Výpočet vnitřních sil lomeného nosníku

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Výpočet vnitřních sil lomeného nosníku"

Transkript

1 Stvní sttik, 1.ročník klářského stui ýpočt vnitřníh sil lomného nosníku omný nosník v rovinné úloz Kontrol rovnováhy uvolněného styčníku nitřní síly n uvolněném prutu rostorově lomný nosník Ktr stvní mhniky Fkult stvní, ŠB - Thniká univrzit Ostrv 1

2 ovinně lomný nosník (rám) v rovinné úloz Jsou-li pruty spojny monolitiky (pvně), má rám 3 stupně volnosti: v 3 n v 3 s ( v-n v ) 0 sttiky určitý ýpočt vnitřníh sil: ) osouvjíí síl součt všh sil zlv no zprv k průřzu x v směru kolmém k os prutu ) Ohyový momnt sttiké momnty všh sil momntů půsoííh zlv no zprv k průřzu x ) ormálová síl součt všh sil zlv no zprv půsoíí v směru osy prutu Styčníky uzly (ty,) spojujíí jnotlivé pruty (ty,,) x z Klné složky vnitřníh sil n jnotlivýh pruth Gry průěhů vnitřníh sil s vynáší o nákrsu lomného nosníku. z

3 rutová soustv - záklní spojní prutů rutová soustv - záklní spojní prutů rutová soustv několik prutů (njméně v) spojny (n koníh v styčnííh) tk, ž s vzájmně ovlivňují (spolupůsoí). Styčníky vojnásoné, trojnásoné... pol počtu spojnýh prutů. ruty spojny: ) klouově spojné kon s nmohou vzájmně posunout, mohou s vzájmné pootočit ) monolitiky (rámově, tuz) - spojné kon s nmohou vzájmně posunout ni pootočit () Klouová spojní prutů v rovině Or / str. 85 () onolitiké spojní Or / str. 86

4 říkl 1 - zání + rk Q 4k q 1k/m F i x, 0 : 1 k x 3k 3k i, 0 : i, 0: Kontrol: F i, z 0 : z 3,5k z,75k 1,5 4 Čárkovné čáry: pomyslná sponí vlákn poku njsou zná, smi vhoně volím 8

5 říkl 1 - normálové síly Q 4k q 1k/m U lomného nosníku nmusím zpisovt 0 n prutu, u ktrého j nulová vnitřní síl (ty prut ) z 1 k 3k x 3k 3,5k z,75k 1,5 4 [k] , ormálové síly určujm z krtší strny: 0 z z + Altrntivně z ruhé strny: z Q 1, 1 z Q, x z, - 3,5 -,75 z 1 Q 9

6 říkl 1 - posouvjíí síly z x n x n q 1k/m 1,5 3 n 1 k 3k k 3 3,5k,75k n 0 - q.x n x z 0 1,5 4 x 1 1 Q 4k z + + osouvjíí síly z krtší strny (njlép o njví zlv): nní konst. po lém prutu [k] n 0 + q.x n Q ,75-3 x n 1,5 m x n,75 m Altrntivně z ruhé strny: x z Q 10 + z + Q

7 říkl 1 - ohyové momnty, úsk (trojný styčník ) z Q 4k q 1k/m 1 k 3k x 3k 3,5k z,75k 1, [km] yšrovt kolmo n střnii nosníku ,5 x Ohyové momnty z krtší strny: trojném styčníku tři honoty momntu, nutno znčit pomoí vou inxů-ruhý inx znčí, n ktrém z 3 prutů momnt půsoí ,5 i 0 x ,5 + x. 3 kontrol momntů v trojném styčníku :

8 říkl 1 - ohyové momnty- lý nosník z x n x n q 1k/m k 3 6 n 3k x 3k 3,5k z,75k 1,5 4 n voorovná tčn yšrovt kolmo n střnii nosníku [km] 0 ýpočt xtrémního momntu: (momnty všh sil zlv no zprv k průřzu n) n - 1.(1,5+x n )+ x.4+ z.x n -q.x n / n z. x n +. q.x n / 9,78km v polovině prutu 9,5km U vojnýh styčníků píšm znční momntů pouz s jním inxm jko u jkéhokoliv jiného průřzu, j to jn o honot ohyového momntu zlv i zprv jsou stjné. 1

9 říkl 1 - uvolnění prutu q 1k/m x n x n q 1k/m 1 1 x x z 1,5 4 z z 1,5 4 z Uvolněný prut nitřní síly zkrslny v klné znménkové konvni nitřní síly v krjníh oh jsou již spočítné, nní tř počítt nově, honoty jsou očtny z průěhů n snímíh q 1k/m ,5 -,

10 říkl 1 - uvolnění prutu x n x n q 1k/m 1 x z 1,5 4 z 3 [k] [k] 9 +1,5 3 1,5 q 1k/m x n x n n -, ,75 3 Uvolněný prut nitřní síly zkrslny v klné znménkové konvni nitřní síly v krjníh oh jsou již spočítné, nní tř počítt nově, honoty jsou očtny z průěhů n snímíh 9-1. [km] 9 6 n voorovná tčn 14

11 říkl 1 - uvolnění prutu výpočt vnitřníh sil po spojitým ztížním nitřní síly zkrslny v klné znménkové konvni ovni pro výpočt vnitřníh sil v liovolném místě x po spojitým ztížním: x q.x 1,5 1.x [k] x + q.x (-,75) + 1.x [k] x +. x q.x / 9 + 1,5.x 1.x / [km] x -. x q.x / 6 (-,75).x 1.x / [km] Honot momntu v nzpčném průřzu ( n 0): n +. x n q.x n / 9,78 km n. x n q.x n / 6 (-,75). x n - 1.x n / 9,78 km [k] [k] ,5 3 1,5 [km] 9 q 1k/m x x x n x n n 6 -,75 n voorovná tčn 3 3 -,

12 říkl - zání, rk, normálové posouvjíí síly F i x F i z i q 15k/m 15k, 0 :, 0 : Kontrol: i, 0 :, 0: 1 1 x 15k 1 0k 4,5km z 35k z (konstntní n úsku -) q [k] q 1 x + lép zprv: [k] x -35 z -35 (nní konstnt n prutu) 1 Zol (zlv n ): 16

13 říkl - ohyové momnty 1 1 q 15k/m 1 0k 15k x 15k [km] -7,5-1,5-1,5-0 momnty v trojném styčníku (shor) : q Altrntivně: q x 4,5km z 35k 7,5 0-4,5 Zol (zlv):, vnit řni síl, rk + x 1,5 17

14 ř.3: orovnání při změně tzv. sponíh vlákn (ty - u svislýh prutů uvnitř ) 1 3k 3 qk/m 1 0,5,5 4 [k] - -0,5 -,5 - -0,5-3, [k] [km] 18

15 ř.3: orovnání při změně tzv. sponíh vlákn (ty - u svislýh prutů vně ) 1 3k - 3-3,0-0,5 qk/m,5 4 0, [k] [km] [k] -,5 - -0,5 Znménk, shoné, orz sil n svislýh pruth zrlově. orz shoný, změn pouz v znménkáh u momntů n svislýh pruth. Závěr: 19 u, ůlžitá znménk, u ůlžitý orz vykrslní n strnu tžnýh vlákn.

16 1 3k,5 - -,5 - -0,5-3, qk/m -0,5-4 0,5-4 ř.3 - uvolnění jnotlivýh prutů Uvolnit lz tké kžý prut lomného nosníku. J-li lý nosník v rovnováz, j v rovnováz kžá jho uvolněná část. Účink oělnýh části nhrí vnitřní síly z vnitřní síly půsoíí n uvolněné pruty zkrslné l znménkové konvn 1 3k -6 prut -3 qk/m 0,5 -, prut prut , ,5 prut -0,5 0,5-4 ruty nutno zkrslit včtně vnějšího ztížní (ztížní i rk) 0

17 říkl 3 - yužití uvolněnýh prutů prut qk/m 1 3k,5 4 0,5 3 1 yužití při výpočtu vnitřníh sil v jnotlivýh pruth louhýh (spojitýh) no lomnýh nosníků říkl 3: výpočt momntu Bz uvolnění prutu: z q km z x 3 3km (v polovině prutu ) omoí uvolnění prutu : -0,5 prut npůsoí vnější ztížní, j ztížn pouz vnitřními silmi (pouz účinkm oělnýh částí), proto shém pouz s vnitřními silmi -0,5 + ( ) km ( 0,5) + ( 4) km + 0,

18 říkl 3 - yužití uvolněnýh prutů prut 1 3k yužití při výpočtu vnitřníh sil v jnotlivýh pruth louhýh (spojitýh) no lomnýh nosníků qk/m,5 4 0,5 3 1 říkl 3: výpočt posouvjíí síly (v polovině prutu ) Bz uvolnění prutu: q 4k x + q 4k -, ,0 - -0,5 omoí uvolnění prutu : prut půsoí vnější ztížní (q, z ) i vnitřní síly (účink oělné části), proto v nákrsu oojí qk/m,5 + q 8 + 4k

19 říkl 3 - yužití uvolněnýh prutů prut 1 3k qk/m,5 4 říkl : výpočt ohyového momntu (v polovině prutu ) Bz uvolnění prutu: 3 q / 4km 0,5 1 z 4 x 1+ q / 4km 1 -, ,5-3, omoí uvolnění prutu : q / 16 ( 8) / 4k qk/m -16,5 3

20 ýpočt prostorově lomného nosníku viz přnášk č.4 3 F 3 F n v 6 Složky rkí: x, y, z, x, y, z F 1 1 utno 6 pomínk rovnováhy: 3 silové pomínky rovnováhy: ix iy F 0 F 0 F 0 iz +y 3 momntové pomínky rovnováhy: +z +x nitřní síly: s s ix, 0 iy, 0, T (vžy), y, z, y, z (prut rovnoěžný s osou x) x, z, x, z (prut rovnoěžný s osou y) x, y, x, y (prut rovnoěžný s osou z) iz s, 0 4

21 Okruhy prolémů k ústní části zkoušky 1. Stupň sttiké nurčitosti lomného nosníku v rovinné úloz. Řšní vnitřníh sil lomného nosníku v rovinné úloz 3. Kontrol momntové rovnováhy v styčníku 3. nitřní síly n uvolněném prutu lomného nosníku v rovinné úloz 4. Stupň sttiké nurčitosti lomného nosníku v prostorové úloz 5. omínky rovnováhy v prostorové úloz 6. nitřní síly v pruth lomného nosníku v prostorové úloz 5

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

Rovinné nosníkové soustavy II h=3

Rovinné nosníkové soustavy II h=3 Stvní sttik,.ročník klářského stui Mimostyčníkové ztížní prutu V prutu č. vznikn v ůslku mimostyčníkového ztížní rovněž V M. q konst. Rovinné nosníkové soustvy II h Rovinný klouový příhrový nosník Mimostyčníkové

Více

Podepření - 3 vazby, odebrány 3 volnosti, staticky určitá úloha

Podepření - 3 vazby, odebrány 3 volnosti, staticky určitá úloha nitřní síly Prut v rovině 3 volnosti Podepření - 3 vzy, oderány 3 volnosti, sttiky určitá úloh nější ztížení reke musí ýt v rovnováze, 3 podmínky rovnováhy, z nih 3 neznámé reke nější ztížení reke se nzývjí

Více

Výpočet vnitřních sil přímého nosníku I

Výpočet vnitřních sil přímého nosníku I Stvení sttik, 1.ročník kominovného studi ýpočet vnitřních sil přímého nosníku I ýpočet vnitřních sil přímého vodorovného nosníku Ktedr stvení mechniky Fkult stvení, ŠB - Technická univerzit Ostrv nitřní

Více

Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby

Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby Stvní sttik,.ročník kářského stui Pohyivé ztížní zniká pojížěním vozi (vky, utomoiy, jřáy po stvní konstruki (mosty, jřáové ráhy, nájzové rmpy, pohy gráží. Pohyivé ztížní n prostém nosníku, konzo spojitém

Více

Výpočet vnitřních sil přímého nosníku

Výpočet vnitřních sil přímého nosníku Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

Trojkloubový nosník. Rovinné nosníkové soustavy

Trojkloubový nosník. Rovinné nosníkové soustavy Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Kter stvení mehniky Fkult

Více

Rovinné nosníkové soustavy

Rovinné nosníkové soustavy Stvení sttik,.ročník kominovného studi Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový rám Trojklouový rám s táhlem Ktedr stvení mehniky

Více

Rovinné nosníkové soustavy

Rovinné nosníkové soustavy Stvení sttik, 1.ročník kominovného stui Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Gererův nosník Trojklouový rám Trojklouový rám s táhlem Kter

Více

Trojkloubový nosník. Rovinné nosníkové soustavy

Trojkloubový nosník. Rovinné nosníkové soustavy Stvení sttik, 1.ročník klářského studi Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Trojklouový nosník Ktedr

Více

Výpočet vnitřních sil přímého nosníku III: šikmý nosník

Výpočet vnitřních sil přímého nosníku III: šikmý nosník Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku

Více

Výpočet vnitřních sil přímého nosníku III: šikmý nosník

Výpočet vnitřních sil přímého nosníku III: šikmý nosník Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

18ST - Statika. 15. dubna Dan et al. (18ST) Vnitřní síly na lomených nosnících 15. dubna / 16

18ST - Statika. 15. dubna Dan et al. (18ST) Vnitřní síly na lomených nosnících 15. dubna / 16 Vnitřní síy n omný nosníí Dn Kytýř, Tomáš Doktor, Ptr Kouk 8ST - Sttik 5. un 03 Dn t. (8ST) Vnitřní síy n omný nosníí 5. un 03 / 6 Zání Zání Vyjářt vykrst funk průěů vnitřní si N(x), T(x), M(x) n ném nosníku.

Více

Výpočet vnitřních sil I

Výpočet vnitřních sil I Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil I přímý nosník, ztížení odové nitřní síly - zákldní pojmy ýpočet vnitřních sil přímého vodorovného nosníku Ktedr stvení mechniky Fkult stvení,

Více

Příhradové konstrukce - průsečná metoda v Ritterově úpravě

Příhradové konstrukce - průsečná metoda v Ritterově úpravě Příhrové konstruk - průsčná mto v Rittrově úprvě vyřšt síly v pruth u soustvy n orázku. goniomtri os = /( + ) / = 0,6 γ β () sin = /( + ) / = 0,8 (h) β osβ = /[ + ] / sinβ = /[ + ] / = 0, 987 = 0, 6 γ

Více

Rovinné nosníkové soustavy III Příhradový nosník. Zjednodušená styčníková metoda. Rovinný kloubový příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník. Zjednodušená styčníková metoda. Rovinný kloubový příhradový nosník Stní sttik, 1.ročník klářského stui Roinné nosníkoé sousty III Příhroý nosník Zjnoušná styčníkoá mto Roinný klouoý příhroý nosník Skl roinného příhroého nosníku Pomínk sttiké určitosti příhroého nosníku

Více

29. PL Čtyřúhelníky, mnohoúhelníky Čtyřúhelník = rovinný útvar, je tvořen čtyřmi úsečkami, které se protínají ve čtyřech bodech (vrcholech).

29. PL Čtyřúhelníky, mnohoúhelníky Čtyřúhelník = rovinný útvar, je tvořen čtyřmi úsečkami, které se protínají ve čtyřech bodech (vrcholech). .ročník 9. PL Čtyřúhlníky, mnohoúhlníky Čtyřúhlník = rovinný útvr, j tvořn čtyřmi úsčkmi, ktré s protínjí v čtyřh oh (vrholh). Pozn.: Njčstěji s používá znční,,, pro vrholy,,,, pro strny α, β, γ, δ pro

Více

Pohyblivé zatížení. Pohyblivé zatížení. Píinkové áry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby

Pohyblivé zatížení. Pohyblivé zatížení. Píinkové áry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby Stvní sttik,.roník káského stui Pohyivé ztížní Pohyivé ztížní Píinkové áry n prostém nosníku, konzo spojitém nosníku s vožnými kouy Ktr stvní mhniky Fkut stvní, VŠB Thniká univrzit Ostrv Vzniká pojížním

Více

Rovinné nosníkové soustavy II

Rovinné nosníkové soustavy II Prázý Prázý Prázý Ství sttik,.roík kláského stui Rovié osíkové soustvy II Trojklouový rám (osík) Trojklouový olouk (osík) Trojklouový rám s táhlm Trojklouový olouk s táhlm Ktr ství mhiky Fkult ství, VŠB

Více

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr)

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr) Šikmý nosník Šikmý nosník rovnoměrné spojité ztížení ztížení kolmé ke střednii prutu (vítr) q h - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku prutu (vlstní tíh) - ztížení svislé

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stvení mecnik 2 (K132SM02) Přednáší: Jn Sýkor Ktedr mecniky K132 místnost D2016 e-mil: jn.sykor.1@fsv.cvut.cz konzultční odiny: Po 12-14 Kldné směry vnitřníc sil: Kldný průřez vnitřní síly jsou kldné ve

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stní mnik 1 (K132SM01) Přnáší: o. ng. Mtěj Lpš, P.D. Ktr mniky K132 místnost D2034 konzult Čt 9:30-11:00 -mil: mtj.lps@fs.ut.z ttp://m.fs.ut.z/~lps/ting/inx.tml Řáný trmín zápočtoé písmky j ÚTERÝ 25. un

Více

Rovinné nosníkové soustavy. Pohyblivé zatížení. Trojkloubový nosník s táhlem Rovinně zakřivený nosník (oblouk) Příčinkové čáry

Rovinné nosníkové soustavy. Pohyblivé zatížení. Trojkloubový nosník s táhlem Rovinně zakřivený nosník (oblouk) Příčinkové čáry Stvení sttik,.ročník kářského studi Rovinné nosníkové soustvy Pohyivé ztížení Trojkouový nosník s táhem Rovinně zkřivený nosník (oouk) Příčinkové čáry Ktedr stvení mehniky Fkut stvení, VŠB - Tehniká univerzit

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

Téma 7 Staticky neurčitý rovinný kloubový příhradový nosník

Téma 7 Staticky neurčitý rovinný kloubový příhradový nosník Sttik stvebníh konstrukí I..ročník bklářského stui Tém 7 Sttiky neurčitý rovinný kloubový příhrový nosník Vlstnosti rozbor sttiké neurčitosti Sttiky neurčitý tvrově určitý příhrový nosník Sttiky neurčitý

Více

Výpočet vnitřních sil přímého nosníku II

Výpočet vnitřních sil přímého nosníku II Stveí sttik, 1.ročík komiového studi Shwederovy vzthy Difereiáí podmík rovováhy eemetu v osové úoze ýpočet vitříh si přímého osíku II 1 d z d ýpočet vitříh si osíků ztížeýh spojitým ztížeím ýpočet osíku

Více

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 ) Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty

Více

Příklad 1 Osově namáhaný prut průběhy veličin

Příklad 1 Osově namáhaný prut průběhy veličin Příkld 1 Osově nmáhný prut průběhy veličin Zdání Oelový sloup složený ze dvou částí je neposuvně ukotven n obou koníh v tuhém rámu. Dolní část je vysoká, m je z průřezu 1 - HEB 16 (průřezová ploh A b =

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ

PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Zdání PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Příkd č. Uvžujte příhrdovou konstruki z Or., vypočítejte svisý posun v odě (znčený ). odře vyznčené pruty (pruty 3, 4, 5, 6 7) jsou ztíženy rovnoměrným otepením

Více

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá. TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními

Více

Nosné stavební konstrukce Výpoet reakcí Výpoet vnitních sil pímého nosníku

Nosné stavební konstrukce Výpoet reakcí Výpoet vnitních sil pímého nosníku Stvení sttik.roník kláského studi osná stvení konstruke osné stvení konstruke ýpoet rekí ýpoet vnitníh sil pímého nosníku osná stvení konstruke slouží k penosu ztížení ojektu do horninového msívu n nmž

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Téma 1 Obecná deformační metoda, podstata DM

Téma 1 Obecná deformační metoda, podstata DM Sttik stveních konstrukcí II., 3.ročník klářského studi Tém 1 Oecná deformční metod, podstt D Zákldní informce o výuce hodnocení předmětu SSK II etody řešení stticky neurčitých konstrukcí Vznik vývoj deformční

Více

Posouvající síla V. R a. R b. osa nosníku. Kladné směry kolmé složky vnitřních sil. Výpočet nosníku v příčné úloze (ve svislé hlavní rovině xz)

Posouvající síla V. R a. R b. osa nosníku. Kladné směry kolmé složky vnitřních sil. Výpočet nosníku v příčné úloze (ve svislé hlavní rovině xz) Posouvjící sí Posouvjící síu v zdném průřezu c ze vypočítt jko gerický součet všech svisých si po jedné strně průřezu. Postupujei se z evé strny, do součtu se zhrnou kdně síy půsoící zdo nhoru, záporně

Více

5 kn/m. E = 10GPa. 50 kn/m. a b c 0,1 0,1. 30 kn. b c. Statika stavebních konstrukcí I. Příklad č. 1 Posun na nosníku

5 kn/m. E = 10GPa. 50 kn/m. a b c 0,1 0,1. 30 kn. b c. Statika stavebních konstrukcí I. Příklad č. 1 Posun na nosníku Sttik stveníh konstrukí I Příkl č. 1 Posun n nosníku Metoou jenotkovýh ztížení určete voorovný posun ou nosníku pole orázku. Nosník je vyroen z měkkého řev o moulu pružnosti 10 GP. 50 kn/m E = 10GP 0,1

Více

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského stuia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katera stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR Pve Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Deformční meto jenošená eformční meto, Přetvárně nerčité konstrke POROVNÁNÍ OBECNÉ A JEDNODUŠENÉ DEF. ETODY V zjenošené eformční metoě (D) se zneává viv normáovýh

Více

Pohybové možnosti volných hmotných objektů v rovině

Pohybové možnosti volných hmotných objektů v rovině REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽOST A PLASTICITA Ing. Lenk Lusová LPH 407/1 Povinná litertur tel. 59 732 1326 lenk.lusov@vs.cz http://fst10.vs.cz/lusov http://mi21.vs.cz/modul/pruznost-plsticit Doporučená litertur Zákldní typy nmáhání

Více

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1). Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace

Více

Předpoklad: pružné chování materiálu. počet neznámých > počet podmínek rovnováhy. Řešení:

Předpoklad: pružné chování materiálu. počet neznámých > počet podmínek rovnováhy. Řešení: Sttiky neurčité přípdy thu prostého tlku u pružnýh prutů Sttiky neurčité úlohy Předpokld: pružné hování mteriálu Sttiky neurčité úlohy: počet nenámýh > počet podmínek rovnováhy Řešení: počet nenámýh podmínky

Více

Rovinné nosníkové soustavy I

Rovinné nosníkové soustavy I Stveí sttik, 1.roík kláského stui Záklí typy osíkovýh soustv v rovi xz Rovié osíkové soustvy I ) Spojitý osík s vložeými klouy (tzv. Gererv osík) Heirih Gerer (18-191) výzmý meký kostruktér oelovýh most

Více

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Letní semestr. Stavební statika, 1.ročník bakalářského studia

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Letní semestr. Stavební statika, 1.ročník bakalářského studia Stvení sttik, 1.ročník klářského studi Stvení sttik Úvod do studi předmětu n Stvení fkultě VŠB-TU Ostrv Letní semestr Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerzit Ostrv Stvení sttik -

Více

Stanovení přetvoření ohýbaných nosníků. Clebschova a Mohrova metoda

Stanovení přetvoření ohýbaných nosníků. Clebschova a Mohrova metoda Stnovení přetvoření ohýnýh nosníků Ceshov Mohrov metod (pokrčování) (Mohrov nogie) Příkd Určete rovnii ohyové čáry pootočení nosníku stáého průřezu Ceshovou metodou. Stnovte veikost průhyu w pootočení

Více

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku Stveí sttik.ročík klářského studi osá stveí kostruke osé stveí kostruke ýpočet rekí ýpočet vitříh sil přímého osíku osá stveí kostruke slouží k přeosu ztížeí ojektu do horiového msívu ěmž je ojekt zlože.

Více

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA Zaání STATICKY NEURČITÉ RÁOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ ETODA Příkla č. Vykreslete průěhy vnitřníh sil na konstruki zorazené na Or.. Voorovná část konstruke (příčle) je složena z průřezu a

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

Osové namáhání osová síla N v prutu

Osové namáhání osová síla N v prutu Osové nmáhání osová síl v prutu 3 typy úloh:. Pruty příhrdové konstrukce, táhl Dvě podmínky rovnováhy v kždém styčníku: F ix 0 F iz 0. Táhl podporující pevnou ztíženou desku R z M ib 0 P R R b P 6 6 P

Více

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5. Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou

Více

Název školy: ZŠ A MŠ ÚDOLÍ DESNÉ, DRUŽSTEVNÍ 125, RAPOTÍN Název projektu: Ve svazkové škole aktivně - interaktivně Číslo projektu:

Název školy: ZŠ A MŠ ÚDOLÍ DESNÉ, DRUŽSTEVNÍ 125, RAPOTÍN Název projektu: Ve svazkové škole aktivně - interaktivně Číslo projektu: Název školy: ZŠ MŠ ÚOLÍ ESNÉ, RUŽSTEVNÍ 125, RPOTÍN Název projektu: Ve svzkové škole ktivně - interktivně Číslo projektu: Z107/1400/213465 utor: Mgr Monik Vvříková Temtiký okruh: Geometrie 7 Název:VY_32_INOVE_16_Čtyřúhelníky

Více

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312 .. Vzálenost bou o přímk II Přepokl: Pegogiká poznámk: Průběh hoin honě závisí n tom, jk oolní jsou stuenti v oszování o vzorů, které je nejtěžší částí hoin. Dlším problémem pk mohou být rovnie s bsolutní

Více

3.4.12 Konstrukce na základě výpočtu II

3.4.12 Konstrukce na základě výpočtu II 3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou

Více

Nosné stavební konstrukce, výpočet reakcí

Nosné stavební konstrukce, výpočet reakcí Stvení sttik.ročník kářského studi Nosná stvení konstrukce Nosné stvení konstrukce výpočet rekcí Nosná stvení konstrukce souží k přenosu ztížení ojektu do horninového msívu n němž je ojekt zožen. Musí

Více

ověření Písemné ověření a ústní zdůvodnění

ověření Písemné ověření a ústní zdůvodnění PROFESNÍ KVALIFIKACE Montér lktrikýh rozvěčů (kó: 26-019-H), 42 hoin (z PK1 60 hoin) + zkoušk (8hoin) Zčátk profsního vzělávání 26. 4. 2014; Dtum ukonční 15. 6. 2014 Rozpis výuky Miroslv Chumhl, soot 3.

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Obecná a zjednodušená deformační metoda

Obecná a zjednodušená deformační metoda SMA Přednášk 06 Oená zjednodušená deformční metod Pruty typu VV, KV, VK Sttiká kondenze Konové síly n prutu od ztížení Konové síly n prutu od teploty Příkldy Copyright ) 01 Vít Šmiluer Czeh Tehnil University

Více

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které číslo oplníte

Více

trojkloubový nosník bez táhla a s

trojkloubový nosník bez táhla a s Kapitola 10 Rovinné nosníkové soustavy: trojkloubový nosník bez táhla a s táhlem 10.1 Trojkloubový rám Trojkloubový rám se skládá ze dvou rovinně lomených nosníků v rovinné úloze s kloubovým spojením a

Více

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. 7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

Stanovení přetvoření ohýbaných nosníků. Mohrova metoda (Mohrova analogie)

Stanovení přetvoření ohýbaných nosníků. Mohrova metoda (Mohrova analogie) Stnovení přetvoření ohýnýh nosníků ohrov metod (ohrov nlogie) Přetvoření ohýnýh nosníků Posouzení z hledisk meze použitelnosti Ztížení, deforme w, φ Okrové podmínky (deforme) Šmiřák, S.: Pružnost plstiit

Více

6 Řešení soustav lineárních rovnic rozšiřující opakování

6 Řešení soustav lineárních rovnic rozšiřující opakování 6 Řšní soustv linárníh rovni rozšiřujíí opkování Tto kpitol j rozšiřujíí ěžné učivo. Poku uvné mtoy zvlánt, zkrátí vám to čs potřný k výpočtům. Nní to všk učivo nzytné, řšit soustvy linárníh rovni lz i

Více

Trigonometrie - Sinová a kosinová věta

Trigonometrie - Sinová a kosinová věta Trigonometrie - Sinová kosinová vět jejih užití v Tehniké mehnie Dn Říhová, Pvl Kotásková Mendelu rno Perspektiv krjinného mngementu - inove krjinářskýh disipĺın reg.č. Z.1.7/../15.8 Osh 1 Goniometriké

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám Stvební mechnik,.ročník bklářského studi AST Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1

= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1 Mgntiké pol 8 Vypočtět mgntikou inuki B kuhové smyčky o poloměu 5 m n jjí os symti v válnosti 1 m o oviny smyčky, jstliž smyčkou potéká lktiký pou 1 A Řšní: Po příspěvk k mgntiké inuki v boě A pltí pol

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

Téma 9 Přetvoření nosníků namáhaných ohybem II.

Téma 9 Přetvoření nosníků namáhaných ohybem II. Pružnost psticit,.ročník kářského studi Tém 9 Přetvoření nosníků nmáhných ohem. ohrov metod Přetvoření nosníků proměnného průřeu Sttick neurčité přípd ohu Viv smku n přetvoření ohýného nosníku Ktedr stvení

Více

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4.

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4. h MECHNIK + y 2 F Vy F 2y 1 FV V F 1y F 3y F3 3 - x F 1x F 3x F 4x 0 F 2x F 4y F4 F Vx + x F FRy 4 - y FRy F l FRy C D FRy I 2 III 6 V 1 3 5 7 D II 4 IV C c Z Z Ing. Rdek Šeek 2012 MECHNIK 1. OSH 2. MECHNIK

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského studia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

Téma Přetvoření nosníků namáhaných ohybem

Téma Přetvoření nosníků namáhaných ohybem Pružnost plsticit,.ročník bklářského studi Tém Přetvoření nosníků nmáhných ohbem Zákldní vth předpokld řešení Přetvoření nosníků od nerovnoměrného oteplení etod přímé integrce diferenciální rovnice ohbové

Více

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia Stvební sttik, 1.ročník kombinovného studi Stvební sttik Úvod do studi předmětu n Stvební fkultě VŠB-TU Ostrv Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit Ostrv Stvební sttik přednášející

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná

Více

Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1

Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1 Orázková mtemtik D. Šfránek Fkult jerná fyzikálně inženýrská řehová 7 115 19 Prh 1.sfrnek@seznm.z strkt Názorná ovození záklníh geometrikýh vět známýh ze stření školy. 1 Úvo N stření škole se mehniky používjí

Více

Cíle. Teoretický úvod. BDIO - Digitální obvody Ústav mikroelektroniky. Úloha č. 3. Student

Cíle. Teoretický úvod. BDIO - Digitální obvody Ústav mikroelektroniky. Úloha č. 3. Student Přmět Ústv Úloh č. 3 BDIO - Diitální ovoy Ústv mikrolktroniky Návrh koéru BCD kóu n 7-smntový isplj, kominční loik Stunt Cíl Prá s 7-smntovým ispljm. Návrh kominční loiky koéru pro 7-smntový isplj. Minimliz

Více

7 Analytická geometrie

7 Analytická geometrie 7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.

Více

Posouzení únosnosti patky

Posouzení únosnosti patky Vrifikační manál č. Aktaliza 03/016 Posozní únosnosti patky Program: Soor: Patky Dmo_vm_0.gpa V tomto vrifikačním manál j vn rční výpočt posozní únosnosti patky na trvalo sitai při ovoněnýh ínkáh pro první

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR Pve Pevět Přenášk č. Přenášk č. PRINCIP VIRTUÁLNÍCH PRCÍ Výpočet přetvoření n sttk určtý konstrukí Přenášk č. Dopňková vrtuání práe momentů Vv n výpočet eformí: oment Posouvjíí sí Normáové sí (přírové

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Vnitřní síly na nosnících Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW:

Více

Stabilita a vzpěrná pevnost tlačených prutů

Stabilita a vzpěrná pevnost tlačených prutů Pružnost psticit,.ročník kářského studi Stiit vzpěrná pevnost tčených prutů Euerovo řešení stiity přímého pružného prutu Ztrát stiity prutů v pružno-pstickém ooru Posouzení oceových konstrukcí n vzpěr

Více

Průřezové charakteristiky základních profilů.

Průřezové charakteristiky základních profilů. Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

Téma 6 Spojitý nosník

Téma 6 Spojitý nosník Stvení mechnik.očník kářského studi AST Tém Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Kted stvení mechniky Fkut stvení ŠB - Technická

Více

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu. Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt

Více