1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení Seminář z aktuárských věd. Slides by LATEX.

Rozměr: px
Začít zobrazení ze stránky:

Download "1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení. 31.3.2006 Seminář z aktuárských věd. Slides by LATEX."

Transkript

1 1/ Seminář z aktuárských věd Slides by LATEX Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení

2 2/30 Obsah 1 Zobecněné lineární modely (GLZ 1 ) Obecný lineární model (GLM) Rozdělení exponenciálního typu MLE Testování hypotéz Příklady 2 Použití v povinném ručení BMS Sazby Komplexní model 3 Poznámky k software 1 Zkratka používaná SW StatSoft Statistica

3 Modelování 3/30 Model Vysvětlovaná proměnná = systematická složka + stochastická složka y 1,..., y n pozorování vysvětlované proměnné y i je realizací náhodné veličiny Y i Obecný lineární model Y i N(µ i, σ 2 ) µ i = x iβ p vysvětlujích proměnných β = (β 1,..., β p ) i té pozorování x i = (x i1,..., x ip )

4 Modelování 4/30 Zobecněný lineární model Obecný model zobecníme ve dvou krocích: (µ i je nadále střední hodnotou n. v. Y i a β jsou vysvětlující parametry) ❶ Stochastickou složku: Y i má rozdělení exponenciálního typu ❷ Systematickou složku: lineární vztah mezi vysvětlujícími proměnnými a vysvětlujícími parametry η i = x iβ spojovací funkce (link) mezi střední hodnotou µ i a lineární složkou η i g(µ i ) = η i (ryze monotónní, se spoj. druhou derivací) Model může obsahovat jak spojité tak kategoriální vysvětlující proměnné

5 5/30 Rozdělení exponenciálního typu Obecná forma f(y, θ) = exp (d(θ)e(y) + g(θ) + h(y)) Přirozená forma ( yθ b(θ) f(y, θ, ϕ) = exp a(ϕ) ) + c(y, ϕ) d(θ) = θ a e(y) = y, navíc parametr ϕ θ je přirozený (kanonický) parametr ϕ je rozptylový (disperzní) parametr

6 Rozdělení exponenciálního typu 6/30 Disperzní funkce a(ϕ): Používá se konstantní rovna ϕ nebo ve tvaru a i (ϕ) = ϕ/w i Kumulantová funkce b(θ): se spojitou druhou derivaci κ r = b (r) (θ)a(ϕ) r 1 E [Y ] = b (θ) = µ Var [Y ] = b (θ)a(ϕ) = V (µ)a(ϕ) κ(1) je střední hodnota a κ(2), κ(3) další dva centrální momenty Rozdělení je plně určeno vztahem mezi E [Y ] a Var Y. V (µ) = 1 Normální V (µ) = µ 2 Gamma V (µ) = µ Poissonovo V (µ) = µ 3 Inverzní Gaussovo Doplňková funkce c(y, ϕ) normuje hustotu

7 Rozdělení exponenciálního typu 7/30 Měření tailu Míra rizika (hazard rate) na intervalu pevné šířky w h w (y) = F (y+w) F (y) 1 F (y) Interpretace: Uvažujme vrstvu w xs y. h w (y) = P(y<Y y+w) P(Y >y)) h w je prst., že škoda nepřesáhne y + w, pokud už přesáhla y. Vysoká hodnota h w znamená, že škoda nad y vyčerpá tuto vrstvu jen s malou prstí. = lehký tail. Pro většinu aplikací v pojišťovnictví uvažujeme klesající míru rizika. h w (y) 0 pro y. Normální a Poissonovo mají limitu 1 Negativně binomické, Gamma a Inverzní Gaussovo jdou ke konstantě mezi 0 a 1 Logaritmicko normální jde k nule, ale není z exp. rodiny s hustotou v přirozeném tvaru Exp. rodina rozdělení je méně vhodná pro odvětví s těžším tailem. transformace logaritmem a pak GLM není totéž jako GLZ s logaritmickou linkovací funkcí je rozdíl mezi transformací y i a transformací střední hodnoty

8 8/30 Odhad β metodou maximální věrohodnosti Logaritmická věrohodnostní funkce n ( Yi θ i b(θ) l(β) = a(ϕ) Derivace l β = n i=1 i=1 l θ i θ i µ i µ i η i η i β = i=1 ) + c(y i, ϕ) n 1 a i (ϕ) (Y 1 i µ i ) V (µ i )g (µ i ) x i = 0 Kanonický link: spojovací funkce je inverzní funkcí k b, potom můžeme zjednodušit na soustavu nelineárních rovnic n (Y i µ i )x i = 0 i=1 Řeší se různými iteračními metodami

9 MLE β 9/30 Iteračně vážená metoda nejmenších čtverců (IWLS, IRLS) ˆβ je předchozí odhad β, dopočteme ˆη i = x i ˆβ a ˆµ i = g 1 (ˆη i ) spočteme pracovní závislou proměnnou z i = ˆη i + (y i ˆµ i ) dη i dµ i vypočteme iteraci vah (začínáme s w i ze vztahu a i (ϕ) = ϕ/w i ) w new i nakonec dostaneme nový odhad β = w i /[b (θ i )( dη i dµ i ) 2 ] ˆβ = (X W X) 1 XW z Jako výchozí aproximace se volí ˆµ i = y i

10 10/30 Míry dobré shody Plný (saturovaný) model maximalizuje věrhodnostní funkci (l ) V saturovaném modelu máme ˆµ i = y i a ˆθ i = (b ) 1 (y i ) škálovatelná deviance (log věr. fce modelu vs. její max hodnota) ( ) n D (ˆβ) = 2 l 1 ( l(ˆβ) = 2 y i (ˆθ i a i (ϕ) ˆθ ) ( )) b(ˆθ i ) b(ˆθ) deviance (při a i (ϕ) = ϕ/w i ) n D(ˆβ) = D (ˆβ)ϕ = 2 Pearsonovo χ 2 i=1 i=1 ( w i y i (ˆθ i ˆθ ) ( )) b(ˆθ i ) b(ˆθ) (pozorování vs. odhadem jejich střední hod. v modelu) n χ 2 (y i ˆµ i ) 2 = V (ˆµ i ) i=1

11 Míry dobré shody 11/30 Testování podmodelu Označme β odhad β v podmodelu s p < p parametry l(ˆβ) l( β) = D (ˆβ) D ( β) = D( ˆβ) D ( β) ϕ as χ 2 q, kde q = p p je rozdíl v počtu parametrů, při známém ϕ Waldův test I(β) = X W X/ϕ ˆβ as N p (β, (X W X) 1 ϕ) Testy podmnožin β jsou založeny na příslušných marginálních rozděleních konzistentní statistika pro odhad parametru ϕ ˆϕ = D(ˆβ) n p

12 12/30 Příklady GLZ Obecný lineární model, Normální rozdělení, identita Log lineární model, Poissonovo rozdělení, logaritmus Gamma regrese, Gamma rozdělení, reciprocita Logistický model, Binomické rozdělení, logitová funkce Další rozdělení: Inverzní Gaussovo Negativně binomické overdispersed Poissonovo rozdělení Logaritmicko normální NE, jen v obecné formě Další modely: probitový model, log log model

13 Příklady GLZ 13/30 Obecný lineární model Normální rozdělení Y i N(µ i, σ 2 ): f(y i ) = 1 2πσ 2 exp Přirozený parametr θ i = µ i a rozptylová funkce V (µ i ) = 1 ( (y i µ i ) 2 2σ 2 ) a(ϕ) = ϕ = σ 2 b(θ i ) = µ 2 /2 c(y i, ϕ) = y2 2σ log(2πσ2 ) kanonický link: µ i = η i IWLS: z i = η i + (y i µ i ) = y i ˆβ = (X X) 1 X y výsledek v prvním kroku deviance je reziduální součet čtverců D = ϕd = n (y i ˆµ i ) 2 i=1

14 Příklady GLZ 14/30 Log lineární model Poissonovo rozdělení Y i P o(µ i ): f(y i ) = e µ iµ y i i y i! Přirozený parametr θ i = log µ i a rozptylová funkce V (µ i ) = µ i a(ϕ) = ϕ = 1 b(θ i ) = e θ i c(y i, ϕ) = log(y i!) kanonický link: η i = log(µ i ) IWLS: z i = η i + (y i µ i )/µ i a iterované váhy w i = µ i deviance Y i P o( µ i ) D = 2 n i=1 D = 2 ( y i log y ) i (y i ˆµ i ) ˆµ i n i=1 ( y i log y ) i ˆµ i

15 15/30 Použití GLZ v povinném ručení BMS Sazby Komplexní model

16 16/30 Model v povinném ručení Y je modelovaná kvantita (výše škody, agregace, počet), závisí na X = {X 1, X 2,...}, apriorní tarifní proměnné - grupování rizik Z = {Z 1, Z 2,...}, neznámé proměnné Rizikové faktory pojistníka jsou Ω = X Z. Pojistné E [Y Ω] Nese pojistník Nese pojistitel Riziko E [Y Ω] Y E [Y Ω] Střední hodnota EY 0 Rozptyl Var [E [Y Ω]] E [Var [Y Ω]] Předchozí situace je čistě teoretická, neboť neznáme Z. Riziko E [Y X] Y E [Y X] Střední hodnota E [Y ] 0 Rozptyl Var [E [Y X]] E [Var [Y X]]

17 Model v povinném ručení 17/30 Aposteriorní sazbování Minulá škodní zkušenosti o riziku Y, označme Y Ω a (X, Y ) s stávají porovnatelné, jak čas běží Potom máme pojistné E [Y X, Y ] Možnosti konstrukce modelu: 1 Uvažujeme klasifikaci rizika a BMS odděleně 2 Uvažujeme komplexní model klasifikující riziko a zahrnující BMS Příklad: Španělská pojišťovna 4 x 3 tříd

18 Oddělené modely 18/30 Systém bonus-malus (BMS) Riziko i je reprezentováno (Θ i, K i1, K i2,...) Počty škod v čase K ij Θ i = θ P o(θ) a podmíněně nezávislé Θ i Γ(a, τ) (K ij má nepodmíněné rozdělení negativně binomické) Označme K i (t) = t K ij j=1 Uvažujme jednotkovou očekávanou výši škody Apriori bez historie je požadováno pojistné E [Θ i ] Pojistné určíme minimalizací E [L(θ i Ψ(k i1,..., k it ))] L(x) = x 2 W q t+1 = a(1 ρ τ q) + k i (t) ρ t q L(x) = exp( cx) Wt+1 e = a(1 ρ τ e(c)) + k i (t) ρ t e (c) kde ρ q = t a ρ τ+t e(c) = t log ( ) 1 + c c τ+t

19 Oddělené modely BMS 19/30 L(x) = x 2 W q t+1 = a(1 ρ τ q) + k i (t) ρ t q L(x) = exp( cx) Wt+1 e = a(1 ρ τ e(c)) + k i (t) ρ t e (c) ρ q = t ρ τ+t e (c) = t log ( ) 1 + c c τ+t ρ e (c) ρ q a W e t+1 W q t+1 při c 0 ρ e (c) 0 pro c, proto W e t+1 a/τ Pojistné rizika i, které je v roce t zařazeno v třídě I i (t) P q,e t+1(k i (t), t) = BP Ii (t+1)bmf q,e t+1(k i (t), t), BMF q (k i (t), t) = W q t+1 E[Θ] i BMF e (k i (t), t) = W q t+1 E[Θ] i = a+k i (t) τ τ+t a = 1 t c log ( 1 + c τ+t ) + log ( 1 + c τ+t ) ki (t) τ c a

20 Oddělené modely BMS 20/30 Výsledky: BMS - odhady v Negativně binomickém rozdělení â = a ˆτ = k n k ˆn k n k ˆn k

21 Oddělené modely apriorní sazby 21/30 Pozorované ŠF Věk Výkon < < < Kategorické proměnné pro věk J 2, J 3 a pro výkon L 2, L 3, L 4 Každá třída je reprezentována vektorem x i = (1, j 2, j 3, l 2, l 3, l 4 ) Parametry β = (ɛ, γ 2, γ 3, δ 2, δ 3, δ 4 ) Log lineární model, Poissonovo rozdělení, logaritmický link

22 Oddělené modely apriorní sazby 22/30 Výsledky: Parametr Odhad sm. odch. ɛ γ γ δ δ δ Věk Výkon < < <

23 23/30

24 24/30

25 25/30 Komplexní model Nechť je K it P o(λ Ii (t)) počet škod rizika i v roce t, kde I i (t) je příslušný index třídy a λ Ii (t) jsou jejich ŠF Rozptyl pozorování je však větší než střední hodnota, předpoklad Poissona není korektní Raději předpokládáme K it P o(λ Ii (t)θ i ), kde Θ i Γ(α, α) Potom K it I i (t) má negativně binomické rozdělení ( ) ( ) k ( α + k 1 λii(t) α P (K it = k I i (t)) = k α + λ Ii(t) α + λ Ii(t) Θ i K i1 = k i1,..., K it = k it Γ(α + k i (t), α + λ i (t)) Parametr α odhadneme metodou maximální věrohodnosti { 12 k max (i) ( ) ( ) k ( ) } α nik α + k 1 λii(t) α L(α) = k α + λ Ii(t) α + λ Ii(t) i=1 k=0 ) α

26 Komplexní model 26/30 Pojistné Relativní výše bunusu malusu P q,e t+1 = λ Ii (t+1)bmf q,e t+1(k i (t), λ i (t)) BMF q,e t+1(k i (t), t) = (1 ρ q,e ) + ρ q,e k i (t) λ i (t) Váhy pro kvadratickou a exponenciální ztrátovou funkci ( ) ρ q = λ i (t) α+λ i ρ (t) e (c) = λ i (t) log 1 + c c α+λ i (t) Nerovnosti a konvergence stejně jako v oddělených modelech ρ e (c) ρ q ρ e (c) ρ q pro c 0 a tedy Pt+1(k e i, λ i (t)) Pt+1(k q i, λ i (t)) ρ e (c) 0 pro c, proto Pt+1(k e i, λ i (t)) λ Ii (t), to znamená, že všechna rizika jedné třídy platí stejné pojistné, tj. nemáme BMS

27 27/30

28 28/30

29 29/30 Poznámky k SW Statistica sigma parametrizace { 1, 1} váhy pozorování konstrukce modelu Statistica ukázka

30 30/30 Literatura L. Bermúdez, M. Denuit & J. Dhaene (2001) Exponential bonus-malus systems integrating a priori risk classification. Journal of Actuarial Practice 9, Děkuji za pozornost

Martin Branda. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky

Martin Branda. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Zobecněné lineární modely v pojišťovnictví Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Seminář z aktuárských věd 2012 M.Branda

Více

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1 Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.

Více

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Lineární a logistická regrese

Lineární a logistická regrese Lineární a logistická regrese Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Výpočetní prostředky finanční a pojistné matematiky

Více

Ekonometrie. Jiří Neubauer, Jaroslav Michálek

Ekonometrie. Jiří Neubauer, Jaroslav Michálek Ekonometrie Jiří Neubauer, Jaroslav Michálek Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) Zobecněný lineární

Více

oddělení Inteligentní Datové Analýzy (IDA)

oddělení Inteligentní Datové Analýzy (IDA) Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 9

Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení

Více

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský

Více

Kredibilitní pojistné v pojištění automobilů. Silvie Zlatošová září 2016, Robust

Kredibilitní pojistné v pojištění automobilů. Silvie Zlatošová září 2016, Robust Silvie Zlatošová 11. - 16. září 2016, Robust Obsah 1 Motivace a cíl 2 Tvorba apriorních tarifních skupin 3 Teorie kredibility 4 Aplikace aposteriorních korekcí Motivace a cíl Obsah 1 Motivace a cíl 2 Tvorba

Více

LWS při heteroskedasticitě

LWS při heteroskedasticitě Stochastické modelování v ekonomii a financích Petr Jonáš 7. prosince 2009 Obsah 1 2 3 4 5 47 1 Předpoklad 1: Y i = X i β 0 + e i i = 1,..., n. (X i, e i) je posloupnost nezávislých nestejně rozdělených

Více

7 Regresní modely v analýze přežití

7 Regresní modely v analýze přežití 7 Regresní modely v analýze přežití Předpokládané výstupy z výuky: 1. Student rozumí významu regresního modelování dat o přežití 2. Student dokáže definovat pojmy poměr rizik a základní riziková funkce

Více

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

5. B o d o v é o d h a d y p a r a m e t r ů

5. B o d o v é o d h a d y p a r a m e t r ů 5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme

Více

Odhady Parametrů Lineární Regrese

Odhady Parametrů Lineární Regrese Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Úvodem Modelování vztahů mezi vysvětlující a vysvětlovanou (závisle) proměnnou patří mezi základní aktivity,

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.

6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový. 6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého

Více

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3! Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

Pravděpodobnost a statistika I KMA/K413

Pravděpodobnost a statistika I KMA/K413 Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Přijímací zkouška na navazující magisterské studium 2017

Přijímací zkouška na navazující magisterské studium 2017 Přijímací zkouška na navazující magisterské studium 27 Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013

Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013 Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko

Více

Odhady - Sdružené rozdělení pravděpodobnosti

Odhady - Sdružené rozdělení pravděpodobnosti Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.

ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK. ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní

Více

DIPLOMOVÁ PRÁCE. Aplikovaná logistická regrese

DIPLOMOVÁ PRÁCE. Aplikovaná logistická regrese UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Aplikovaná logistická regrese Vedoucí diplomové práce: Mgr. Jana Vrbková, Ph.D.

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

Poznámky k předmětu Aplikovaná statistika, 11. téma

Poznámky k předmětu Aplikovaná statistika, 11. téma Poznámky k předmětu Aplikovaná statistika, 11. téma Testy založené na χ 2 rozdělení V přehledu významných rozdělení jsme si uvedli, že Poissonovým rozdělením se modeluje počet událostí, které nastanou

Více

8 Coxův model proporcionálních rizik I

8 Coxův model proporcionálních rizik I 8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Bc. Marika Stroukalová

Bc. Marika Stroukalová Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Marika Stroukalová Modelování systémů bonus - malus Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové práce:

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII Tomáš Katrňák Fakulta sociálních studií Masarykova univerzita Brno ÚVOD DO LOGLINEÁRNÍHO MODELOVÁNÍ historie - až do 60. let se k analýze kontingenčních tabulek

Více

STATISTICKÁ KLASIFIKACE POMOCÍ ZOBECNĚNÝCH

STATISTICKÁ KLASIFIKACE POMOCÍ ZOBECNĚNÝCH VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNíHO INŽENÝRSTVí ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS STATISTICKÁ KLASIFIKACE POMOCÍ ZOBECNĚNÝCH

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman

Více

4 Parametrické odhady

4 Parametrické odhady 4 Parametrické odhady Předpokládané výstupy z výuky: 1. Student zná základní rozdělení pravděpodobnosti dat přežití 2. Student rozumí principu odhadu funkce přežití a rizikové funkce s využitím metody

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Maximálně věrohodné odhady v časových řadách

Maximálně věrohodné odhady v časových řadách Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Hana Tritová Maximálně věrohodné odhady v časových řadách Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské

Více

velkou variabilitou: underdispersion, overdispersion)

velkou variabilitou: underdispersion, overdispersion) RNDr. Marie Forbelská, Ph.D. 1 M7222 4. cvičení : GLM04a (Problémy s příliš malou či příliš velkou variabilitou: underdispersion, overdispersion) Mějme náhodný výběry n =(Y 1,...,Y n ) T z rozdělení exponenciálního

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Nestranný odhad Statistické vyhodnocování exp. dat M. Čada

Nestranný odhad Statistické vyhodnocování exp. dat M. Čada Nestranný odhad 1 Parametr θ Máme statistický (výběrový) soubor, který je realizací náhodného výběru 1, 2, 3,, n z pravděpodobnostní distribuce, která je kompletně stanovena jedním nebo více parametry

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Intervalové Odhady Parametrů

Intervalové Odhady Parametrů Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

RNDr. Martin Branda, Ph.D.

RNDr. Martin Branda, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Zobecněné lineární modely v pojišt ovnictví RNDr Martin Branda, PhD Zpracováno v rámci projektu

Více

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Modely selektivní interakce a jejich aplikace

Modely selektivní interakce a jejich aplikace Modely selektivní interakce a jejich aplikace Marie Leváková Ústav matematiky a statistiky Přírodovědecká fakulta Masarykovy univerzity 5. 9. 2013 Marie Leváková (PřF MU) Modely selektivní interakce a

Více

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová Testování předpokladů pro metodu chain-ladder Seminář z aktuárských věd 4. 11. 2016 Petra Španihelová Obsah Datová struktura Posouzení dat Předpoklady metody chain-ladder dle T. Macka Běžná lineární regrese

Více

Implementace Bayesova kasifikátoru

Implementace Bayesova kasifikátoru Implementace Bayesova kasifikátoru a diskriminačních funkcí v prostředí Matlab J. Havlík Katedra teorie obvodů Fakulta elektrotechnická České vysoké učení technické v Praze Technická 2, 166 27 Praha 6

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více