatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ..07/..00/07.047

Více

Dynamika hmotného bodu

Dynamika hmotného bodu Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Kinematika II. Vrhy , (2.1) . (2.3) , (2.4)

Kinematika II. Vrhy , (2.1) . (2.3) , (2.4) Kinematika II Vrhy Galileo Galilei již před čtyřmi staletími, kdy studoval pád různých těles ze šikmé věže v Pise, zjistil, že všechna tělesa se pohybují se stálým zrychlením směřujícím svisle dolů můžemeli

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Mechanika teorie srozumitelně

Mechanika teorie srozumitelně Rovnoměrný pohybu po kružnici úhlová a obvodová rychlost Rovnoměrný = nemění se velikost rychlostí. U rovnoměrného pohybu pro kružnici máme totiž dvě rychlosti úhlovou a obvodovou. Směr úhlové rychlosti

Více

b=1.8m, c=2.1m. rychlostí dopadne?

b=1.8m, c=2.1m. rychlostí dopadne? MECHANIKA - PŘÍKLADY 1 Příklad 1 Vypočítejte síly v prutech prutové soustavy, je-li zatěžující síla F. Rozměry prutů jsou h = 1.2m, b=1.8m, c=2.1m. Příklad 2 Vypočítejte zrychlení tělesa o hmotnosti m

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení

Více

ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i

ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i PŘÍKLAD Rychlost střely lze určit tak, že se vystřelí zblízka do dostatečně těžkého pytle s pískem, který je zavěšen na několikametrovém laně. Změří se, do jaké výšky vystoupalo těžiště T pytle. Odtud

Více

Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0

Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0 Strana: 1 /8 Výtisk č.:.../... ZKV s.r.o. Zkušebna kolejových vozidel a strojů Wolkerova 2766, 272 01 Kladno ZPRÁVA č. : Z11-065-12 Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0 Vypracoval:

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7 Obsah Obsah Měření... 3. Fyzikální veličina... 4. Jednotky... 7 Kinematika... 9. Klid a pohyb těles... 0. Rovnoměrný pohyb... 3.3 Zrychlený pohyb... 8.4 Volný pád....5 Pohyb po kružnici... 3 3 Dynamika...

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Konstrukce kladkostroje. Výpočet výkonu kladkostroje.

Konstrukce kladkostroje. Výpočet výkonu kladkostroje. Název: Konstrukce kladkostroje. Výpočet výkonu kladkostroje. Tematický celek: Mechanická práce a energie. Úkol: 1. Kladkostroj druhy a využití. 2. Navrhněte konstrukci robota - jeřábu s kladkostrojem.

Více

Učební osnova vyučovacího předmětu mechanika. Pojetí vyučovacího předmětu. 23 41 M/01 Strojírenství

Učební osnova vyučovacího předmětu mechanika. Pojetí vyučovacího předmětu. 23 41 M/01 Strojírenství Učební osnova vyučovacího předmětu mechanika Obor vzdělání: 23 41 M/01 Strojírenství Délka a forma studia: 4 roky denní studium Celkový počet týdenních hodin za studium: 9 Platnost: od 1.9.2009 Pojetí

Více

Kontrola technického ho stavu brzd. stavu brzd

Kontrola technického ho stavu brzd. stavu brzd Kontrola technického ho stavu brzd Kontrola technického ho stavu brzd Dynamická kontrola brzd Základní zákon - Zákon č. 56/001 Sb. o podmínkách provozu vozidel na pozemních komunikacích v platném znění

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více