1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení Seminář z aktuárských věd. Slides by LATEX.

Rozměr: px
Začít zobrazení ze stránky:

Download "1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení. 31.3.2006 Seminář z aktuárských věd. Slides by LATEX."

Transkript

1 1/ Seminář z aktuárských věd Slides by LATEX Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení

2 2/30 Obsah 1 Zobecněné lineární modely (GLZ 1 ) Obecný lineární model (GLM) Rozdělení exponenciálního typu MLE Testování hypotéz Příklady 2 Použití v povinném ručení BMS Sazby Komplexní model 3 Poznámky k software 1 Zkratka používaná SW StatSoft Statistica

3 Modelování 3/30 Model Vysvětlovaná proměnná = systematická složka + stochastická složka y 1,..., y n pozorování vysvětlované proměnné y i je realizací náhodné veličiny Y i Obecný lineární model Y i N(µ i, σ 2 ) µ i = x iβ p vysvětlujích proměnných β = (β 1,..., β p ) i té pozorování x i = (x i1,..., x ip )

4 Modelování 4/30 Zobecněný lineární model Obecný model zobecníme ve dvou krocích: (µ i je nadále střední hodnotou n. v. Y i a β jsou vysvětlující parametry) ❶ Stochastickou složku: Y i má rozdělení exponenciálního typu ❷ Systematickou složku: lineární vztah mezi vysvětlujícími proměnnými a vysvětlujícími parametry η i = x iβ spojovací funkce (link) mezi střední hodnotou µ i a lineární složkou η i g(µ i ) = η i (ryze monotónní, se spoj. druhou derivací) Model může obsahovat jak spojité tak kategoriální vysvětlující proměnné

5 5/30 Rozdělení exponenciálního typu Obecná forma f(y, θ) = exp (d(θ)e(y) + g(θ) + h(y)) Přirozená forma ( yθ b(θ) f(y, θ, ϕ) = exp a(ϕ) ) + c(y, ϕ) d(θ) = θ a e(y) = y, navíc parametr ϕ θ je přirozený (kanonický) parametr ϕ je rozptylový (disperzní) parametr

6 Rozdělení exponenciálního typu 6/30 Disperzní funkce a(ϕ): Používá se konstantní rovna ϕ nebo ve tvaru a i (ϕ) = ϕ/w i Kumulantová funkce b(θ): se spojitou druhou derivaci κ r = b (r) (θ)a(ϕ) r 1 E [Y ] = b (θ) = µ Var [Y ] = b (θ)a(ϕ) = V (µ)a(ϕ) κ(1) je střední hodnota a κ(2), κ(3) další dva centrální momenty Rozdělení je plně určeno vztahem mezi E [Y ] a Var Y. V (µ) = 1 Normální V (µ) = µ 2 Gamma V (µ) = µ Poissonovo V (µ) = µ 3 Inverzní Gaussovo Doplňková funkce c(y, ϕ) normuje hustotu

7 Rozdělení exponenciálního typu 7/30 Měření tailu Míra rizika (hazard rate) na intervalu pevné šířky w h w (y) = F (y+w) F (y) 1 F (y) Interpretace: Uvažujme vrstvu w xs y. h w (y) = P(y<Y y+w) P(Y >y)) h w je prst., že škoda nepřesáhne y + w, pokud už přesáhla y. Vysoká hodnota h w znamená, že škoda nad y vyčerpá tuto vrstvu jen s malou prstí. = lehký tail. Pro většinu aplikací v pojišťovnictví uvažujeme klesající míru rizika. h w (y) 0 pro y. Normální a Poissonovo mají limitu 1 Negativně binomické, Gamma a Inverzní Gaussovo jdou ke konstantě mezi 0 a 1 Logaritmicko normální jde k nule, ale není z exp. rodiny s hustotou v přirozeném tvaru Exp. rodina rozdělení je méně vhodná pro odvětví s těžším tailem. transformace logaritmem a pak GLM není totéž jako GLZ s logaritmickou linkovací funkcí je rozdíl mezi transformací y i a transformací střední hodnoty

8 8/30 Odhad β metodou maximální věrohodnosti Logaritmická věrohodnostní funkce n ( Yi θ i b(θ) l(β) = a(ϕ) Derivace l β = n i=1 i=1 l θ i θ i µ i µ i η i η i β = i=1 ) + c(y i, ϕ) n 1 a i (ϕ) (Y 1 i µ i ) V (µ i )g (µ i ) x i = 0 Kanonický link: spojovací funkce je inverzní funkcí k b, potom můžeme zjednodušit na soustavu nelineárních rovnic n (Y i µ i )x i = 0 i=1 Řeší se různými iteračními metodami

9 MLE β 9/30 Iteračně vážená metoda nejmenších čtverců (IWLS, IRLS) ˆβ je předchozí odhad β, dopočteme ˆη i = x i ˆβ a ˆµ i = g 1 (ˆη i ) spočteme pracovní závislou proměnnou z i = ˆη i + (y i ˆµ i ) dη i dµ i vypočteme iteraci vah (začínáme s w i ze vztahu a i (ϕ) = ϕ/w i ) w new i nakonec dostaneme nový odhad β = w i /[b (θ i )( dη i dµ i ) 2 ] ˆβ = (X W X) 1 XW z Jako výchozí aproximace se volí ˆµ i = y i

10 10/30 Míry dobré shody Plný (saturovaný) model maximalizuje věrhodnostní funkci (l ) V saturovaném modelu máme ˆµ i = y i a ˆθ i = (b ) 1 (y i ) škálovatelná deviance (log věr. fce modelu vs. její max hodnota) ( ) n D (ˆβ) = 2 l 1 ( l(ˆβ) = 2 y i (ˆθ i a i (ϕ) ˆθ ) ( )) b(ˆθ i ) b(ˆθ) deviance (při a i (ϕ) = ϕ/w i ) n D(ˆβ) = D (ˆβ)ϕ = 2 Pearsonovo χ 2 i=1 i=1 ( w i y i (ˆθ i ˆθ ) ( )) b(ˆθ i ) b(ˆθ) (pozorování vs. odhadem jejich střední hod. v modelu) n χ 2 (y i ˆµ i ) 2 = V (ˆµ i ) i=1

11 Míry dobré shody 11/30 Testování podmodelu Označme β odhad β v podmodelu s p < p parametry l(ˆβ) l( β) = D (ˆβ) D ( β) = D( ˆβ) D ( β) ϕ as χ 2 q, kde q = p p je rozdíl v počtu parametrů, při známém ϕ Waldův test I(β) = X W X/ϕ ˆβ as N p (β, (X W X) 1 ϕ) Testy podmnožin β jsou založeny na příslušných marginálních rozděleních konzistentní statistika pro odhad parametru ϕ ˆϕ = D(ˆβ) n p

12 12/30 Příklady GLZ Obecný lineární model, Normální rozdělení, identita Log lineární model, Poissonovo rozdělení, logaritmus Gamma regrese, Gamma rozdělení, reciprocita Logistický model, Binomické rozdělení, logitová funkce Další rozdělení: Inverzní Gaussovo Negativně binomické overdispersed Poissonovo rozdělení Logaritmicko normální NE, jen v obecné formě Další modely: probitový model, log log model

13 Příklady GLZ 13/30 Obecný lineární model Normální rozdělení Y i N(µ i, σ 2 ): f(y i ) = 1 2πσ 2 exp Přirozený parametr θ i = µ i a rozptylová funkce V (µ i ) = 1 ( (y i µ i ) 2 2σ 2 ) a(ϕ) = ϕ = σ 2 b(θ i ) = µ 2 /2 c(y i, ϕ) = y2 2σ log(2πσ2 ) kanonický link: µ i = η i IWLS: z i = η i + (y i µ i ) = y i ˆβ = (X X) 1 X y výsledek v prvním kroku deviance je reziduální součet čtverců D = ϕd = n (y i ˆµ i ) 2 i=1

14 Příklady GLZ 14/30 Log lineární model Poissonovo rozdělení Y i P o(µ i ): f(y i ) = e µ iµ y i i y i! Přirozený parametr θ i = log µ i a rozptylová funkce V (µ i ) = µ i a(ϕ) = ϕ = 1 b(θ i ) = e θ i c(y i, ϕ) = log(y i!) kanonický link: η i = log(µ i ) IWLS: z i = η i + (y i µ i )/µ i a iterované váhy w i = µ i deviance Y i P o( µ i ) D = 2 n i=1 D = 2 ( y i log y ) i (y i ˆµ i ) ˆµ i n i=1 ( y i log y ) i ˆµ i

15 15/30 Použití GLZ v povinném ručení BMS Sazby Komplexní model

16 16/30 Model v povinném ručení Y je modelovaná kvantita (výše škody, agregace, počet), závisí na X = {X 1, X 2,...}, apriorní tarifní proměnné - grupování rizik Z = {Z 1, Z 2,...}, neznámé proměnné Rizikové faktory pojistníka jsou Ω = X Z. Pojistné E [Y Ω] Nese pojistník Nese pojistitel Riziko E [Y Ω] Y E [Y Ω] Střední hodnota EY 0 Rozptyl Var [E [Y Ω]] E [Var [Y Ω]] Předchozí situace je čistě teoretická, neboť neznáme Z. Riziko E [Y X] Y E [Y X] Střední hodnota E [Y ] 0 Rozptyl Var [E [Y X]] E [Var [Y X]]

17 Model v povinném ručení 17/30 Aposteriorní sazbování Minulá škodní zkušenosti o riziku Y, označme Y Ω a (X, Y ) s stávají porovnatelné, jak čas běží Potom máme pojistné E [Y X, Y ] Možnosti konstrukce modelu: 1 Uvažujeme klasifikaci rizika a BMS odděleně 2 Uvažujeme komplexní model klasifikující riziko a zahrnující BMS Příklad: Španělská pojišťovna 4 x 3 tříd

18 Oddělené modely 18/30 Systém bonus-malus (BMS) Riziko i je reprezentováno (Θ i, K i1, K i2,...) Počty škod v čase K ij Θ i = θ P o(θ) a podmíněně nezávislé Θ i Γ(a, τ) (K ij má nepodmíněné rozdělení negativně binomické) Označme K i (t) = t K ij j=1 Uvažujme jednotkovou očekávanou výši škody Apriori bez historie je požadováno pojistné E [Θ i ] Pojistné určíme minimalizací E [L(θ i Ψ(k i1,..., k it ))] L(x) = x 2 W q t+1 = a(1 ρ τ q) + k i (t) ρ t q L(x) = exp( cx) Wt+1 e = a(1 ρ τ e(c)) + k i (t) ρ t e (c) kde ρ q = t a ρ τ+t e(c) = t log ( ) 1 + c c τ+t

19 Oddělené modely BMS 19/30 L(x) = x 2 W q t+1 = a(1 ρ τ q) + k i (t) ρ t q L(x) = exp( cx) Wt+1 e = a(1 ρ τ e(c)) + k i (t) ρ t e (c) ρ q = t ρ τ+t e (c) = t log ( ) 1 + c c τ+t ρ e (c) ρ q a W e t+1 W q t+1 při c 0 ρ e (c) 0 pro c, proto W e t+1 a/τ Pojistné rizika i, které je v roce t zařazeno v třídě I i (t) P q,e t+1(k i (t), t) = BP Ii (t+1)bmf q,e t+1(k i (t), t), BMF q (k i (t), t) = W q t+1 E[Θ] i BMF e (k i (t), t) = W q t+1 E[Θ] i = a+k i (t) τ τ+t a = 1 t c log ( 1 + c τ+t ) + log ( 1 + c τ+t ) ki (t) τ c a

20 Oddělené modely BMS 20/30 Výsledky: BMS - odhady v Negativně binomickém rozdělení â = a ˆτ = k n k ˆn k n k ˆn k

21 Oddělené modely apriorní sazby 21/30 Pozorované ŠF Věk Výkon < < < Kategorické proměnné pro věk J 2, J 3 a pro výkon L 2, L 3, L 4 Každá třída je reprezentována vektorem x i = (1, j 2, j 3, l 2, l 3, l 4 ) Parametry β = (ɛ, γ 2, γ 3, δ 2, δ 3, δ 4 ) Log lineární model, Poissonovo rozdělení, logaritmický link

22 Oddělené modely apriorní sazby 22/30 Výsledky: Parametr Odhad sm. odch. ɛ γ γ δ δ δ Věk Výkon < < <

23 23/30

24 24/30

25 25/30 Komplexní model Nechť je K it P o(λ Ii (t)) počet škod rizika i v roce t, kde I i (t) je příslušný index třídy a λ Ii (t) jsou jejich ŠF Rozptyl pozorování je však větší než střední hodnota, předpoklad Poissona není korektní Raději předpokládáme K it P o(λ Ii (t)θ i ), kde Θ i Γ(α, α) Potom K it I i (t) má negativně binomické rozdělení ( ) ( ) k ( α + k 1 λii(t) α P (K it = k I i (t)) = k α + λ Ii(t) α + λ Ii(t) Θ i K i1 = k i1,..., K it = k it Γ(α + k i (t), α + λ i (t)) Parametr α odhadneme metodou maximální věrohodnosti { 12 k max (i) ( ) ( ) k ( ) } α nik α + k 1 λii(t) α L(α) = k α + λ Ii(t) α + λ Ii(t) i=1 k=0 ) α

26 Komplexní model 26/30 Pojistné Relativní výše bunusu malusu P q,e t+1 = λ Ii (t+1)bmf q,e t+1(k i (t), λ i (t)) BMF q,e t+1(k i (t), t) = (1 ρ q,e ) + ρ q,e k i (t) λ i (t) Váhy pro kvadratickou a exponenciální ztrátovou funkci ( ) ρ q = λ i (t) α+λ i ρ (t) e (c) = λ i (t) log 1 + c c α+λ i (t) Nerovnosti a konvergence stejně jako v oddělených modelech ρ e (c) ρ q ρ e (c) ρ q pro c 0 a tedy Pt+1(k e i, λ i (t)) Pt+1(k q i, λ i (t)) ρ e (c) 0 pro c, proto Pt+1(k e i, λ i (t)) λ Ii (t), to znamená, že všechna rizika jedné třídy platí stejné pojistné, tj. nemáme BMS

27 27/30

28 28/30

29 29/30 Poznámky k SW Statistica sigma parametrizace { 1, 1} váhy pozorování konstrukce modelu Statistica ukázka

30 30/30 Literatura L. Bermúdez, M. Denuit & J. Dhaene (2001) Exponential bonus-malus systems integrating a priori risk classification. Journal of Actuarial Practice 9, Děkuji za pozornost

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

RNDr. Martin Branda, Ph.D.

RNDr. Martin Branda, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Zobecněné lineární modely v pojišt ovnictví RNDr Martin Branda, PhD Zpracováno v rámci projektu

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Predikce roční spotřeby zemního plynu po ceníkových pásmech

Predikce roční spotřeby zemního plynu po ceníkových pásmech Predikce roční spotřeby zemního plynu po ceníkových pásmech Ondřej Konár, Marek Brabec, Ivan Kasanický, Marek Malý, Emil Pelikán Ústav informatiky AV ČR, v.v.i. ROBUST 2014 Jetřichovice 20. ledna 2014

Více

Tomáš Cipra: Finanční a pojistné vzorce. Grada Publishing, Praha 2006 (374 stran, ISBN: 80-247- 1633-X) 1. ÚVOD... 17

Tomáš Cipra: Finanční a pojistné vzorce. Grada Publishing, Praha 2006 (374 stran, ISBN: 80-247- 1633-X) 1. ÚVOD... 17 Tomáš Cipra: Finanční a pojistné vzorce. Grada Publishing, Praha 2006 (374 stran, ISBN: 80-247- 1633-X) OBSAH SEZNAM NĚKTERÝCH SYMBOLŮ.... 13 1. ÚVOD.... 17 I. FINANČNÍ VZORCE.... 19 2. JEDNODUCHÉ ÚROČENÍ

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Základy matematické statistiky

Základy matematické statistiky r- MATEMATICKO-FYZIKÁLNí FAKULTA UNIVERZITY KARLOVY V PRAZE Jifí Andel Základy matematické statistiky matfyzpress PRAHA 2011 r I Obsah Predmluva. 11 1 Náhodné veličiny 1.1 Základní pojmy 1.2 Príklady diskrétních

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Kvantitativní řízení rizik 7.11.2014

Kvantitativní řízení rizik 7.11.2014 Kvantitativní řízení rizik 7.11.2014 Ekonomický kapitál ekonomický kapitál- kapitál potřebný k zajištění schopnosti splnit v daném časovém horizontu převzaté závazky s danou pravděpodobností L- riziko,

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

DETEKCE LINEÁRNÍHO TRENDU V ROZPTYLU NORMÁLNÍHO ROZDĚLENÍ

DETEKCE LINEÁRNÍHO TRENDU V ROZPTYLU NORMÁLNÍHO ROZDĚLENÍ ROBUST 2004 c JČMF 2004 DETEKCE LINEÁRNÍHO TRENDU V ROZPTYLU NORMÁLNÍHO ROZDĚLENÍ Luboš Prchal Klíčováslova:Detekcezměnyvrozptylu,regresev a L 2 normě,radioaktivní záření. Abstrakt: Tento příspěvek je

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Statistické metody v digitálním zpracování obrazu. Jindřich Soukup 3. února 2012

Statistické metody v digitálním zpracování obrazu. Jindřich Soukup 3. února 2012 Statistické metody v digitálním zpracování obrazu Jindřich Soukup 3. února 2012 Osnova Úvod (Neparametrické) odhady hustoty pravděpodobnosti Bootstrap Použití logistické regresi při klasifikaci Odhady

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE VYUŽITÍ LOGISTICKÉ REGRESE VE VÝZKUMU TRHU

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE VYUŽITÍ LOGISTICKÉ REGRESE VE VÝZKUMU TRHU VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Fakulta informatiky a statistiky Studijní program: Kvantitativní metody v ekonomice Studijní obor: Statistické a pojistné inženýrství Diplomant: Hana Brabcová Vedoucí diplomové

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Analýza úmrtnosti. 26.10.2012 Seminář z aktuárských věd. Petr Sotona Kooperativa, pojišťovna, a.s., Vienna Insurance Group / 1

Analýza úmrtnosti. 26.10.2012 Seminář z aktuárských věd. Petr Sotona Kooperativa, pojišťovna, a.s., Vienna Insurance Group / 1 Analýza úmrtnosti 26.10.2012 Seminář z aktuárských věd Petr Sotona Kooperativa, pojišťovna, a.s., Vienna Insurance Group / 1 Agenda Úvod Trend v úmrtnosti Modelování úmrtnosti v pojistném kmeni Modely

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Regresní analýza doplnění základů Vzhledem k požadavku Vašich kolegů zařazuji doplňující partii o regresní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Rozptyl. Pozn.: rozptyl je nezávislý na posunu hustoty pravděpodobnosti na ose x, protože Var(X) mi určuje jen šířku rozdělení.

Rozptyl. Pozn.: rozptyl je nezávislý na posunu hustoty pravděpodobnosti na ose x, protože Var(X) mi určuje jen šířku rozdělení. Rozptyl Základní vlastnosti disperze Var(konst) = 0 Var(X+Y) = Var(X) + Var(Y) (nezávislé proměnné) Lineární změna jednotek Y = rx + s, například z C na F. Jak vypočítám střední hodnotu a rozptyl? Pozn.:

Více

SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU

SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro udržitelný rozvoj v sítí spolupracujících škol,

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII Tomáš Katrňák Fakulta sociálních studií Masarykova univerzita Brno SOCIOLOGIE A STATISTIKA nadindividuální společenské struktury podmiňují lidské chování (Durkheim)

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

6 Vícerovnicové ekonometrické soustavy 1

6 Vícerovnicové ekonometrické soustavy 1 6 Vícerovnicové ekonometrické soustavy Obsah 6 Vícerovnicové ekonometrické soustavy 1 6.1 SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese).......... 3 6.2 Panelová data.........................................

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Kovariance, 76. Kritická hodnota. souboru, 65 Kritický obor, 121 Kvantil. souboru, 64 Kvartil. souboru, 68. Median

Kovariance, 76. Kritická hodnota. souboru, 65 Kritický obor, 121 Kvantil. souboru, 64 Kvartil. souboru, 68. Median Index χ 2 -test, 133 dobré shody, 134 nezávislosti, 135 Úplná pravděpodobnost, 50 Alternativní hypotéza, 118 ANOVA, 157 nevysvětlený rozptyl, 159 příklad, 160 vysvětlený rozptyl, 158 ANOVA 2, 161 příklad,

Více

Matematická Statistika. Ivan Nagy, Jitka Kratochvílová

Matematická Statistika. Ivan Nagy, Jitka Kratochvílová Texty k přednáškám Matematická Statistika Ivan Nagy, Jitka Kratochvílová Obsah 1 Náhodný výběr 4 1.1 Pojem náhodného výběru (Sripta str. 68).................... 4 1.2 Charakteristiky výběru (Sripta str.

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Kontingenční tabulky. (Analýza kategoriálních dat)

Kontingenční tabulky. (Analýza kategoriálních dat) Kontingenční tabulky (Analýza kategoriálních dat) Agenda Standardní analýzy dat v kontingenčních tabulkách úvod, KT, míry diverzity nominálních veličin, některá rozdělení chí kvadrát testy, analýza reziduí,

Více

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza) ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra

Více

9. Úvod do teorie PDR

9. Úvod do teorie PDR 9. Úvod do teorie PDR A. Základní poznatky o soustavách ODR1 Diferenciální rovnici nazveme parciální, jestliže neznámá funkce závisí na dvou či více proměnných (příslušná rovnice tedy obsahuje parciální

Více