Kapitola VII. ANALYSA ROZPTYLU ANOVA.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Kapitola VII. ANALYSA ROZPTYLU ANOVA."

Transkript

1 Analysa rozptylu ANOVA. 37 Kapitola VII. ANALYSA ROZPTYLU ANOVA. Luděk Dohnal Tato kapitola rozšiřuje téma testování statistické významnosti tím, že popisuje způsob současného porovnání více než dvou sad dat. Ukazuje, jak od sebe oddělit a posoudit různé příčiny odchylek. Přitom používá techniku známou pod označením "analysa rozptylu", což se obvykle zkracuje jako "ANOVA" (z anglického "analysis of variance"). Její aritmetika je celkem jednoduchá a současně může být nudná v případě, že je třeba zpracovat rozsáhlejší soubory dat. Naštěstí řada moderních tabulkových kalkulátorů (spreadsheets) má v sobě zabudované funkce analysy rozptylu, které umožňují provádět tyto výpočty relativně snadno (4). Uživatelsky nejsnadnější je postup v statistických programech. ANOVA je technika umožňující posouzení jednotlivých zdrojů variability v datech. U opakovaných měření existují vždycky nějaké odchylky. Tyto náhodné odchylky mohou způsobit, že se obtížně zjišťuje významnost rozdílů mezi skupinami replikátů (paralelních měření). Základní myšlenkou analysy rozptylu je v tomto případě, zda a jak může být v sadě výsledků paralelních stanovení statisticky rozpoznáno rozdělení do skupin (např. podle analytika, laboratoře, postupu atd.) Celkový rozptyl celé sady dat je dán kombinací rozptylů mezi skupinami a uvnitř skupin. ANOVA umožňuje separovat jednotlivé zdroje rozptylu a dílčí rozptyly vzájemně porovnat za účelem určení, zda jsou rozdíly mezi nimi (statisticky) významné. Nebo jinak, ANOVA nám umožňuje odpovědět na otázku, zda jednotlivé skupiny reprezentují výběry z jednoho základního souboru (tedy z téže populace). ANOVA je užitečná zejména při analyse dat získaných při plánovaných experimentech (experimental design). Ve srovnání s t-testem pro nezávislé střední hodnoty si ANOVA vystačí s menším množstvím výpočtů. 1. Varianty analysy rozptylu Existuje řada metod analysy rozptylu. Nejjednodušší z nich je tzv. jednofaktorová ANOVA (jednostupňová ANOVA, ANOVA s jednoduchým tříděním) anglicky označovaná jako one-way ANOVA. Použije se tehdy, jestliže přichází v úvahu pouze jeden faktor (který nabývá tří nebo více úrovní) a pro každou úroveň máme skupinu paralelních stanovení. Např. chceme zjistit, existuje-li statisticky významný rozdíl mezi p analytiky (analytik je "faktorem", p je "počet skupin" respektive "počet úrovní - levels" faktoru analytik). Každý analytik provedl n paralelních stanovení (p skupin, každá o n hodnotách,což je tzv. vyvážený experiment). Pro případ jednofaktorové ANOVA na dvou úrovních se problém redukuje na porovnání dvou výběrů (3). Dvoufaktorová analysa rozptylu (dvoustupňová ANOVA, ANOVA s dvojitým tříděním) anglicky označovaná jako two-way ANOVA se použije např. tehdy, jestliže výše uvedený příklad rozšíříme o druhý faktor, kterým bude např. koncentrace (tedy každý analytik provede n paralelních stanovení na každém z k vzorků, přičemž vzorky mají různé koncentrace analytu. Pro ještě složitější situace existují rovněž postupy pro multifaktorovou ANOVA (MANOVA) (1), jejich popis však přesahuje rámec této kapitoly. 2. ANOVA s jednoduchým tříděním (jednostupňová ANOVA, jednofaktorová ANOVA, one-way ANOVA) Použití jednofaktorové ANOVA bude ilustrováno jednak pomocí "ručního" výpočtu s použitím kalkulačky, jednak pomocí tabulkového kalkulátoru, který má zabudovanou příslušnou funkci. Tabulkový kalkulátor (spreadsheet) má m.j. tu vlastnost, že pomocí něj mohou být snadno konstruovány potřebné grafy. Šest analytiků v téže laboratoři stanovilo koncentraci olova stejnou metodou v témže vzorku půdy nezávisle na sobě. Každý analytik provedl tři paralelní stanovení. Výsledky jsou uvedeny v tab. VII.1. Jde nyní o to, zda rozdíly mezi analytiky jsou významné nebo zda jsou pouze důsledkem běžných náhodných odchylek. Celková variabilita v datech je dána kombinací rozptýlení výsledků jednoho každého analytika (within group variation) a rozptýlení mezi středními hodnotami výsledků různých analytiků (between group variation). Nejprve si naměřená data vyneseme do grafu (obr. VII.1) a prohlédneme, abychom zjistili, jak na tom vlastně jsme. Graf nám vždycky odhalí eventuelní "podivnosti" v datech. Vždycky je lépe eventuelní problémy s daty vyřešit před tím, než začneme s analysou rozptylu.

2 Štatistické metódy pre klinickú epidemiológiu a laboratórnu prax 38 Tabulka VII.1 Výsledky stanovení olova v půdě analytik Pb (mg/kg) aritmetický průměr A 52, 49, B 55, 54, C 51, 52, D 53, 55, E 54, 52, F 51, 53, Nechť jsou výsledky označeny x ik, přičemž i = 1, 2,..., p; k = 1, 2,..., n. Tyto výsledky jsou obvykle uspořádány do matice (tabulky) - viz obr. VII.2. Výsledky v každém sloupci jsou sečteny (poslední řádek na obr. VII.2) a tyto součty jsou rovněž vzájemně sečteny (poslední řádek vpravo na obr. VII.2). Tady je dobré poznamenat, že pokud bychom prováděli vícenásobný t-test, (např. A vs B, A vs C atd.), museli bychom v našem případě spočítat 15 t- hodnot, abychom mohli provést porovnání všech možných kombinací. Oproti porovnání pomocí analysy rozptylu by to bylo nejen pracnější a navíc z podstaty věci vyplývá, že pravděpodobnost nesprávného závěru pomocí t-testu roste s počtem vícenásobných t-testů. Klasický t-test by se měl používat pouze pro porovnání dvou výběrů. Správný způsob analysy dat v našem případě znamená použít analysu rozptylu. Obrázek VII.2 Standardní tabulka dat pro analysu rozptylu Máme-li tuto tabulku kompletní, vyčíslíme výrazy (1), (2) a (3) Koncentrace olova, mg/kg A B C D E F analytik Obrázek VII.1 Rozptylový graf výsledků paralelních stanovení podle analytiků 3. Výpočet ANOVA s pomocí kalkulačky I když jsou výpočty, jak plyne z výše uvedeného, poměrně jednoduché, je vhodné používat jednotné uspořádání, aby se předešlo omylům. Způsob, který je následně popsán, se v praxi osvědčil. Nejprve popíšeme obecné řešení. Uvažujeme hodnoty jednoho faktoru, které jsou uspořádány do p různých skupin (např. podle analytika nebo podle vzorku) a předpokládáme, že v každé skupině je n měření, tedy celkem N výsledků, přičemž N = p. n. Cílem statistické analysy je určit, zda existují (statisticky významné) rozdíly mezi těmito p skupinami. (1) (2) (3) Při ANOVA je mírou odchylek uvnitř skupin a mezi skupinami statistika, která se jmenuje "součet čtverců" (sum of squares, SS). Základní teze ANOVA říká, že celkový součet čtverců může být díky nahodilosti variací rozdělen na svoje komponenty. Komponentami jsou jednak součty čtverců uvnitř skupin (within groups) a dále komponenty odpovídající statistickým rozdílům mezi středními hodnotami jednotlivých skupin (between groups). Posledně jmenované se použijí pro testování statistické významnosti pomocí "průměrných čtverců" (mean squares, MS) s použitím jednoduchého F-testu, přičemž MS = SS/df kde df je počet stupňů volnosti, (degrees of freedom) a F = MS mezi skupinami / MS uvnitř skupin Doposud jsme předpokládali, že každá skupina obsahuje stejný počet paralelních stanovení (replikátů). V praxi to tak bohužel vždy není. I v takovém případě může být použita ANOVA, avšak výraz (1) musí být s ohledem na nestejný počet paralelních stanovení v jednotlivých skupinách n i nahrazen výrazem (4).

3 Analysa rozptylu ANOVA. 39 (4) Současně v takovém případě (tzv. nevyváženého experimentu) se N (celkový počet všech stanovení) nemůže rovnat p. n a musí se vypočítat sečtením počtu replikátů ve všech skupinách, tedy Součty čtverců se vypočtou z rovnic (1), (2) a (3) a zapíší spolu s příslušnými stupni volnosti (df) do tab. VII.2. Dále se vypočítají hodnoty "průměrných čtverců" (MS, mean squares) a koeficient F. Tabulka VII.2 Jednofaktorová ANOVA - výpočty zdroj variability součet čtverců SS počet stupňů volnosti df průměrný čtverec MS koeficient F mezi skupinami S 1 =(i)-(iii) p-1 M 1 =S 1 /(p-1) M 1 /M 0 uvnitř skupin S 0 =(ii)-(i) N-p M 0 =S 0 /(N-p) celkem S 1 +S 0 =(ii)-(iii) N-1 Nakonec se ve statistických tabulkách najde příslušná kritická hodnota koeficientu F (F krit ) a porovná se s vypočtenou hodnotou F vyp. Za účelem testování, zda existuje rozdíl mezi skupinami, se formuluje nulová hypotéza H(0): neexistuje rozdíl mezi p skupinami výsledků (analytiky) a alternativní hypotéza H(1): existuje rozdíl mezi p skupinami výsledků, tedy přinejmenším mezi dvěma analytiky. K rozhodnutí, která z nich platí, se použije výsledek F-testu. Jestliže F vyp je menší než F krit, tedy vlastně "variabilita mezi skupinami je dostatečně malá oproti variabilitě uvnitř skupin", akceptuje se nulová hypotéza. V opačném případě se zamítne a přijme se hypotéza alternativní. S použitím dat z tab. VII.1 a způsobu na obr. VII.2 se získají hodnoty v tab. VII.3. Tabulka VII.3 Data pro jednofaktorovou ANOVA - olovo v půdě A B C D E F součty Součty z tab. VII.3 teď použijeme k vyčíslení výrazů (1) až (3). (1) = (2) = (3) = (p = 6, n = 3, N = 18) Nyní můžeme sestavit tabulku výsledků jednofaktorové ANOVA - olovo v půdě (tab. VII.4.). Tabelovaná (kritická) hodnota koeficientu F na 95 % hladině spolehlivosti pro 5 a 12 stupňů volnosti je F krit = Vypočtená hodnota F vyp = 2.1. Poněvadž vypočtená je menší než kritická, přijme se nulová hypotéza a tedy závěr, že mezi analytiky neexistuje statisticky významný rozdíl. Pozorované rozdíly mezi průměrnými hodnotami stanovení jednotlivými analytiky jsou tedy vysvětlitelné náhodným kolísáním výsledků uvnitř skupin. Tabulka VII.4 Výsledky jednofaktorové ANOVA (olovo v půdě) zdroj variability SS df MS F mezi skupinami uvnitř skupin celkem

4 Štatistické metódy pre klinickú epidemiológiu a laboratórnu prax Výpočet ANOVA s pomocí tabulkového kalkulátoru (spreadsheetu) se zabudovanými funkcemi analysy rozptylu Tabulka VII.5 Výsledky jednofaktorové ANOVA pomocí Excelu (olovo v půdě) Použitím rutin v Excelu v a také v Excelu 2000, doplněk Analytické nástroje - nazvaných ANOVA, (Nástroje/ Analýza dat/ Anova:jeden faktor) pro data z našeho příkladu (tab. VII.1) se získají výsledky uvedené v tab. VII.5. zdroj variability SS df MS F p-hodnota F krit mezi skupinami uvnitř skupin celkem V této tabulce je F vyp - vypočtená hodnota F uvedena ve sloupci označeném F a kritická hodnota ve sloupci označeném F krit. Z jejich porovnání plyne už výše uvedený závěr. Kromě toho tabulka z Excelu uvádí p-hodnotu, která je větší než je a=0.05 pro 95% hladinu spolehlivosti, protože F je menší než F krit. Excelovská tabulka obvykle uvádí F krit, takže tuto není třeba hledat ve statistických tabulkách. Tabulka VII.6 Výstup z programu MedCalc, totožná data. Data : Pb Factor codes : Analytik Sample size : 18 Source of variation Sum of squares D.F. Mean square Between groups (influence factor) 51, ,2667 Within groups (other fluctuations) 58, ,8889 Total 110, F-ratio : 2,100 Significance level : P = 0, Hranice možností analysy rozptylu Jestliže je zjištěn významný rozdíl mezi skupinami (středními hodnotami skupin), ANOVA neodpovídá na otázku, které střední hodnoty (jedna či více) jsou odlišné od celkového průměru ani na otázku, zda odlišnost je směrem k vyšším nebo k nižším hodnotám. Nejjednodušší způsob, jak to zjistit, je vynést data do grafu. Matematicky to lze zjistit metodou vícenásobného porovnání, např. Scheffeho procedurou (2, 5). 6. Předpoklady analysy rozptylu Při analyse rozptylu se předpokládá, že data každé proměnné mají normální (Gaussovské) rozdělení. Poněvadž v praxi máme většinou jenom několik paralelních měření, je obtížné zjistit eventuelní odchylku od normality pomocí statistických testů. Bylo ověřeno, že případy, kdy je rozdělení výrazně méně špičaté než normální, přitom ale souměrné, nemají většinou vliv na výsledek F-testu. Mnohem důležitější předpoklad pro použití ANOVA je, že rozptyly uvnitř jednotlivých skupin nejsou statisticky významně rozdílné, že jsou tedy rozdělení v jednotlivých skupinách tzv. homoskedastická. V praxi je bohužel častější případ, že rozptyly jsou významně rozdílné, skupiny jsou heteroskedastické. V takových případech F-test může ukazovat na statisticky významné rozdíly tam, kde žádné nejsou. Nejlepší způsob ověření homoskedasticity je grafické posouzení dat. ANOVA též předpokládá, že variabilita uvnitř skupin nekoreluje se střední hodnotou těchto skupin.

5 Analysa rozptylu ANOVA. 41 Pokud tento předpoklad není splněn, může být ANOVA pro posouzení dat nevhodná. Z tohoto hlediska je vhodné dříve, než se začne s analysou rozptylu, vynést do grafu závislost rozptylů (nebo směrodatných odchylek) na průměrech jednotlivých skupin. 7. Shrnutí Smyslem analysy rozptylu je určit statistickou významnost rozdílů středních hodnot jednotlivých skupin dat. Toho se dosáhne pomocí analysy rozptylu dat rozdělením celkového rozptylu na část způsobenou náhodnou odchylkou uvnitř skupin a na části způsobené rozdíly mezi středními hodnotami skupin. Tyto oddělené složky jsou pak porovnány pomocí testu pro poměr rozptylů (F-test). Jestliže test poměru rozptylů je významný, zamítáme nulovou hypotézu, která je obvykle formulována takto: střední hodnoty skupin se vzájemně neliší (jejich rozdíly jsou nulové) a současně přijímáme alternativní hypotézu, která říká, že rozdíly mezi středními hodnotami skupin nejsou nulové. LITERATURA 1. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis, Academic Press, ISBN (1979) 2. Snedecor, G.W., Cochran, W.G.: Statistical Methods, 6th edition, The Iowa State University Press, USA, ISBN (1978) 3. S. Burke: Statistics in context: Significance testing, VAM Bulletin, issue No 17, 18-21, Automn 1997, český překlad L.Dohnal, Testování statistické významnosti, Fons, 1999, č.1, s Burke, S., Hardcastle, B.: Statistics in context: Analysis of Variance (ANOVA). VAM Bulletin, issue No. 20, 28-31, Spring 1999, český překlad L.Dohnal, Analysa rozptylu - ANOVA, Fons, 1999, č.4, s Meloun, M., Militký, J.: Statistické zpracování experimentálních dat, East Publishing, Praha, 1996, 850 s.

6 Štatistické metódy pre klinickú epidemiológiu a laboratórnu prax 42 Obrázek VIII.4 Úskalí testů na odlehlé hodnoty - převzato z práce (14). Obrázek VIII.5 Různé druhy odlehlých hodnot ve skupinách dat - převzato z práce (14).

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

"Competitivness in the EU Challenge for the V4 countries" Nitra, May 17-18, 2006

Competitivness in the EU Challenge for the V4 countries Nitra, May 17-18, 2006 ANALÝZA ROZPTYLU JAKO ZÁKLADNÍ METODA MNOHONÁSOBNÉHO POROVNÁVÁNÍ STŘEDNÍCH HODNOT V RŮZNÝCH SOFTWAROVÝCH PRODUKTECH ANALYSIS OF VARIANCE AS A PRIMARY METHOD OF MULTIPLE COMPARISON OF EXPECTED VALUES IN

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Kapitola V. REGRESE A KALIBRACE.

Kapitola V. REGRESE A KALIBRACE. Regrese a kalibrace 27 Kapitola V. REGRESE A KALIBRACE. Luděk Dohnal Volný překlad práce (8). 1. Úvod Kalibrace je nutná k docílení konsistence měření. Obvykle je její součástí zjišťování závislosti mezi

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

MSA-Analýza systému měření

MSA-Analýza systému měření MSA-Analýza systému měření Josef Bednář Abstrakt: V příspěvku je popsáno provedení analýzy systému měření v technické praxi pro spojitá data. Je zde popsáno provedení R&R studie pomocí analýzy rozptylu

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer ANOVA Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION

INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION VLIV INFORMATIVNÍ TABULE NA ZMĚNU RYCHLOSTI VE VYBRANÉ LOKALITĚ INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION Martin Lindovský 1 Anotace: Článek popisuje měření prováděné na

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

Zobecněná analýza rozptylu, více faktorů a proměnných

Zobecněná analýza rozptylu, více faktorů a proměnných Zobecněná analýza rozptylu, více faktorů a proměnných Menu: QCExpert Anova Více faktorů Zobecněná analýza rozptylu (ANalysis Of VAriance, ANOVA) umožňuje posoudit do jaké míry ovlivňují kvalitativní proměnné

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Úvod. Struktura respondentů

Úvod. Struktura respondentů Výsledky pilotního průzkumu postojů studentů Policejní akademie ČR v Praze k problematice zálohování dat Ing. Bc. Marek Čandík, Ph.D. JUDr. Štěpán Kalamár, Ph.D. The results of the pilot survey of students

Více

Zpráva o testu dřevin na pozemku ve Stachách na Šumavě

Zpráva o testu dřevin na pozemku ve Stachách na Šumavě Ústřední kontrolní a zkušební ústav zemědělský Oddělení půdy a lesnictví Zpráva o testu dřevin na pozemku ve Stachách na Šumavě Průběžná zpráva Zpracoval: Ing. Dušan Reininger, Ph.D Dr.Ing. Přemysl Fiala

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE 1 Úvod Michal Dorda, Dušan Teichmann VŠB - TU Ostrava, Fakulta strojní, Institut dopravy Seřaďovací stanice jsou železniční

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI Pavel Praks, Zdeněk Boháč Katedra matematiky a deskriptivní geometrie, VŠB - Technická univerzita Ostrava 17. listopadu

Více

Kapitola VIII. CHYBĚJÍCÍ A ODLEHLÉ HODNOTY. Luděk Dohnal. Chybějící a odlehlé hodnoty 43

Kapitola VIII. CHYBĚJÍCÍ A ODLEHLÉ HODNOTY. Luděk Dohnal. Chybějící a odlehlé hodnoty 43 Chybějící a odlehlé hodnoty 43 Kapitola VIII. CHYBĚJÍCÍ A ODLEHLÉ HODNOTY. Luděk Dohnal Většinou se předpokládá, že data jsou pěkná, např. normálně rozdělená, neobsahují anomální hodnoty a žádný výsledek

Více

Aktivita A 0803. Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení

Aktivita A 0803. Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení Aktivita A 0803 Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení 1/62 Aktivita A0803 Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení Datum

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO RNDr. Jana Hrubá Katedra matematických metod v ekonomice (K151) Institut inovace vzdělávání (K167) Ekonomická fakulta

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Za hranice nejistoty(2)

Za hranice nejistoty(2) Za hranice nejistoty(2) MUDr. Jaroslava Ambrožová OKB-H Nemocnice Prachatice, a.s. 19.5.2014 1 TNI 01 0115: VIM EP15-A2 User Verification of performance for Precision and Trueness C51-A Expression of measurement

Více

Design of experiment Návrh experimentu

Design of experiment Návrh experimentu Design of experiment Návrh experimentu 19.7.2010 Cíl kurzu Seznámit studenty s metodologií, postupy a software pro návrh experimentu pomocí teorie a praktických ukázek Kurz je úspěšný pokud: Student si

Více

Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace

Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace České vysoké učení technické v Praze Fakulta elektrotechnická Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace Životnost LED diod Autor: Joel Matějka Praha, 2012 Obsah 1 Úvod

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

1 Projekt SIPVZ Tvorba a implementace softwarové podpory výuky matematiky na gymnáziu s využitím CABRI Geometrie

1 Projekt SIPVZ Tvorba a implementace softwarové podpory výuky matematiky na gymnáziu s využitím CABRI Geometrie 1 Projekt SIPVZ Tvorba a implementace softwarové podpory výuky matematiky na gymnáziu s využitím CABRI Geometrie 1.1 Úvod Mohutný rozvoj didaktické techniky v posledních letech vyvolává vznik zcela nových

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více