1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení Seminář z aktuárských věd. Slides by LATEX.

Rozměr: px
Začít zobrazení ze stránky:

Download "1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení. 31.3.2006 Seminář z aktuárských věd. Slides by LATEX."

Transkript

1 1/ Seminář z aktuárských věd Slides by LATEX Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení

2 2/30 Obsah 1 Zobecněné lineární modely (GLZ 1 ) Obecný lineární model (GLM) Rozdělení exponenciálního typu MLE Testování hypotéz Příklady 2 Použití v povinném ručení BMS Sazby Komplexní model 3 Poznámky k software 1 Zkratka používaná SW StatSoft Statistica

3 Modelování 3/30 Model Vysvětlovaná proměnná = systematická složka + stochastická složka y 1,..., y n pozorování vysvětlované proměnné y i je realizací náhodné veličiny Y i Obecný lineární model Y i N(µ i, σ 2 ) µ i = x iβ p vysvětlujích proměnných β = (β 1,..., β p ) i té pozorování x i = (x i1,..., x ip )

4 Modelování 4/30 Zobecněný lineární model Obecný model zobecníme ve dvou krocích: (µ i je nadále střední hodnotou n. v. Y i a β jsou vysvětlující parametry) ❶ Stochastickou složku: Y i má rozdělení exponenciálního typu ❷ Systematickou složku: lineární vztah mezi vysvětlujícími proměnnými a vysvětlujícími parametry η i = x iβ spojovací funkce (link) mezi střední hodnotou µ i a lineární složkou η i g(µ i ) = η i (ryze monotónní, se spoj. druhou derivací) Model může obsahovat jak spojité tak kategoriální vysvětlující proměnné

5 5/30 Rozdělení exponenciálního typu Obecná forma f(y, θ) = exp (d(θ)e(y) + g(θ) + h(y)) Přirozená forma ( yθ b(θ) f(y, θ, ϕ) = exp a(ϕ) ) + c(y, ϕ) d(θ) = θ a e(y) = y, navíc parametr ϕ θ je přirozený (kanonický) parametr ϕ je rozptylový (disperzní) parametr

6 Rozdělení exponenciálního typu 6/30 Disperzní funkce a(ϕ): Používá se konstantní rovna ϕ nebo ve tvaru a i (ϕ) = ϕ/w i Kumulantová funkce b(θ): se spojitou druhou derivaci κ r = b (r) (θ)a(ϕ) r 1 E [Y ] = b (θ) = µ Var [Y ] = b (θ)a(ϕ) = V (µ)a(ϕ) κ(1) je střední hodnota a κ(2), κ(3) další dva centrální momenty Rozdělení je plně určeno vztahem mezi E [Y ] a Var Y. V (µ) = 1 Normální V (µ) = µ 2 Gamma V (µ) = µ Poissonovo V (µ) = µ 3 Inverzní Gaussovo Doplňková funkce c(y, ϕ) normuje hustotu

7 Rozdělení exponenciálního typu 7/30 Měření tailu Míra rizika (hazard rate) na intervalu pevné šířky w h w (y) = F (y+w) F (y) 1 F (y) Interpretace: Uvažujme vrstvu w xs y. h w (y) = P(y<Y y+w) P(Y >y)) h w je prst., že škoda nepřesáhne y + w, pokud už přesáhla y. Vysoká hodnota h w znamená, že škoda nad y vyčerpá tuto vrstvu jen s malou prstí. = lehký tail. Pro většinu aplikací v pojišťovnictví uvažujeme klesající míru rizika. h w (y) 0 pro y. Normální a Poissonovo mají limitu 1 Negativně binomické, Gamma a Inverzní Gaussovo jdou ke konstantě mezi 0 a 1 Logaritmicko normální jde k nule, ale není z exp. rodiny s hustotou v přirozeném tvaru Exp. rodina rozdělení je méně vhodná pro odvětví s těžším tailem. transformace logaritmem a pak GLM není totéž jako GLZ s logaritmickou linkovací funkcí je rozdíl mezi transformací y i a transformací střední hodnoty

8 8/30 Odhad β metodou maximální věrohodnosti Logaritmická věrohodnostní funkce n ( Yi θ i b(θ) l(β) = a(ϕ) Derivace l β = n i=1 i=1 l θ i θ i µ i µ i η i η i β = i=1 ) + c(y i, ϕ) n 1 a i (ϕ) (Y 1 i µ i ) V (µ i )g (µ i ) x i = 0 Kanonický link: spojovací funkce je inverzní funkcí k b, potom můžeme zjednodušit na soustavu nelineárních rovnic n (Y i µ i )x i = 0 i=1 Řeší se různými iteračními metodami

9 MLE β 9/30 Iteračně vážená metoda nejmenších čtverců (IWLS, IRLS) ˆβ je předchozí odhad β, dopočteme ˆη i = x i ˆβ a ˆµ i = g 1 (ˆη i ) spočteme pracovní závislou proměnnou z i = ˆη i + (y i ˆµ i ) dη i dµ i vypočteme iteraci vah (začínáme s w i ze vztahu a i (ϕ) = ϕ/w i ) w new i nakonec dostaneme nový odhad β = w i /[b (θ i )( dη i dµ i ) 2 ] ˆβ = (X W X) 1 XW z Jako výchozí aproximace se volí ˆµ i = y i

10 10/30 Míry dobré shody Plný (saturovaný) model maximalizuje věrhodnostní funkci (l ) V saturovaném modelu máme ˆµ i = y i a ˆθ i = (b ) 1 (y i ) škálovatelná deviance (log věr. fce modelu vs. její max hodnota) ( ) n D (ˆβ) = 2 l 1 ( l(ˆβ) = 2 y i (ˆθ i a i (ϕ) ˆθ ) ( )) b(ˆθ i ) b(ˆθ) deviance (při a i (ϕ) = ϕ/w i ) n D(ˆβ) = D (ˆβ)ϕ = 2 Pearsonovo χ 2 i=1 i=1 ( w i y i (ˆθ i ˆθ ) ( )) b(ˆθ i ) b(ˆθ) (pozorování vs. odhadem jejich střední hod. v modelu) n χ 2 (y i ˆµ i ) 2 = V (ˆµ i ) i=1

11 Míry dobré shody 11/30 Testování podmodelu Označme β odhad β v podmodelu s p < p parametry l(ˆβ) l( β) = D (ˆβ) D ( β) = D( ˆβ) D ( β) ϕ as χ 2 q, kde q = p p je rozdíl v počtu parametrů, při známém ϕ Waldův test I(β) = X W X/ϕ ˆβ as N p (β, (X W X) 1 ϕ) Testy podmnožin β jsou založeny na příslušných marginálních rozděleních konzistentní statistika pro odhad parametru ϕ ˆϕ = D(ˆβ) n p

12 12/30 Příklady GLZ Obecný lineární model, Normální rozdělení, identita Log lineární model, Poissonovo rozdělení, logaritmus Gamma regrese, Gamma rozdělení, reciprocita Logistický model, Binomické rozdělení, logitová funkce Další rozdělení: Inverzní Gaussovo Negativně binomické overdispersed Poissonovo rozdělení Logaritmicko normální NE, jen v obecné formě Další modely: probitový model, log log model

13 Příklady GLZ 13/30 Obecný lineární model Normální rozdělení Y i N(µ i, σ 2 ): f(y i ) = 1 2πσ 2 exp Přirozený parametr θ i = µ i a rozptylová funkce V (µ i ) = 1 ( (y i µ i ) 2 2σ 2 ) a(ϕ) = ϕ = σ 2 b(θ i ) = µ 2 /2 c(y i, ϕ) = y2 2σ log(2πσ2 ) kanonický link: µ i = η i IWLS: z i = η i + (y i µ i ) = y i ˆβ = (X X) 1 X y výsledek v prvním kroku deviance je reziduální součet čtverců D = ϕd = n (y i ˆµ i ) 2 i=1

14 Příklady GLZ 14/30 Log lineární model Poissonovo rozdělení Y i P o(µ i ): f(y i ) = e µ iµ y i i y i! Přirozený parametr θ i = log µ i a rozptylová funkce V (µ i ) = µ i a(ϕ) = ϕ = 1 b(θ i ) = e θ i c(y i, ϕ) = log(y i!) kanonický link: η i = log(µ i ) IWLS: z i = η i + (y i µ i )/µ i a iterované váhy w i = µ i deviance Y i P o( µ i ) D = 2 n i=1 D = 2 ( y i log y ) i (y i ˆµ i ) ˆµ i n i=1 ( y i log y ) i ˆµ i

15 15/30 Použití GLZ v povinném ručení BMS Sazby Komplexní model

16 16/30 Model v povinném ručení Y je modelovaná kvantita (výše škody, agregace, počet), závisí na X = {X 1, X 2,...}, apriorní tarifní proměnné - grupování rizik Z = {Z 1, Z 2,...}, neznámé proměnné Rizikové faktory pojistníka jsou Ω = X Z. Pojistné E [Y Ω] Nese pojistník Nese pojistitel Riziko E [Y Ω] Y E [Y Ω] Střední hodnota EY 0 Rozptyl Var [E [Y Ω]] E [Var [Y Ω]] Předchozí situace je čistě teoretická, neboť neznáme Z. Riziko E [Y X] Y E [Y X] Střední hodnota E [Y ] 0 Rozptyl Var [E [Y X]] E [Var [Y X]]

17 Model v povinném ručení 17/30 Aposteriorní sazbování Minulá škodní zkušenosti o riziku Y, označme Y Ω a (X, Y ) s stávají porovnatelné, jak čas běží Potom máme pojistné E [Y X, Y ] Možnosti konstrukce modelu: 1 Uvažujeme klasifikaci rizika a BMS odděleně 2 Uvažujeme komplexní model klasifikující riziko a zahrnující BMS Příklad: Španělská pojišťovna 4 x 3 tříd

18 Oddělené modely 18/30 Systém bonus-malus (BMS) Riziko i je reprezentováno (Θ i, K i1, K i2,...) Počty škod v čase K ij Θ i = θ P o(θ) a podmíněně nezávislé Θ i Γ(a, τ) (K ij má nepodmíněné rozdělení negativně binomické) Označme K i (t) = t K ij j=1 Uvažujme jednotkovou očekávanou výši škody Apriori bez historie je požadováno pojistné E [Θ i ] Pojistné určíme minimalizací E [L(θ i Ψ(k i1,..., k it ))] L(x) = x 2 W q t+1 = a(1 ρ τ q) + k i (t) ρ t q L(x) = exp( cx) Wt+1 e = a(1 ρ τ e(c)) + k i (t) ρ t e (c) kde ρ q = t a ρ τ+t e(c) = t log ( ) 1 + c c τ+t

19 Oddělené modely BMS 19/30 L(x) = x 2 W q t+1 = a(1 ρ τ q) + k i (t) ρ t q L(x) = exp( cx) Wt+1 e = a(1 ρ τ e(c)) + k i (t) ρ t e (c) ρ q = t ρ τ+t e (c) = t log ( ) 1 + c c τ+t ρ e (c) ρ q a W e t+1 W q t+1 při c 0 ρ e (c) 0 pro c, proto W e t+1 a/τ Pojistné rizika i, které je v roce t zařazeno v třídě I i (t) P q,e t+1(k i (t), t) = BP Ii (t+1)bmf q,e t+1(k i (t), t), BMF q (k i (t), t) = W q t+1 E[Θ] i BMF e (k i (t), t) = W q t+1 E[Θ] i = a+k i (t) τ τ+t a = 1 t c log ( 1 + c τ+t ) + log ( 1 + c τ+t ) ki (t) τ c a

20 Oddělené modely BMS 20/30 Výsledky: BMS - odhady v Negativně binomickém rozdělení â = a ˆτ = k n k ˆn k n k ˆn k

21 Oddělené modely apriorní sazby 21/30 Pozorované ŠF Věk Výkon < < < Kategorické proměnné pro věk J 2, J 3 a pro výkon L 2, L 3, L 4 Každá třída je reprezentována vektorem x i = (1, j 2, j 3, l 2, l 3, l 4 ) Parametry β = (ɛ, γ 2, γ 3, δ 2, δ 3, δ 4 ) Log lineární model, Poissonovo rozdělení, logaritmický link

22 Oddělené modely apriorní sazby 22/30 Výsledky: Parametr Odhad sm. odch. ɛ γ γ δ δ δ Věk Výkon < < <

23 23/30

24 24/30

25 25/30 Komplexní model Nechť je K it P o(λ Ii (t)) počet škod rizika i v roce t, kde I i (t) je příslušný index třídy a λ Ii (t) jsou jejich ŠF Rozptyl pozorování je však větší než střední hodnota, předpoklad Poissona není korektní Raději předpokládáme K it P o(λ Ii (t)θ i ), kde Θ i Γ(α, α) Potom K it I i (t) má negativně binomické rozdělení ( ) ( ) k ( α + k 1 λii(t) α P (K it = k I i (t)) = k α + λ Ii(t) α + λ Ii(t) Θ i K i1 = k i1,..., K it = k it Γ(α + k i (t), α + λ i (t)) Parametr α odhadneme metodou maximální věrohodnosti { 12 k max (i) ( ) ( ) k ( ) } α nik α + k 1 λii(t) α L(α) = k α + λ Ii(t) α + λ Ii(t) i=1 k=0 ) α

26 Komplexní model 26/30 Pojistné Relativní výše bunusu malusu P q,e t+1 = λ Ii (t+1)bmf q,e t+1(k i (t), λ i (t)) BMF q,e t+1(k i (t), t) = (1 ρ q,e ) + ρ q,e k i (t) λ i (t) Váhy pro kvadratickou a exponenciální ztrátovou funkci ( ) ρ q = λ i (t) α+λ i ρ (t) e (c) = λ i (t) log 1 + c c α+λ i (t) Nerovnosti a konvergence stejně jako v oddělených modelech ρ e (c) ρ q ρ e (c) ρ q pro c 0 a tedy Pt+1(k e i, λ i (t)) Pt+1(k q i, λ i (t)) ρ e (c) 0 pro c, proto Pt+1(k e i, λ i (t)) λ Ii (t), to znamená, že všechna rizika jedné třídy platí stejné pojistné, tj. nemáme BMS

27 27/30

28 28/30

29 29/30 Poznámky k SW Statistica sigma parametrizace { 1, 1} váhy pozorování konstrukce modelu Statistica ukázka

30 30/30 Literatura L. Bermúdez, M. Denuit & J. Dhaene (2001) Exponential bonus-malus systems integrating a priori risk classification. Journal of Actuarial Practice 9, Děkuji za pozornost

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

7 Regresní modely v analýze přežití

7 Regresní modely v analýze přežití 7 Regresní modely v analýze přežití Předpokládané výstupy z výuky: 1. Student rozumí významu regresního modelování dat o přežití 2. Student dokáže definovat pojmy poměr rizik a základní riziková funkce

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

5. B o d o v é o d h a d y p a r a m e t r ů

5. B o d o v é o d h a d y p a r a m e t r ů 5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

DIPLOMOVÁ PRÁCE. Aplikovaná logistická regrese

DIPLOMOVÁ PRÁCE. Aplikovaná logistická regrese UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Aplikovaná logistická regrese Vedoucí diplomové práce: Mgr. Jana Vrbková, Ph.D.

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

STATISTICKÁ KLASIFIKACE POMOCÍ ZOBECNĚNÝCH

STATISTICKÁ KLASIFIKACE POMOCÍ ZOBECNĚNÝCH VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNíHO INŽENÝRSTVí ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS STATISTICKÁ KLASIFIKACE POMOCÍ ZOBECNĚNÝCH

Více

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII Tomáš Katrňák Fakulta sociálních studií Masarykova univerzita Brno ÚVOD DO LOGLINEÁRNÍHO MODELOVÁNÍ historie - až do 60. let se k analýze kontingenčních tabulek

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Poznámky k předmětu Aplikovaná statistika, 11. téma

Poznámky k předmětu Aplikovaná statistika, 11. téma Poznámky k předmětu Aplikovaná statistika, 11. téma Testy založené na χ 2 rozdělení V přehledu významných rozdělení jsme si uvedli, že Poissonovým rozdělením se modeluje počet událostí, které nastanou

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Nestranný odhad Statistické vyhodnocování exp. dat M. Čada

Nestranný odhad Statistické vyhodnocování exp. dat M. Čada Nestranný odhad 1 Parametr θ Máme statistický (výběrový) soubor, který je realizací náhodného výběru 1, 2, 3,, n z pravděpodobnostní distribuce, která je kompletně stanovena jedním nebo více parametry

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová Testování předpokladů pro metodu chain-ladder Seminář z aktuárských věd 4. 11. 2016 Petra Španihelová Obsah Datová struktura Posouzení dat Předpoklady metody chain-ladder dle T. Macka Běžná lineární regrese

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

RNDr. Martin Branda, Ph.D.

RNDr. Martin Branda, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Zobecněné lineární modely v pojišt ovnictví RNDr Martin Branda, PhD Zpracováno v rámci projektu

Více

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

ELLENBERGOVY INDIKAČNÍ HODNOTY. David Zelený Zpracování dat v ekologii společenstev

ELLENBERGOVY INDIKAČNÍ HODNOTY. David Zelený Zpracování dat v ekologii společenstev 3 2 6 6 5 2 ELLENBERGOVY INDIKAČNÍ HODNOTY ELLENBERGOVY INDIKAČNÍ HODNOTY (EIH) optima druhů rostlin na gradientu ţivin, vlhkosti, půdní reakce, kontinentality, teploty, světla a salinity (salinita se

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 10 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách 13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Predikce roční spotřeby zemního plynu po ceníkových pásmech

Predikce roční spotřeby zemního plynu po ceníkových pásmech Predikce roční spotřeby zemního plynu po ceníkových pásmech Ondřej Konár, Marek Brabec, Ivan Kasanický, Marek Malý, Emil Pelikán Ústav informatiky AV ČR, v.v.i. ROBUST 2014 Jetřichovice 20. ledna 2014

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH

BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Verze 24-2-22 Michal Friesl Ref: in Analýza dat 24/II (K. Kupka, ed., Trilobyte Statistical Software, Pardubice, 25, pp. 2 33. BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH MICHAL FRIESL Katedra matematiky, Fakulta

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

REGRESNÍ MODELY V POJIŠŤOVNICTVÍ. Seminář z aktuárských věd 2. prosince 2016 Kateřina Vlčková

REGRESNÍ MODELY V POJIŠŤOVNICTVÍ. Seminář z aktuárských věd 2. prosince 2016 Kateřina Vlčková REGRESNÍ MODELY V POJIŠŤOVNICTVÍ Seminář z aktuárských věd 2. prosince 2016 Kateřina Vlčková REGRESNÍ MODELY V POJIŠŤOVNICTVÍ 1. PŘEDSTAVENÍ 2. ÚVOD 3. REGRESNÍ MODELY 1. LM Lineární modely (Linear Model)

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Tomáš Cipra: Finanční a pojistné vzorce. Grada Publishing, Praha 2006 (374 stran, ISBN: 80-247- 1633-X) 1. ÚVOD... 17

Tomáš Cipra: Finanční a pojistné vzorce. Grada Publishing, Praha 2006 (374 stran, ISBN: 80-247- 1633-X) 1. ÚVOD... 17 Tomáš Cipra: Finanční a pojistné vzorce. Grada Publishing, Praha 2006 (374 stran, ISBN: 80-247- 1633-X) OBSAH SEZNAM NĚKTERÝCH SYMBOLŮ.... 13 1. ÚVOD.... 17 I. FINANČNÍ VZORCE.... 19 2. JEDNODUCHÉ ÚROČENÍ

Více

Jana Vránová, 3. lékařská fakulta, UK Praha

Jana Vránová, 3. lékařská fakulta, UK Praha Jana Vránová, 3. lékařská fakulta, UK Praha Byla navržena v 60tých letech jako alternativa k metodě nejmenších čtverců pro případ, že vysvětlovaná proměnná je binární Byla především používaná v medicíně

Více

Bootstrap - konfidenční intervaly a testy

Bootstrap - konfidenční intervaly a testy 9. prosince 2008 Konfidenční intervaly obecně Máme data X 1...X n F,(iid), kde F neznáme. Konfidenční intervaly obecně Máme data X 1...X n F,(iid), kde F neznáme. Chceme odhadnout θ = t(f), např. t(f)

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e) Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je

Více

STANOVOVÁNÍ IBNR REZERVY S VYUŽITÍM ZOBECNĚNÉHO LINEÁRNÍHO MODELU 1

STANOVOVÁNÍ IBNR REZERVY S VYUŽITÍM ZOBECNĚNÉHO LINEÁRNÍHO MODELU 1 NÁRODOHOSPODÁŘSKÝ OBZOR STANOVOVÁNÍ IBNR REZERVY S VYUŽITÍM ZOBECNĚNÉHO LINEÁRNÍHO MODELU 1 Miroslav Otáhal Úvod Důležitou součástí ekonomiky každé země je finanční sektor. Ten je kromě burz, bank a jim

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více