1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení Seminář z aktuárských věd. Slides by LATEX.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení. 31.3.2006 Seminář z aktuárských věd. Slides by LATEX."

Transkript

1 1/ Seminář z aktuárských věd Slides by LATEX Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení

2 2/30 Obsah 1 Zobecněné lineární modely (GLZ 1 ) Obecný lineární model (GLM) Rozdělení exponenciálního typu MLE Testování hypotéz Příklady 2 Použití v povinném ručení BMS Sazby Komplexní model 3 Poznámky k software 1 Zkratka používaná SW StatSoft Statistica

3 Modelování 3/30 Model Vysvětlovaná proměnná = systematická složka + stochastická složka y 1,..., y n pozorování vysvětlované proměnné y i je realizací náhodné veličiny Y i Obecný lineární model Y i N(µ i, σ 2 ) µ i = x iβ p vysvětlujích proměnných β = (β 1,..., β p ) i té pozorování x i = (x i1,..., x ip )

4 Modelování 4/30 Zobecněný lineární model Obecný model zobecníme ve dvou krocích: (µ i je nadále střední hodnotou n. v. Y i a β jsou vysvětlující parametry) ❶ Stochastickou složku: Y i má rozdělení exponenciálního typu ❷ Systematickou složku: lineární vztah mezi vysvětlujícími proměnnými a vysvětlujícími parametry η i = x iβ spojovací funkce (link) mezi střední hodnotou µ i a lineární složkou η i g(µ i ) = η i (ryze monotónní, se spoj. druhou derivací) Model může obsahovat jak spojité tak kategoriální vysvětlující proměnné

5 5/30 Rozdělení exponenciálního typu Obecná forma f(y, θ) = exp (d(θ)e(y) + g(θ) + h(y)) Přirozená forma ( yθ b(θ) f(y, θ, ϕ) = exp a(ϕ) ) + c(y, ϕ) d(θ) = θ a e(y) = y, navíc parametr ϕ θ je přirozený (kanonický) parametr ϕ je rozptylový (disperzní) parametr

6 Rozdělení exponenciálního typu 6/30 Disperzní funkce a(ϕ): Používá se konstantní rovna ϕ nebo ve tvaru a i (ϕ) = ϕ/w i Kumulantová funkce b(θ): se spojitou druhou derivaci κ r = b (r) (θ)a(ϕ) r 1 E [Y ] = b (θ) = µ Var [Y ] = b (θ)a(ϕ) = V (µ)a(ϕ) κ(1) je střední hodnota a κ(2), κ(3) další dva centrální momenty Rozdělení je plně určeno vztahem mezi E [Y ] a Var Y. V (µ) = 1 Normální V (µ) = µ 2 Gamma V (µ) = µ Poissonovo V (µ) = µ 3 Inverzní Gaussovo Doplňková funkce c(y, ϕ) normuje hustotu

7 Rozdělení exponenciálního typu 7/30 Měření tailu Míra rizika (hazard rate) na intervalu pevné šířky w h w (y) = F (y+w) F (y) 1 F (y) Interpretace: Uvažujme vrstvu w xs y. h w (y) = P(y<Y y+w) P(Y >y)) h w je prst., že škoda nepřesáhne y + w, pokud už přesáhla y. Vysoká hodnota h w znamená, že škoda nad y vyčerpá tuto vrstvu jen s malou prstí. = lehký tail. Pro většinu aplikací v pojišťovnictví uvažujeme klesající míru rizika. h w (y) 0 pro y. Normální a Poissonovo mají limitu 1 Negativně binomické, Gamma a Inverzní Gaussovo jdou ke konstantě mezi 0 a 1 Logaritmicko normální jde k nule, ale není z exp. rodiny s hustotou v přirozeném tvaru Exp. rodina rozdělení je méně vhodná pro odvětví s těžším tailem. transformace logaritmem a pak GLM není totéž jako GLZ s logaritmickou linkovací funkcí je rozdíl mezi transformací y i a transformací střední hodnoty

8 8/30 Odhad β metodou maximální věrohodnosti Logaritmická věrohodnostní funkce n ( Yi θ i b(θ) l(β) = a(ϕ) Derivace l β = n i=1 i=1 l θ i θ i µ i µ i η i η i β = i=1 ) + c(y i, ϕ) n 1 a i (ϕ) (Y 1 i µ i ) V (µ i )g (µ i ) x i = 0 Kanonický link: spojovací funkce je inverzní funkcí k b, potom můžeme zjednodušit na soustavu nelineárních rovnic n (Y i µ i )x i = 0 i=1 Řeší se různými iteračními metodami

9 MLE β 9/30 Iteračně vážená metoda nejmenších čtverců (IWLS, IRLS) ˆβ je předchozí odhad β, dopočteme ˆη i = x i ˆβ a ˆµ i = g 1 (ˆη i ) spočteme pracovní závislou proměnnou z i = ˆη i + (y i ˆµ i ) dη i dµ i vypočteme iteraci vah (začínáme s w i ze vztahu a i (ϕ) = ϕ/w i ) w new i nakonec dostaneme nový odhad β = w i /[b (θ i )( dη i dµ i ) 2 ] ˆβ = (X W X) 1 XW z Jako výchozí aproximace se volí ˆµ i = y i

10 10/30 Míry dobré shody Plný (saturovaný) model maximalizuje věrhodnostní funkci (l ) V saturovaném modelu máme ˆµ i = y i a ˆθ i = (b ) 1 (y i ) škálovatelná deviance (log věr. fce modelu vs. její max hodnota) ( ) n D (ˆβ) = 2 l 1 ( l(ˆβ) = 2 y i (ˆθ i a i (ϕ) ˆθ ) ( )) b(ˆθ i ) b(ˆθ) deviance (při a i (ϕ) = ϕ/w i ) n D(ˆβ) = D (ˆβ)ϕ = 2 Pearsonovo χ 2 i=1 i=1 ( w i y i (ˆθ i ˆθ ) ( )) b(ˆθ i ) b(ˆθ) (pozorování vs. odhadem jejich střední hod. v modelu) n χ 2 (y i ˆµ i ) 2 = V (ˆµ i ) i=1

11 Míry dobré shody 11/30 Testování podmodelu Označme β odhad β v podmodelu s p < p parametry l(ˆβ) l( β) = D (ˆβ) D ( β) = D( ˆβ) D ( β) ϕ as χ 2 q, kde q = p p je rozdíl v počtu parametrů, při známém ϕ Waldův test I(β) = X W X/ϕ ˆβ as N p (β, (X W X) 1 ϕ) Testy podmnožin β jsou založeny na příslušných marginálních rozděleních konzistentní statistika pro odhad parametru ϕ ˆϕ = D(ˆβ) n p

12 12/30 Příklady GLZ Obecný lineární model, Normální rozdělení, identita Log lineární model, Poissonovo rozdělení, logaritmus Gamma regrese, Gamma rozdělení, reciprocita Logistický model, Binomické rozdělení, logitová funkce Další rozdělení: Inverzní Gaussovo Negativně binomické overdispersed Poissonovo rozdělení Logaritmicko normální NE, jen v obecné formě Další modely: probitový model, log log model

13 Příklady GLZ 13/30 Obecný lineární model Normální rozdělení Y i N(µ i, σ 2 ): f(y i ) = 1 2πσ 2 exp Přirozený parametr θ i = µ i a rozptylová funkce V (µ i ) = 1 ( (y i µ i ) 2 2σ 2 ) a(ϕ) = ϕ = σ 2 b(θ i ) = µ 2 /2 c(y i, ϕ) = y2 2σ log(2πσ2 ) kanonický link: µ i = η i IWLS: z i = η i + (y i µ i ) = y i ˆβ = (X X) 1 X y výsledek v prvním kroku deviance je reziduální součet čtverců D = ϕd = n (y i ˆµ i ) 2 i=1

14 Příklady GLZ 14/30 Log lineární model Poissonovo rozdělení Y i P o(µ i ): f(y i ) = e µ iµ y i i y i! Přirozený parametr θ i = log µ i a rozptylová funkce V (µ i ) = µ i a(ϕ) = ϕ = 1 b(θ i ) = e θ i c(y i, ϕ) = log(y i!) kanonický link: η i = log(µ i ) IWLS: z i = η i + (y i µ i )/µ i a iterované váhy w i = µ i deviance Y i P o( µ i ) D = 2 n i=1 D = 2 ( y i log y ) i (y i ˆµ i ) ˆµ i n i=1 ( y i log y ) i ˆµ i

15 15/30 Použití GLZ v povinném ručení BMS Sazby Komplexní model

16 16/30 Model v povinném ručení Y je modelovaná kvantita (výše škody, agregace, počet), závisí na X = {X 1, X 2,...}, apriorní tarifní proměnné - grupování rizik Z = {Z 1, Z 2,...}, neznámé proměnné Rizikové faktory pojistníka jsou Ω = X Z. Pojistné E [Y Ω] Nese pojistník Nese pojistitel Riziko E [Y Ω] Y E [Y Ω] Střední hodnota EY 0 Rozptyl Var [E [Y Ω]] E [Var [Y Ω]] Předchozí situace je čistě teoretická, neboť neznáme Z. Riziko E [Y X] Y E [Y X] Střední hodnota E [Y ] 0 Rozptyl Var [E [Y X]] E [Var [Y X]]

17 Model v povinném ručení 17/30 Aposteriorní sazbování Minulá škodní zkušenosti o riziku Y, označme Y Ω a (X, Y ) s stávají porovnatelné, jak čas běží Potom máme pojistné E [Y X, Y ] Možnosti konstrukce modelu: 1 Uvažujeme klasifikaci rizika a BMS odděleně 2 Uvažujeme komplexní model klasifikující riziko a zahrnující BMS Příklad: Španělská pojišťovna 4 x 3 tříd

18 Oddělené modely 18/30 Systém bonus-malus (BMS) Riziko i je reprezentováno (Θ i, K i1, K i2,...) Počty škod v čase K ij Θ i = θ P o(θ) a podmíněně nezávislé Θ i Γ(a, τ) (K ij má nepodmíněné rozdělení negativně binomické) Označme K i (t) = t K ij j=1 Uvažujme jednotkovou očekávanou výši škody Apriori bez historie je požadováno pojistné E [Θ i ] Pojistné určíme minimalizací E [L(θ i Ψ(k i1,..., k it ))] L(x) = x 2 W q t+1 = a(1 ρ τ q) + k i (t) ρ t q L(x) = exp( cx) Wt+1 e = a(1 ρ τ e(c)) + k i (t) ρ t e (c) kde ρ q = t a ρ τ+t e(c) = t log ( ) 1 + c c τ+t

19 Oddělené modely BMS 19/30 L(x) = x 2 W q t+1 = a(1 ρ τ q) + k i (t) ρ t q L(x) = exp( cx) Wt+1 e = a(1 ρ τ e(c)) + k i (t) ρ t e (c) ρ q = t ρ τ+t e (c) = t log ( ) 1 + c c τ+t ρ e (c) ρ q a W e t+1 W q t+1 při c 0 ρ e (c) 0 pro c, proto W e t+1 a/τ Pojistné rizika i, které je v roce t zařazeno v třídě I i (t) P q,e t+1(k i (t), t) = BP Ii (t+1)bmf q,e t+1(k i (t), t), BMF q (k i (t), t) = W q t+1 E[Θ] i BMF e (k i (t), t) = W q t+1 E[Θ] i = a+k i (t) τ τ+t a = 1 t c log ( 1 + c τ+t ) + log ( 1 + c τ+t ) ki (t) τ c a

20 Oddělené modely BMS 20/30 Výsledky: BMS - odhady v Negativně binomickém rozdělení â = a ˆτ = k n k ˆn k n k ˆn k

21 Oddělené modely apriorní sazby 21/30 Pozorované ŠF Věk Výkon < < < Kategorické proměnné pro věk J 2, J 3 a pro výkon L 2, L 3, L 4 Každá třída je reprezentována vektorem x i = (1, j 2, j 3, l 2, l 3, l 4 ) Parametry β = (ɛ, γ 2, γ 3, δ 2, δ 3, δ 4 ) Log lineární model, Poissonovo rozdělení, logaritmický link

22 Oddělené modely apriorní sazby 22/30 Výsledky: Parametr Odhad sm. odch. ɛ γ γ δ δ δ Věk Výkon < < <

23 23/30

24 24/30

25 25/30 Komplexní model Nechť je K it P o(λ Ii (t)) počet škod rizika i v roce t, kde I i (t) je příslušný index třídy a λ Ii (t) jsou jejich ŠF Rozptyl pozorování je však větší než střední hodnota, předpoklad Poissona není korektní Raději předpokládáme K it P o(λ Ii (t)θ i ), kde Θ i Γ(α, α) Potom K it I i (t) má negativně binomické rozdělení ( ) ( ) k ( α + k 1 λii(t) α P (K it = k I i (t)) = k α + λ Ii(t) α + λ Ii(t) Θ i K i1 = k i1,..., K it = k it Γ(α + k i (t), α + λ i (t)) Parametr α odhadneme metodou maximální věrohodnosti { 12 k max (i) ( ) ( ) k ( ) } α nik α + k 1 λii(t) α L(α) = k α + λ Ii(t) α + λ Ii(t) i=1 k=0 ) α

26 Komplexní model 26/30 Pojistné Relativní výše bunusu malusu P q,e t+1 = λ Ii (t+1)bmf q,e t+1(k i (t), λ i (t)) BMF q,e t+1(k i (t), t) = (1 ρ q,e ) + ρ q,e k i (t) λ i (t) Váhy pro kvadratickou a exponenciální ztrátovou funkci ( ) ρ q = λ i (t) α+λ i ρ (t) e (c) = λ i (t) log 1 + c c α+λ i (t) Nerovnosti a konvergence stejně jako v oddělených modelech ρ e (c) ρ q ρ e (c) ρ q pro c 0 a tedy Pt+1(k e i, λ i (t)) Pt+1(k q i, λ i (t)) ρ e (c) 0 pro c, proto Pt+1(k e i, λ i (t)) λ Ii (t), to znamená, že všechna rizika jedné třídy platí stejné pojistné, tj. nemáme BMS

27 27/30

28 28/30

29 29/30 Poznámky k SW Statistica sigma parametrizace { 1, 1} váhy pozorování konstrukce modelu Statistica ukázka

30 30/30 Literatura L. Bermúdez, M. Denuit & J. Dhaene (2001) Exponential bonus-malus systems integrating a priori risk classification. Journal of Actuarial Practice 9, Děkuji za pozornost

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

6 Vícerovnicové ekonometrické soustavy 1

6 Vícerovnicové ekonometrické soustavy 1 6 Vícerovnicové ekonometrické soustavy Obsah 6 Vícerovnicové ekonometrické soustavy 1 6.1 SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese).......... 3 6.2 Panelová data.........................................

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Matematická Statistika. Ivan Nagy, Jitka Kratochvílová

Matematická Statistika. Ivan Nagy, Jitka Kratochvílová Texty k přednáškám Matematická Statistika Ivan Nagy, Jitka Kratochvílová Obsah 1 Náhodný výběr 4 1.1 Pojem náhodného výběru (Sripta str. 68).................... 4 1.2 Charakteristiky výběru (Sripta str.

Více

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII Tomáš Katrňák Fakulta sociálních studií Masarykova univerzita Brno SOCIOLOGIE A STATISTIKA nadindividuální společenské struktury podmiňují lidské chování (Durkheim)

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Propenzitní modelování. Veronika Počerová 10. 4. 2015

Propenzitní modelování. Veronika Počerová 10. 4. 2015 Propenzitní modelování Veronika Počerová 10. 4. 2015 motivace 2 definice Prediktivní analytika je disciplína, která využívá metod Data Miningu k tomu, aby na základě historického chování sledovaného jevu

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Michal Rychnovský Postupná výstavba modelů ohodnocení kreditního rizika

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Michal Rychnovský Postupná výstavba modelů ohodnocení kreditního rizika Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Michal Rychnovský Postupná výstavba modelů ohodnocení kreditního rizika Katedra pravděpodobnosti a matematické statistiky Vedoucí

Více

Riziko rezerv v neživotním pojištění Srovnání několika metod výpočtu na základě škodních trojúhelníků

Riziko rezerv v neživotním pojištění Srovnání několika metod výpočtu na základě škodních trojúhelníků Riziko rezerv v neživotním pojištění Srovnání několika metod výpočtu na základě škodních trojúhelníků Tomáš Petr Actuarial & Insurance Solutions, Deloitte. Seminář z aktuárských věd 30. března 2012 Audit.Tax.Consulting.Financial

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Statistika v příkladech

Statistika v příkladech Verlag Dashöfer Statistika v příkladech Praktické aplikace řešené v MS Ecel Ukázkové tety z připravované učebnice Doc. Ing. Jan Kožíšek, CSc. Ing. Barbora Stieberová, Ph.D. Praha 0 Obsah Obsah. Předmluva

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Ω = 6 6 3 = 1 36 = 0.0277,

Ω = 6 6 3 = 1 36 = 0.0277, Příklad : Házíme třemi kostkami. Jaká je pravděpodobnost, že součet bude roven 5? Jev A značí příznivé možnosti: {,, 3}; {,, }; {, 3, }; {,, }; {,, }; {3,, }; P (A) = A Ω = 6 6 3 = 36 = 0.077, kde. značí

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Modelování výnosové křivky a modelování úrokových nákladů státního dluhu Kamil Kladívko Odbor řízení státního dluhu a finančního majetku Úrokové náklady portfolia státního dluhu 2 Úrokové náklady státního

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

PROGRAMECH JOSEF TVRDÍK ČÍSLO OBLASTI PODPORY: 7.2.2 STUDIJNÍCH PROGRAMECH OSTRAVSKÉ UNIVERZITY REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/2.2.00/28.

PROGRAMECH JOSEF TVRDÍK ČÍSLO OBLASTI PODPORY: 7.2.2 STUDIJNÍCH PROGRAMECH OSTRAVSKÉ UNIVERZITY REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/2.2.00/28. ANALÝZA VÍCEROZMĚRNÝCH DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH JOSEF TVRDÍK ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému

Více

Aplikace matematiky v ekonomii

Aplikace matematiky v ekonomii KMA/SZZAE Aplikace matematiky v ekonomii Matematické modely v ekonomii 1. Klasifikace prostředků matematického modelování v ekonomii. 2. Modely síťové analýzy: metody CPM a PERT. 3. Modely hromadné obsluhy:

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

05/29/08 cvic5.r. cv5.dat <- read.csv("cvic5.csv")

05/29/08 cvic5.r. cv5.dat <- read.csv(cvic5.csv) Zobecněné lineární modely Úloha 5: Vzdělání a zájem o politiku cv5.dat

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímní učební text vybrané příklady (srpen 01) Miloslav Suchánek Úkol č. 1 Maticové operace s využitím EXCELu V EXCELu jsou dvě důležité maticové operace, které nám pomohou

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

Matematika pro ekonomiku

Matematika pro ekonomiku Pojistná matematika 14.10.2011 1 I. POJISTNÁ MATEMATIKA Pojistná matematika 2 Základní odvětví: životní pojištění, do něhož spadá výplata předem sjednané částky v případě smrti nebo dožití se určitého

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73) Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY.

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY. APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGITICKÝ RŮTOVÝ MODEL. PRUŽNOT NABÍDKY A POPTÁVKY. Následující text se věnuje modelům poptávky po předmětech dlouhodobé spotřeby. Na tyto modely bychom

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

Využití korelace v rezervování povinného ručení

Využití korelace v rezervování povinného ručení INSURANCE Využití korelace v rezervování povinného ručení Ondřej Bušta, Actuarial services 7. prosince 2007 ADVISORY 1 Agenda Nástin problému Majetkové škody Zdravotní škody Korelační analýza a riziko

Více

ODHADY NÁVRATOVÝCH HODNOT PRO

ODHADY NÁVRATOVÝCH HODNOT PRO ODHADY NÁVRATOVÝCH HODNOT PRO SRÁŽKOVÁ A TEPLOTNÍ DATA Katedra aplikované matematiky Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Novohradské statistické dny ÚVOD Velká pozornost

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Vysoká škola ekonomická v Praze. Fakulta financí a účetnictví

Vysoká škola ekonomická v Praze. Fakulta financí a účetnictví Vysoká škola ekonomická v Praze Fakulta financí a účetnictví Katedra bankovnictví a pojišťovnictví Diplomová práce Srovnání logistické regrese a rozhodovacích stromů při tvorbě skóringových modelů Ladislav

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

KALKULÁTORY EXP LOCAL SIN

KALKULÁTORY EXP LOCAL SIN + = KALKULÁTORY 2014 201 C π EXP LOCAL SIN MU GT ŠKOLNÍ A VĚDECKÉ KALKULÁTORY 104 103 102 Hmotnost: 100 g 401 279 244 EXPONENT EXPONENT EXPONENT 142 mm 170 mm 1 mm 7 mm 0 mm 4 mm Výpočty zlomků Variace,

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Přednáška 10. Analýza závislosti

Přednáška 10. Analýza závislosti Přednáška 10 Analýza závislosti Analýza závislosti dvou kategoriálních proměnných Analýza závislosti v kontingečních tabulkách Analýza závislosti v asociačních tabulkách Simpsonův paradox Analýza závislosti

Více

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010 SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více