DYNAMIKA ROTAČNÍ POHYB

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "DYNAMIKA ROTAČNÍ POHYB"

Transkript

1 DYNAMIKA ROTAČNÍ POHYB

2 Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu) působí na hmotný bod odstředivá síla, která je reakcí k síle dostředivé - aby se bod pohyboval po kružnici musí dostředivá síla hmotnému bodu udílet stálé dostředivé neboli normálové zrychlení do středu pohybu; - jak bylo vysvětleno v části Kinematika, při rovnoměrném rotačním pohybu bodu mění obvodová rychlost pohybu neustále svůj směr a postupně otáčí ke středu otáčení;

3 Dynamika rotačního pohybu hmotného bodu kolem pevné osy -z toho plyne, že rotující hmotný bod je neustále urychlován do středu kružnice a proto při rotačním pohybu bodu mu musí být udělováno směrem ke středu zrychlení nazývané dostředivé nebo normálové zrychlení a n, protože působí ve směru normály pohybu; -v Kinematice byl odvozen vztah v závislosti : v je obvodová rychlost hmotného bodu ω je úhlová rychlost hmotného bodu; - obvodová rychlost je vπ.d.n 2π.R.n, kde n[s -1 ] jsou otáčky hmotného bodu,d [m] je průměr dráhy pohybu a R [m] je poloměr dráhy

4 Dynamika rotačního pohybu hmotného bodu kolem pevné osy - úhlová rychlost hmotného bodu je ω2π.n (s -1 ) - po dosazení za v a ω dostaneme vztah a n 2 [ m ] v R ω s R 2 2 F m m R ω [ N ] - síla odstředivá C n je dle třetího Newtonova zákona reakcí dostředivé síly; a 2

5 Dynamika rotačního pohybu hmotného bodu kolem pevné osy m F c F d a n - u rotačního pohybu hmotného bodu kolem stálé osy musíme rozlišit případ rotace stálými otáčkami kolem svislé a vodorovné osy;

6 Rotační pohyb hmotného bodu kolem svislé osy - rotace ve vodorovné rovině - působení odstředivé síly - ve svislém směru působí stálá tíhová síla - například průjezd vozidla zatáčkou

7 Příklad : Průjezd vozidla zatáčkou Vypočtěte, jak velkou rychlostí může projet automobil o hmotnosti 1000 kg vodorovnou neklopenou zatáčkou o poloměru 25 m, jestliže rozchod kol je 1400 mm, těžiště vozidla je 800 mm nad vozovkou a součinitel smykového tření je 0,2.

8 Rotační pohyb hmotného bodu kolem vodorovné osy - při rotaci hmotného bodu ve svislé rovině kolem pevné osy stálou úhlovou rychlostí působí odstředivá síla vždy ze středu otáčení ve směru normály ; - neustále se měnící se směr odstředivé síly způsobuje, že výsledná síla působící na hmotný bod (je dána vektorovým součtem odstředivé a gravitační síly, viz obr) s úhlem natočení a mění svůj směr i velikost; - pak výsledná síla je 2 2 F F + G + 2 F G cosα V C - například rotace tělesa kolem pevné vodorovné osy, centrifuga nebo přejezd vozidla přes terénní nerovnosti C

9 Rotační pohyb hmotného bodu kolem vodorovné osy - aby se bod udržel na kruhové dráze (např. lano stále napnuto, voda nevyteče z nádoby): horní poloha : F C G m.r. ω 2 m.g

10 Zadání příkladu : Nádoba s vodou se otáčí ve svislé rovině v kruhu o poloměru 800 mm. Určete nejmenší počet otáček, aby voda z nádoby nevytékala.

11 Zadání příkladu : Na vodorovné desce leží ve vzdálenosti R 300 mm od středu otáčení těleso o hmotnosti m 20 kg. Určete max. otáčky, nemá-li těleso z desky sklouznout (f 0,1).

12 Rotující deska

13 Zadání příkladu : Jeřábový vozík s břemenem o hmotnosti m 300 kg zavěšeným na laně o délce l 5 m se náhle zastaví při dopravní rychlosti v 2 m/s. Určete vzdálenost x, do jaké se vychýlí břemeno následkem setrvačnosti.

14 v 5 m m z x

15 Příklad : Průjezd moto zatáčkou Vypočtěte, s jakým sklonem může projet motocyklista vodorovnou neklopenou zatáčkou o poloměru 20 m. Hmotnost motocyklu s řidičem je 200 kg, těžiště motocyklu je b 800 mm nad vozovkou a součinitel smykového tření je 0,2.

16 Dynamika - rotační pohyb tělesa představme si pohyb plného dokonale tuhého rotujícího válce kolem pevné osy způsobený kroutícím momentem; celý válec rozdělíme na části stejné hmotnosti m;

17 Dynamika rotační pohyb tělesa pokud je osa rotace v těžišti, můžeme zanedbat tíhu hmotných elementů, protože se dynamický účinek tíhy vyruší; při uložení válce v jeho těžišti, se odstředivé síly F C a dostředivé síly F d všech elementárních částí tělesa vyruší, nebo-li jsou v rovnováze;

18 Dynamika - rotační pohyb tělesa -tečná nebo-li obvodová síla F t je způsobena momentem M a způsobuje zvyšování obvodové rychlosti elementu a tím také otáček válce; -pak M F t.r, po dosazení za sílu z druhého pohybového zákona dostaneme M m.a t.r a pokud dosadíme za tečné zrychlení vztah a t r.ε, získáme výraz pro elementární kroutící moment M m.r.ε.r m.r 2.ε.; -nyní sečteme všechny dílčí kroutící momenty všech částí válce a získáme celkový zrychlující moment:

19 Dynamika - rotační pohyb tělesa -tečná nebo-li obvodová sila F t je způsobena momentem M a způsobuje zvyšování obvodové rychlosti elementu a tím také otáček válce; -pak M F t.r, po dosazení za sílu z druhého pohybového zákona dostaneme M m.a t.r a pokud dosadíme za tečné zrychlení vztah a t r.ε, získáme výraz pro elementární kroutící moment M m.r.ε.r m.r 2.ε.; -nyní sečteme všechny dílčí kroutící momenty všech částí válce a získáme celkový zrychlující moment: M n i 1 M i n i 1 m i r 2 i ε ε n i 1 m i r 2 i

20 Dynamika - rotační pohyb tělesa -kde vztah I o n i 1 m i r i 2 je moment setrvačnosti hmoty tělesa k ose rotace a má jednotky [kg.m 2 ] -zrychlující moment: M I o. ε vztah je analogický druhému pohybovému zákonu o zrychlující síle u přímočarého pohybu F m. a;

21 Dynamika - rotační pohyb tělesa -pohybová rovnice rotačního pohybu má tvar M n K I0 ε M Pi 0 i 1, kde M K [N.m] je hnací moment, I 0 [kg.m 2 ] je moment setrvačnosti tělesa, ε [s -2 ] je úhlové zrychlení tělesa, M Pi [Nm] je moment odporů při pohybu překonávaných. (například moment čepového tření, vnější zatěžující momenty lan, řemenů, pásů, řetězů, ozubených kol

22 Dynamika - rotační pohyb tělesa I 0 [kg.m 2 ] - moment setrvačnosti tělesa, - je fyzikálně veličina obdobná kvadratickému momentu plochy (viz Mechanika PP) a pro výpočet momentu setrvačnosti platí obdobné principy jako pro stanovení kvadratického momentu plochy; -momenty setrvačnosti dílčích hmot (těles) I 01, I 02, I 03, až I 0n lze algebraicky sčítat nebo odčítat ; -moment setrvačnosti hmoty, jejíž těžiště neleží na ose rotace o se počítá pomocí Steinerovy věty, která zní: moment setrvačnosti hmoty tělesa k ose neprocházející jeho těžištěm (osa o ) se rovná momentu setrvačnosti hmoty tělesa k ose procházející těžištěm tohoto tělesa (osa o T ) rovnoběžné s osou o, zvětšenému o součin hmotnosti tělesa a druhé mocniny vzdálenosti obou os;

23 Dynamika - rotační pohyb tělesa I + T I m a m T o T a o

24 Dynamika - rotační pohyb tělesa - moment setrvačnosti válce k jeho ose z materiálu o hustotě ρ [kg.m -3 ] je: I O π 4 D B 32 ρ D [m] je průměr válce, B [m] je výška válce, -moment ; setrvačnosti hranolu o rozměrech a x b x c k jeho ose rovnoběžné s rozměrem c a procházející těžištěm: ( 2 2 ) a b c a b I + O 12 ρ

25 Dynamika - rotační pohyb tělesa - moment setrvačnosti válce k jeho ose z materiálu o hustotě ρ [kg.m -3 ] je: I O π 4 D B 32 ρ D [m] je průměr válce, B [m] je výška válce, -moment ; setrvačnosti hranolu o rozměrech a x b x c k jeho ose rovnoběžné s rozměrem c a procházející těžištěm: ( 2 2 ) a b c a b I + O 12 ρ

26 Dynamika - rotační pohyb tělesa -moment setrvačnosti kužele k jeho ose z materiálu o hustotě ρ [kg.m -3 ] I O π 4 D H 160 ρ D [m] je průměr kužele H [m] je výška kužele ;

27 Příklad : moment setrvačnosti tělesa Vypočtěte moment setrvačnosti součásti dle obr. z oceli o hustotě 7850 kg.m -3 k ose o T, jestliže D mm, D 2 80 mm, D3 40 mm, h 1 40 mm a h 2 30

28 Příklad : moment setrvačnosti kliky Vypočtěte moment setrvačnosti kliky dle obrázku z materiálu o hustotě 7850 kg.m -3 k ose rotace, jestliže D 200mm, d 1 60mm, d 2 30mm, a 50mm, b 40mm a výstřednost e 75mm. Dále vypočtěte velikost kroutícího momentu, jestliže se roztáčí rovnoměrně zrychleně působením stálého kroutícího momentu z klidu a za 30 s setrvačník dosáhne otáček 300 min -1.

29 Impulsové věty první impulsová věta řeší přímočarý pohyb tělesa - je odvozena z druhého Newtonova pohybového zákona - zákona zrychlující síly, tj. Fm.a; vztah Fm.a vynásobíme přírůstkem času t a pak dostaneme: kde účinku síly; m F t v I H F m m, se nazývá impuls síly a je mírou časového, se nazývá změna hybnosti hmoty; první impulsová věta zní: Impuls síly se rovná změně hybnosti hmoty t a t v

30 Impulsové věty uvádíme-li těleso do pohybu z klidu, pak impuls síly se rovná hybnosti hmoty z nulové počáteční rychlosti a dostaneme vztah F t m v U druhé impulsové věty vyjdeme ze zrychlujícího momentu M k I O a opět vynásobíme časem ε t M k t I O ε t I O ω

31 Impulsové věty druhá impulsová věta zní: Impuls momentu se rovná změně momentu hybnosti M k t L se nazývá impuls momentu; I 0 ω b se nazývá změna momentu hybnosti;. pro pohyb z klidu dostaneme vztah M k t I O ω

32 Příklad : impulsová věta Jak dlouho musí působit na ocelový kotouč o hustotě 7850 kg.m -3, průměru 500mm a tloušťce 50 mm kroutící moment 50 N.m, aby kotouč získal z klidu otáčky 1500 min-1.

33 Mechanická práce mechanickou práci konáme, překonáváme-li odpory silou působící po určité dráze. Velikost mechanické práce je rovna součinu síly působící na hmotný bod a dráhy hmotného bodu ve směru síly; pak W F s [ J ], kde F[N] je hnací síla ve směru dráhy pohybu tělesa a s[m] je dráha pohybu tělesa;. jednotkou mechanické práce je joule [J]; pokud stálá síla působí v nesouhlasném směru k dráze, musíme počítat se složkou síly ve směru dráhy; pro určení velikosti mechanické práce síly proměnné velikosti využíváme grafu F-s, kde plocha grafu je úměrná velikosti práce

34 Mechanická práce.

35 Mechanická práce při rotačním pohybu síla F mění neustále svůj směr a tudíž stále působí ve směru dráhy, síla F na dráze odpovídající úhlu natočení ϕ s W R ϕ F R ϕ dosadíme-li za [ N m J ] W M k ϕ vykoná práci. F R M k dostaneme vztah pro práci při rotačním pohybu kde M k [Nm] je kroutící moment, ϕ[rad] je úhlová dráha pohybu tělesa.

36 Mechanická práce -ke stejnému vztahu dospějeme při odvození práce obvodové síly F za jednu otáčku, kdy dráha je rovna obvodu kružnice o 2 π -pak práce při jedné otáčce R W W 1 F o F 2 π. -celková práce při rotačním pohybu je dána jako práce při jedné otáčce vynásobené počtem otáček, pak. R W i F 2π R i F R 2π 1, kde i počet otáček; dosadíme-li za 2π i ϕ dostaneme i W M ϕ k [ J ]

37 Příklad : práce při rotačním pohybu Ocelový kotouč o hustotě 7850 kg.m -3 tvaru kotouče o průměru 200 mm a tloušťce 20 mm se roztáčí z klidu a za 20 s získá otáčky 120 min -1. Vypočtěte velikost kroutícího momentu potřebného k rozběhu tělesa a množství vynaložené práce.

38 Výkon Výkon je mechanická práce vykonaná za jednotku času. P W t W [J] vykonaná mechanická práce t [s] čas konání mechanické práce jednotkou mechanické výkonu watt, který má rozměr.. W J s kg m při přímočarém pohybu můžeme vztah pro výpočet výkonu upravit tak, že za dosadíme za práci a dostaneme P W t F s t F v F[N] - hnací síla ve směru pohybu tělesa, v [m.s -1 ] - rychlost pohybu tělesa (v s/t) 2 s 3

39 Energie rotačního pohybu 2 po dosazení za m r I n i 1 i i O, což je moment setrvačnosti tělesa, dostaneme vztah pro kinetickou energii rotujícího tělesa ve tvaru I O ω 2 E [ 2 2 J kg m s ] R 2. - rozdíl kinetických energii počáteční a konečné je roven práci zrychlujících sil vynaložené na zvýšení otáček tělesa nebo práci vykonané při snížení jeho otáček (princip práce setrvačníku);. - pak práce daná změnou energie se vypočte ze vztahu I O W E R2 E R1 2 2 ( 2 ω ω 2 ) 1 [ J]

40 Obecný rovinný pohyb obecný rovinný pohyb je vlastně rotačním pohybem kolem okamžité osy otáčení úhlovou rychlostí ω, respektive kolem pólu otáčení P, kdy osa otáčení (pól) neustále mění svou polohu. valení válce ( jednodušší obecný rovinný pohyb) po vodorovné podložce si lze představit jako současně probíhající pohyb přímočarý. posuvný rychlostí v T a rotační pohyb kolem osy válce procházející jeho těžištěm T úhlovou rychlostí otáčení ω R

41 Obecný rovinný pohyb celková pohybová energie valivého pohybu je dána jako součet kinetické energie posuvného pohybu tělesa E KP a kinetické energie rotačního pohybu kolem okamžité osy otáčení E R E K 2 m v T I 0 ω R. m [kg] - hmotnost tělesa, v T [m.s -1 ] - rychlost posuvného pohybu tělesa; I 0 [kg.m 2 ] - moment setrvačnosti tělesa, ω R [s -1 ] - úhlová rychlost rotačního pohybu tělesa k ose tělesa..

42 Příklad - obecný rovinný pohyb Jakou pohybovou energii má ocelový válec o hustotě 7850 kg.m -3, průměru 100 mm a délce 500 mm, který se valí po vodorovné rovině stálou rychlostí 5 m.s -1...

43 Vyvažování Zajištění klidného chodu zařízení je velmi důležité : - stroj bez vibrací a hluku působí z fyziologického hlediska lépe na obsluhu - klidný chod dlouhodobý bezporuchový provoz klesají náklady na opravy, zkracují se prostoje - nevyváženost otáčejících se částí vzniká nerovnoměrným rozložením hmoty součásti. vzhledem o ose rotace - neváženost odstředivé síly chvění Vyvažování rotujících hmot. a) dynamické náročné metody na specielních vyvažovacích strojích na principu pružných rámů (viz VŠ)

44 Vyvažování rotujících hmot b) statické jednoduché, ale jen na hrubo pomocným vývažkem při konstrukci účinek odstředivé síly otáčející se hmoty nevyvážené části tělesa F C vyrušíme odstředivou silou jiné rotující hmoty F V,tak zvaného. vývažku;. podmínkou takovéhoto způsobu vyvážení je, že síly F C a F V musí být v rovnováze n Fi 0 F F 0 F F i 1 C V C V

45 .. Vyvažování rotujících hmot úhlová rychlost rotačního pohybu tělesa i vývažku musí být stejná 2 ω R m F C 2 ω V V V R m F V V V V V C R m R m R m R m F F 2 2 ω ω

46 1) volíme poloměr dráhy rotačního pohybu vývažku a počítáme hmotnost vývažku.. Vyvažování rotujících hmot Možnosti výpočtu : V V V V m m R R R m R m V V V V R R m m R m R m 2) zvolíme hmotnost vývažku a vypočítáme poloměr dráhy rotačního pohybu

47 Příklad - vyvažování rotujících hmot Navrhněte rozměry vývažku tvaru válce (o průměru D V a výšce H V ) u součásti dle obrázku, jestliže nevyvážená hmota má také tvar válce o průměru D1 40mm a výšce H1 50mm. Součást je z materiálu o hustotě 7850kg.m -3 a má otáčky 600min -1. Těžiště nevyvážené hmoty se pohybuje o. kružnici o poloměru R 120mm, poloměr dráhy vývažku je R V 150mm a průměr vývažku je D V 50mm..

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA IV DYNAMIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání pro

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7 Obsah Obsah Měření... 3. Fyzikální veličina... 4. Jednotky... 7 Kinematika... 9. Klid a pohyb těles... 0. Rovnoměrný pohyb... 3.3 Zrychlený pohyb... 8.4 Volný pád....5 Pohyb po kružnici... 3 3 Dynamika...

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

Mechanika teorie srozumitelně

Mechanika teorie srozumitelně Rovnoměrný pohybu po kružnici úhlová a obvodová rychlost Rovnoměrný = nemění se velikost rychlostí. U rovnoměrného pohybu pro kružnici máme totiž dvě rychlosti úhlovou a obvodovou. Směr úhlové rychlosti

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

Tvorba technické dokumentace

Tvorba technické dokumentace Tvorba technické dokumentace Požadavky na ozubená kola Rovnoměrný přenos otáček, požadavek stálosti převodového poměru. Minimalizace ztrát. Volba profilu boku zubu. Materiály ozubených kol Šedá a tvárná

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pohybové šrouby Ing. Magdalena

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

1.2.11 Tření a valivý odpor I

1.2.11 Tření a valivý odpor I 1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se

Více

14. JEŘÁBY 14. CRANES

14. JEŘÁBY 14. CRANES 14. JEŘÁBY 14. CRANES slouží k svislé a vodorovné přepravě břemen a jejich držení v požadované výšce Hlavní parametry jeřábů: 1. jmenovitá nosnost největší hmotnost dovoleného břemene (zkušební břemeno

Více

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa Strojírenské výpočty http://michal.kolesa.zde.cz michal.kolesa@seznam.cz Předmluva Publikace je určena jako pomocná kniha při konstrukčních cvičeních, ale v žádném případě nemá nahrazovat publikace typu

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia

Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia Plán volitelného předmětu Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět fyzika, který je realizován prostřednictvím

Více

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY Schválilo Ministerstvo školství mládeže a tělovýchovy dne 15. července 2003, čj. 22 733/02-23 s platností od 1. září 2002 počínaje prvním ročníkem Učební osnova

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ... Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

VY_32_INOVACE_C 08 01

VY_32_INOVACE_C 08 01 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Matematicko-fyzikální model vozidla

Matematicko-fyzikální model vozidla 20. února 2012 Obsah 1 2 Reprezentace trasy Řízení vozidla Motivace Motivace Simulátor se snaží přibĺıžit charakteristikám vozu Škoda Octavia Combi 2.0TDI Ověření funkce regulátoru EcoDrive Fyzikální základ

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost).

Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). Mechanika teorie srozumitelně www.nabla.cz Druhý Newtonův pohybový zákon Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). 1. úkol: Krabičku uvedeme strčením do pohybu.

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 3 PŘEVODY

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

11. Mechanika tekutin

11. Mechanika tekutin . Mechanika tekutin.. Základní poznatky Pascalův zákon Působí-li na tekutinu vnější tlak pouze v jednom směru, pak uvnitř tekutiny působí v každém místě stejně velký tlak, a to ve všech směrech. Hydrostatický

Více

1.4. Práce, energie, výkon

1.4. Práce, energie, výkon 1.4. Práce, energie, výkon 1. Vysvětlit pojem dráhový účinek síly, znát obecný vztah pro výpočet práce.. Vědět, že výkon je veličina vyjadřující jak rychle se práce koná. 3. Umět vyjádřit práci z výkonu

Více

9. Demonstrace setrvačných sil; Brownův pohyb

9. Demonstrace setrvačných sil; Brownův pohyb 9. Demonstrace setrvačných sil; Brownův pohyb Základní vlastností rotujících těles je setrvačnost. Ke studiu této vlastnosti slouží nejlépe setrvačníky (gyroskopy). V nejjednodušší formě se jedná o Schmidtovy

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

1 Newtonův gravitační zákon

1 Newtonův gravitační zákon Studentovo minimum GNB Gravitační pole 1 Newtonův gravitační zákon gravis latinsky těžký každý HB (planeta, těleso, částice) je zdrojem tzv. gravitačního pole OTR (obecná teorie relativity Albert Einstein,

Více

10. Frézování. Frézováním obrábíme především rovinné nebo tvarové plochy nástrojem s více břity.

10. Frézování. Frézováním obrábíme především rovinné nebo tvarové plochy nástrojem s více břity. 10. Fréování Fréováním obrábíme především rovinné nebo tvarové plochy nástrojem s více břity. Princip réování: Při réování používáme vícebřité nástroje réy. Fréa koná hlavní řený pohyb otáčivý. Podle polohy

Více

Úvod do nebeské mechaniky

Úvod do nebeské mechaniky OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM

GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM ČOS 235003 1. vydání ČESKÝ OBRANNÝ STANDARD ČOS GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM Praha ČOS 235003 1. vydání (VOLNÁ STRANA) 2 Český obranný standard květen 2003 Geometrie styčné plochy mezi

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

1. Molekulová stavba kapalin

1. Molekulová stavba kapalin 1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá

Více

OBRÁBĚNÍ I. Zpětný zdvih při těchto metodách snižuje produktivitu obrábění. Proto je zpětná rychlost 1,5x - 4x větší než pracovní rychlost.

OBRÁBĚNÍ I. Zpětný zdvih při těchto metodách snižuje produktivitu obrábění. Proto je zpětná rychlost 1,5x - 4x větší než pracovní rychlost. OBRÁBĚNÍ I OBRÁŽENÍ - je založeno na stejném principu jako hoblování ( hoblování je obráběním jednobřitým nástrojem ) ale hlavní pohyb vykonává nástroj upevněný ve smýkadle stroje. Posuv koná obrobek na

Více

II. Nástroje a metody, kterými ověřujeme plnění cílů

II. Nástroje a metody, kterými ověřujeme plnění cílů FYZIKA Gymnázium Nový PORG Fyziku vyučujeme na gymnáziu Nový PORG jako samostatný předmět od sekundy do sexty. Fyziku vyučujeme v češtině a rozvíjíme v ní a doplňujeme témata probíraná v rámci předmětu

Více

TERRAMET, spol. s r. o. www.terramet.cz

TERRAMET, spol. s r. o. www.terramet.cz MAX. PROVOZNÍ HMOTNOST: RTS - 5300 kg, ZTS (bez protizávaží - 4995 kg) VÝKON MOTORU: 34,1 kw (45,7 k) A Osa hnacího a vodícího kola (gumové pásy) mm 1991 A Osa hnacího a vodícího kola (ocelové pásy) mm

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Frézování. Hlavní řezný pohyb nástroj - rotační pohyb Přísuv obrobek - v podélném, příčném a svislém směru. Nástroje - frézy.

Frézování. Hlavní řezný pohyb nástroj - rotační pohyb Přísuv obrobek - v podélném, příčném a svislém směru. Nástroje - frézy. Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Základní konvenční technologie obrábění FRÉZOVÁNÍ Technická univerzita v Liberci

Více

elektrický náboj elektrické pole

elektrický náboj elektrické pole elektrický náboj a elektrické pole Charles-Augustin de Coulomb elektrický náboj a jeho vlastnosti Elektrický náboj je fyzikální veličina, která vyjadřuje velikost schopnosti působit elektrickou silou.

Více