FUNKCE KOMPLEXNÍ PROMĚNNÉ. Jiří Bouchala. Katedra aplikované matematiky, FEI VŠB TU Ostrava.

Rozměr: px
Začít zobrazení ze stránky:

Download "FUNKCE KOMPLEXNÍ PROMĚNNÉ. Jiří Bouchala. Katedra aplikované matematiky, FEI VŠB TU Ostrava. jiri.bouchala@vsb.cz. www.am.vsb."

Transkript

1 FUNKCE KOMPLEXNÍ PROMĚNNÉ Jiří Bouchala Katedra aplikované matematiky, FEI VŠB TU Ostrava 200

2 Upozornění Tyto stránky jsou pracovní verzí vznikajícího učebního textu; průběžně je měním (opravuji a doplňuji). Budu čtenářům vděčný za shovívavost a sdělení všech připomínek. Současně s tímto textem píšu i Sbírku příkladů z komplexní analýzy; doporučuji čtenáři, aby si probíranou látku procvičoval na těchto příkladech. Jiří Bouchala

3 3 Obsah. Komplexní čísla, rozšířená Gaussova rovina 5..Komplexníčísla Geometrická interpretace, argument komplexního čísla Nekonečno Okolíbodu Posloupnostikomplexníchčísel Komplexní funkce reálné a komplexní proměnné 2..Komplexnífunkce Některédůležitékomplexnífunkce Exponenciálnífunkce Goniometrickéfunkce Hyperbolickéfunkce Logaritmickáfunkce Obecnámocninnáfunkce Funkce n-táodmocnina Reálnáaimaginárníčástfunkce Limitafunkcekomplexníproměnné Spojitostfunkcekomplexníproměnné Komplexnífunkcereálnéproměnné.Křivky Derivace komplexní funkce komplexní proměnné Derivacefunkce Harmonické funkce, harmonicky sdružené funkce Poznámkake geometrickémuvýznamu derivace Konformní zobrazení Základnívlastnosti Lineárnílomenéfunkce

4 4 5. Integrál komplexní funkce. Cauchyho věty. Cauchyho vzorce Integrál komplexní funkce reálné a komplexní proměnné Cauchyhověty Cauchyhointegrálnívzorce Primitivní funkce, nezávislost integrálu na cestě Číselné řady. Posloupnosti a řady funkcí Číselnéřady Posloupnosti funkcí. Bodová a stejnoměrná konvergence Mocninné řady. Taylorovy řady Mocninnéřady Taylorovyřady Laurentovy řady. Klasifikace singulárních bodů Laurentovyřady Izolovanésingularityajejichklasifikace Laurentovařadaostředu,klasifikacebodu Rezidua. Reziduová věta Reziduumfunkceajehovýpočet Reziduovávěta Výpočet integrálů funkcí reálné proměnné pomocí reziduové věty Integrálytypu 2π 0 R(sinx,cos x)dx Integrálytypu P(x) Q(x) dx Literatura

5 5. Komplexní čísla, rozšířená Gaussova rovina.. Komplexní čísla. Připomeňme si: Komplexníčíslo zječíslotvaru z x+iy,kde x, y Rai 2 ; číslo x resp. y nazýváme reálnou resp. imaginární částí komplexního čísla z aznačímere zresp.im z. Speciálním případem komplexních čísel jsou čísla reálná a ryze imaginární. Reálná čísla z jsou charakterizovaná podmínkou Im z 0, ryze imaginární číslapodmínkourez0. Dvěkomplexníčísla z a z 2 serovnajíprávětehdy,mají-litytéžreálné a tytéž imaginární části, tj. z z 2 [ ] Re z Re z 2 Im z Im z 2. Prokaždékomplexníčíslo zx+iydefinujmejehoabsolutníhodnotu jako nezáporné(reálné!) číslo z x 2 + y 2 (Re z) 2 +(Imz) 2 a číslo komplexně sdružené vztahem z x iyre z iim z. Prokaždádvěkomplexníčísla z x + iy a z 2 x 2 + iy 2 definujeme z + z 2 (x + x 2 )+i(y + y 2 ), z z 2 (x x 2 )+i(y y 2 ), z z 2 (x x 2 y y 2 )+i(x y 2 + x 2 y ), aje-li z i,definujemetaky z z 2 z 2 2 (z z 2 ). Prokaždékomplexníčíslo z x+iyplatí: zz(x+iy)(x iy)x 2 (iy) 2 x 2 + y 2 z 2. Domluvmese:napíšeme-li z x+iy,myslímetím(nebude-liřečenojinak),že xre z RayIm z R.

6 6 Poznámka. Jedním ze zásadních rozdílů mezi reálnými a komplexními čísly je skutečnost,žekomplexníčíslanejsouuspořádaná.vztah z < z 2 nenímezikomplexnímičísly z a z 2 definován,nejsou-lioběčísla z a z 2 reálná. Příklad. UrčeteRe zaim z,je-li z 2+3i 2i. Řešení: aproto z 2+3i +2i 2i +2i 4+7i 5 Re z 4 5 a Im z i,.2. Geometrická interpretace, argument komplexního čísla. Protože zřejměexistujevzájemnějednoznačnývztahmezibody R 2 akomplexnímičísly: (x,y) x+iy, je přirozené znázorňovat si komplexní čísla jako body roviny. Množinu všech komplexních čísel budeme nazývat Gaussovou rovinou a značit C. S geometrickou interpretací souvisí i tzv. goniometrický tvar komplexního čísla z. Uvažujme z C, z 0.Pakzřejměexistuje ϕ Rtakové,že 2 z z (cos ϕ+isin ϕ). ( ) Zperiodicityfunkcísinacosvyplývá,žečíslo(úhel) ϕnenívztahem( )určeno jednoznačně. Definice. Množinu všech reálných čísel ϕ, pro něž platí rovnost( ), nazýváme argumentemkomplexníhočísla z C \ {0}aznačímeArg z,tj. Arg z def. {ϕ R: z z (cos ϕ+isinϕ)}. Poznámka. Je-li z 0,jei z 0arovnost( )platípřijakékolivvolbě ϕ R.Ztohotodůvoduargumentčísla0nenídefinován! Věta.. Buď z C \ {0}aϕ Arg z.potom Arg z {ϕ+2kπ: k Z}. 2 Bystrýčtenářnepřehlédnesouvislostspolárnímisouřadnicemi v R 2.

7 7 Důkaz. Zperiodicityfunkcísinacosazpředpokladu ϕ Arg zplyne,že {ϕ+2kπ: k Z} Arg z. Přesvědčmese,žeplatíiopačnáinkluse. Buď ψ Arg zlibovolnýbod. Chceme dokázat,žeexistuje k Ztakové,že ψ ϕ+2kπ. ϕ, ψ Arg z [ z z (cos ϕ+isin ϕ) z (cos ψ+ isin ψ) z 0 ] cos ϕcos ψ cos ϕ+isin ϕcos ψ+ isinψ sinϕsinψ cos2 ϕcos ψcos ϕ cos 2 ϕ+sin 2 ϕcos ψcos ϕ+sinψsinϕ sin 2 ϕsinψsinϕ cos(ψ ϕ) [ k Z: ψ ϕ2kπ ] [ k Z: ψ ϕ+2kπ ]. Definice. Takovou hodnotu argumentu ϕ Arg z, pro kterou platí π < ϕ π, nazýváme hlavní hodnotou argumentu komplexního čísla z C \ {0} a značíme arg z. Příklad. UrčeteArg zaarg z,je-li z 3 i. Řešení: Zřejmě 3 π+arcsin 2 π+ π 6 7π 6 aproto 4 Arg z, Arg z { 7π 6 +2kπ: k Z},arg z 5π Nekonečno. Podobně jako je v reálném oboru užitečné doplnit konečná reálná čísla o + a, ukazuje se i v komplexním oboru potřeba rozšířit Gaussovu rovinu C. Nejúčelnější je přidat pouze jediný bod; budeme jej značit a nazývat nekonečno. 3 Radačtenáři:nakresletesiobrázek. 4 VizVětu..apředcházejícídefinici.

8 8 Ukažmesiještějednugeometrickouinterpretacikomplexníchčísel 5,kteránám přiblíží volbu bodu. Uvažujme kulovou plochu umístěnou tak, že se dotýká svým jižnímpólem rovinykomplexníchčíselprávěvbodě0,aoznačmesijejí severnípól N.Nynípřiřaďmekaždémunenulovémukomplexnímučíslu zbod z ležícínadanékulovéplošetak,aby z bylprůsečíkemtétoplochyspřímkou spojující obraz čísla z s bodem N. Tímto způsobem získáme vzájemně jednoznačnou korespondenci mezi(konečnými) komplexními čísly a body dané kulové plochy(samozřejmě zmenšené o bod N). Všimněmesi,žečímvětšíje z,tímmenšíjevzdálenostbodů z a N dané sféry. ItonásvedektomupřidatkCpouzejedinýbod( ),jehožobrazempři výšepopsanéprojekcibudeprávěbod N. Množinu C { } ozn. C budeme nazývat rozšířenou(nebo taky uzavřenou) Gaussovou rovinou. Definujmenyníprokaždé z C: () z ± ± z, (2) z z,je-linavíc z 0, (3) z 0, (4) z 0,je-linavíc z 0, (5) z, (6) n, n 0, 0 n,je-li n N, (7), Okolí bodu. Definice. Okolímbodu z 0 C resp. spoloměrem ε R + rozumíme množinu U(z 0,ε){z C: z z 0 < ε} resp. množinu U(,ε){z C: z > ε } { }. Prstencovýmokolímbodu z C spoloměrem ε R + rozumímemnožinu P(z,ε)U(z,ε) \ {z}. 5 Tzv.stereografickouprojekci. 6 Pozor,nenídefinováno: ±,0, 0, 0 0,,Arg,arg.

9 Nezáleží-linámna velikosti okolí(tj.nakonkrétníhodnotě ε),píšemekrátce U(z)resp. P(z)amluvímeookolíresp.prstencovémokolíbodu z. Definice. Množina M C senazýváotevřená, obsahuje-liskaždýmsvým bodem i nějaké okolí tohoto bodu. Tzn. 9 M je otevřená def. ( z M)( U(z)): U(z) M. Příklady. a), CaC jsouotevřenémnožiny, b) {z C: z 3 < z+2 i }a{z C: Im z <}jsouotevřenémnožiny, c) {2+ 3i}, {z C: Re z+2im z7}a{z C: Im z } nejsou otevřené množiny..5. Posloupnosti komplexních čísel. Definice. Buď z C abuď(z n )posloupnostvc. 7 Řekneme,žeposloupnost (z n )málimitu zapíšemelim z n znebo z n z,platí-li ( ε R + ) ( n 0 N)( n N, n n 0 ): z n U(z,ε). Posloupnost(z n )nazvemekonvergentní,existuje-ličíslo z Ctakové,že lim z n z. Pozorování. Definice limity posloupnosti vlastně říká, že vně libovolného(tzn. jakkoliv malého )okolíbodu zležínejvýšekonečněmnohočlenůposloupnosti(z n ). Uvažujmeposloupnost(z n )abod zv C a přistereograficképrojekci odpovídající posloupnost(zn)abod z nakulovéploše 8 v R 3.Pakplatí z n z(v C ) zn z (v R 3 ). 7 PosloupnostívC rozumíme podobnějakoureálnýchposloupností zobrazenízndo C,jehoždefiničníoborobsahujevšechnadostvelká n N. 8 Vizkapitolu.3.

10 0 Věta.2. Nechť z n x n + iy n provšechnadostvelká n Nanechť z x+iy. Potom platí limz n z [ limx n x limy n y ]. Příklad. Určetelim (2n i)i n. Řešení: lim (2n i)i n ( ) lim n +2i lim n + ilim20+2i2i. Poznámka. Definice limity je formálně stejná jako definice limity reálných posloupností. Platí proto i analogie mnoha vět. Uveďme pro ilustraci některé z nich. Věta.3. Každá posloupnost komplexních čísel má nejvýš jednu limitu. Věta.4. Posloupnostkomplexníchčíselmálimitu z C právětehdy,když každá posloupnost z ní vybraná má tutéž limitu z. Věta.5. Je-liposloupnost(z n )konvergentníataková,žeprokaždé n Nje z n C,jeposloupnost(z n )omezená. 9 9 Tzn.,žeexistuje k R + takové,žeprokaždé n Nje z n k.

11 2. Komplexní funkce reálné a komplexní proměnné 2.. Komplexní funkce. Definice. Komplexní funkcí(komplexní proměnné) rozumíme každé zobrazení z C do množiny všech podmnožin C. Jinými slovy: komplexní funkcí f rozumímepředpis, pomocíněhožjekaždémučíslu z Df C 0 přiřazeno jednonebovícekomplexníchčíselzc.totonebotatokomplexníčíslaznačíme f(z)anazýváme f obrazemčísla z. Pokudjeprokaždé z Df množina f(z)jednoprvková,nazývámefunkci f jednoznačnou. Pokud tomu tak není, nazýváme funkci f mnohoznačnou, případně podle počtu prvků f(z) dvojznačnou, trojznačnou,..., nekonečněznačnou. Je-li Df R, nazýváme funkci f komplexní funkcí reálné proměnné. Úmluva. Zadáme-li funkci pouze předpisem, rozumíme jejím definičním oborem množinuvšechčíselzc,proněžmádanýpředpissmysl. Příklady. a) f(z) def. z 2... jednoznačnáfunkce, Df C ; b) f(z) def. Arg z... nekonečněznačnáfunkce, Df C \ {0}. Úmluva. Někdy budeme nepříliš přesně psát Arg zarg z+2kπ, k Z, místo správného zápisu Arg z {arg z+2kπ: k Z}. (Podobně i pro jiné mnohoznačné funkce.) 0 Nikohonepřekvapí,žemnožinu Dfnazývámedefiničnímoboremfunkce f. Například:definičnímoboremfunkce fdefinovanépředpisem f(z) def. z jemnožina Df C { }.

12 2 Definice. Buď f mnohoznačná funkce. Jednoznačnou funkci ϕ nazýváme jednoznačnou větví(mnohoznačné) funkce f, platí-li: () Dϕ Df, (2) z Dϕ: ϕ(z) f(z). Příklad. Funkce ϕ (z) def. arg z a ϕ 2 (z) def. arg z+2π jsou dvě navzájem různé jednoznačné větve funkce Arg Některé důležité komplexní funkce Exponenciálnífunkci definujemeprokaždé z x+iy Cpředpisem: 2 e z e x+iy def. e x (cos y+ isiny). Vlastnosti exponenciální funkce. (i)e z jefunkcejednoznačná. (ii)oboremhodnotfunkcee z je C \ {0}. (iii)funkcee z jeperiodickásperiodou2πi. ( e z+2πi e x+iy+2πi e x ( cos(y+2π)+isin(y+2π) ) ) e x (cos y+ isin y)e x+iy e z. 2 Pozornýčtenářmůžebýttoutodefinicízneklidněn,značímetotižsymbolem e dvěrůzné funkce: e z : C C \ {0} a e x : R R +. Nemusímesevšakbát,protožepro z x+0ixje e z e x+0i e x (cos0+isin0)e x ; jinakřečeno: komplexní exponenciálnífunkcejerozšířením reálné exponenciálnífunkcena C. Ze stejného důvodu nebudeme v dalším měnit označení ani některých jiných komplexních funkcí(např.sin, cos, sinh, cosh, ln,...).

13 Goniometrické funkce jsou definovány rovnostmi: sin z def. eiz e iz,cos z def. eiz +e iz, 2i 2 tg z def. sinz,cotg zdef. cos z cos z sinz. Vlastnosti goniometrických funkcí. (i) Všechny goniometrické funkce jsou jednoznačné. (ii)sin zacos zjsoufunkceperiodickésperiodou2π, tg zacotg zjsoufunkceperiodickésperiodou π. (iii)prokaždé z Cplatí: sin( z) sin z,cos( z)cos z, tg( z) tg z,cotg( z) cotg z. (iv)prokaždé z Cplatítzv.Eulerůvvzorec: e iz cos z+ isinz. (v) sinz0 [ k Z: z kπ ], cos z0 [ k Z: z π 2 + kπ]. Příklad. UrčeteRe zaim z,je-li zcos(4+i). Řešení: zcos(4+i) ei(4+i) +e i(4+i) 2 ( e cos4+isin4 ) +e ( cos( 4)+isin( 4) ) e +e 2 2 cos4+i e e 2 sin4, aproto Re zcoshcos4, Im z sinhsin4.

14 aproto 4 uln z [ k Z:v ϕ+2kπ ] Hyperbolické funkce definujeme předpisy: sinhz def. ez e z,cosh z def. ez +e z, 2 2 tghz def. sinhz,cotgh zdef. cosh z cosh z sinhz. Poznámka. Podobně jako v reálném oboru můžeme i pro komplexní funkce zavést pojem inverzní funkce. Na rozdíl od funkcí reálných však budeme definovat inverzní funkci i pro funkce, které nejsou prosté. V takovém případě pak bude příslušná inverzní funkce funkcí mnohoznačnou. Příkladem může být níže definovaná logaritmická funkce Logaritmickou funkci definujeme jako funkci inverzní k funkci exponenciální, tzn. Ln z def. {w C: e w z}. Zvlastnosti(ii)exponenciálnífunkce 3 vyplývá,žedefiničnímoboremfunkcelnz jemnožina C \ {0}. Buď z z (cos ϕ+isin ϕ), kde z >0aϕ R,apoložme Ln z u+iv. Potom je e u+iv z, tj. e u (cos v+ isin v) z (cos ϕ+isin ϕ), Zjistilijsme,žeprokaždé z C \ {0}je Ln zln z +i(ϕ+2kπ), k Z, neboli, že Ln zln z +iarg z. 3 Vizstranu2. 4 Symbol ln zdeznamenápřirozený logaritmus,tj.funkcizr + do R.

15 5 Příklad. Ln( +i)ln 2+ 3π 4 i+2kπi, k Z. Definice. Funkci hlavní hodnota logaritmu definujeme na C \ {0} předpisem lnz def. ln z +iarg z. Příklad. ln( i)ln 2 3π 4 i Obecnámocninnáfunkce. Připomeňmesi: je-li n Nresp. n N,je funkce z z n definovanápředpisem z n def. zzz...z } {{ } n-krát resp. z n def. z n. Definujmenynímocninnoufunkciipro a Ctakové,že ±a / N: z a def. {w C: we as, s Ln z} ozn. e aln z. Příklad. 2 i e iln2 e i(ln2+2kπi) e 2kπ+iln2 e 2kπ ( cos(ln2)+isin(ln2) ), k Z Funkci n-táodmocnina (n N, n )definujemepředpisem: n z def. {w C: w n z}. Cvičení. a) Dokažte,žeprokaždé0 z Ca < n Nplatí: n z z n ažefunkce z z n jeprávě n-značná. b) Dokažte,žepro a m n,kde m Z\{0}an Njsounavzájemnesoudělná čísla,jefunkce z z a právě n-značná. c) Dokažte,žepro a C \ Qjefunkce z z a nekonečněznačná.

16 6 Příklad. 4 ii 4 e 4 Ln i e 4 ( π 2 i+2kπi) e π 8 i+k π 2 i ( π ) ( π ) cos 8 + kπ + isin kπ, k {0,,2,3} Reálná a imaginární část funkce. Úmluva. Pokud nebude řečeno jinak, budeme pojmem komplexní funkce rozumět funkci jednoznačnou. Poznámka. Ukažmesi,jaklzekaždoukonečnoukomplexnífunkci f, 5 proniž platí Df C, vyjádřit pomocí dvou reálných funkcí dvou reálných proměnných. Definice. Buď f: C C. Funkci u: R 2 R resp. v: R 2 R definovanou na množině {(x,y) R 2 : x+iy Df} předpisem u(x,y) def. Re f(x+iy) resp. v(x,y) def. Im f(x+iy) nazýváme reálnou resp. imaginární částí funkce f. Skutečnost, že u resp. v je reálnou resp. imaginární částí funkce f budeme zapisovat symbolem f u+iv. Příklad. Najděme reálnou a imaginární část funkce f(z) def. z z. Řešení: f(z)f(x+iy) x+iy x iy x2 y 2 x 2 + y 2+ i 2xy x 2 + y 2, aproto f u+iv,kde u(x,y) def. x2 y 2 x 2 + y 2 a v(x,y) def. 2xy x 2 + y 2. 5 Tzn.,že f: C C.

17 Limita funkce komplexní proměnné. Úmluva. Píšeme-li z 0 z n z 0, myslímetím,že z n z 0 ažeprovšechnadostvelká n Nje z n C \ {z 0 }. Definice. Řekneme,žefunkce f: C C mávbodě z 0 C limitu a C apíšeme lim z z 0 f(z)a,platí-li: z 0 z n z 0 f(z n ) a. Věta2.. Nechť f: C C anechť z 0,a C.Potom lim z z 0 f(z)aprávě tehdy, platí-li: ( U(a))( P(z 0 ))( z P(z 0 )): f(z) U(a). Věta2.2. Nechť f u+iv: C Canechť z 0 x 0 + iy 0 a aα+iβ. Potom lim z z 0 f(z)aprávětehdy,platí-li: lim u(x,y)α lim v(x,y)β. (x,y) (x 0,y 0 ) (x,y) (x 0,y 0 ) Příklady. a) ( ) ( ) ( ) z i lim z i z 2 lim lim + z i z+ i x+iy i x+i(y+) ( ) x lim (x,y) (0,) x 2 +(y+) 2 ( ) x lim x+iy i x 2 +(y+) 2+ i (y+) x 2 +(y+) 2 ( ) (y+) + i lim (x,y) (0,) x 2 +(y+) i 2 i. b) lim arg z neexistuje,protože: z z n def. cos arg(z 2n ) π, arg(z 2n+ ) π. ) (π+ ( )n n + isin ) (π+ ( )n n,

18 Spojitost funkce komplexní proměnné. Definice. Řekneme,žefunkce f: C C jespojitávbodě z 0 C, platí-li: lim f(z)f(z 0 ). z z 0 Řekneme,žefunkce f jespojitánamnožině M C,platí-liprokaždé z 0 Mimplikace: z n z 0 n N: z n M } f(z n ) f(z 0 ). Řekneme, že funkce f je spojitá, je-li spojitá na svém definičním oboru. Věta2.3. Nechť f : C C anechť z 0 C. Potomnásledujícítvrzení jsou ekvivalentní: (i) (ii) (iii) fjespojitávbodě z 0, z n z 0 f(z n ) f(z 0 ), ( U(f(z 0 )))( U(z 0 ))( z U(z 0 )): f(z) U(f(z 0 )). Cvičení. Rozmysletesi,jakspolusouvisíspojitostfunkce f u+iv: C C sespojitostífunkcí u,v: R 2 R. Příklady. a) Funkcearg zneníspojitá,neboťneníspojitá(např.)vbodě. 6 b) Funkcearg zjespojitánamnožině {z C: z / R z 0}. 6 Vizpříkladb)nastraně7.

19 Komplexní funkce reálné proměnné. Křivky. Buď f komplexnífunkcíreálnéproměnné,tj. buď f zobrazenímzrdo C. Podobně jako u komplexních funkcí komplexní proměnné můžeme i zde zavést pojem limity a spojitosti. Definice. Buď f: R C. Řekneme,žefunkce fmávbodě t 0 Rlimitu a C apíšeme lim t t0 f(t)a, platí-li: t 0 t n t 0 (v R) f(t n ) a. Řekneme,žefunkce fjespojitávbodě t 0 R, platí-li: lim f(t)f(t 0 ). t t 0 Řekneme,žefunkce f jespojitánamnožině M R,platí-liprokaždé t 0 Mimplikace: t n t 0 n N: t n M } f(t n ) f(t 0 ). Řekneme, že funkce f je spojitá, je-li spojitá na svém definičním oboru. Velice důležitou třídu spojitých funkcí tvoří křivky. Definice. KřivkouvC (resp.v C)rozumímekaždouspojitoukomplexnífunkci reálné proměnné kde I Dγ Rjeinterval. Množinu γ: I C (resp. γ: I C), γ def. γ(i){γ(t): t I} C paknazývámegeometrickýmobrazemkřivky γ. Je-li M γ,říkáme,že γje parametrizací množiny M. Pozorování a úmluva. Již jsme si všimli, že existuje vzájemně jednoznačný vztahmezibody R 2 abody C: (x,y) x+iy. Podobně si lze všimnout, že existuje vzájemně jednoznačný vztah mezi křivkami v R 2 akřivkamivc: γ(γ,γ 2 ) γ γ + iγ 2.

20 20 MůžemeprotoiprokřivkyvCpovažovatzaznámépojmyzavedenéprokřivky v R 2 (viz[2]).uveďmepropříkladněkteréznich:jednoduchákřivka,uzavřenákřivka, jednoduchá uzavřená křivka, opačně orientovaná křivka, hladký oblouk, po částech hladká křivka, počáteční a koncový bod křivky, derivace křivky v bodě, tečný vektorkřivky,... Cvičení. Znázorněte v Gaussově rovině geometrický obraz křivky γ, je-li a) γ(t) def. 2 3i+2e 2it, t 0, 3 4 π ; b) γ(t) def. 4e it, t 0, π 2, i(4+ π 2 t), t π 2,4+ π 2, t 4 π 2, t 4+ π 2,8+ π 2. Definice. MnožinaΩ C senazýváoblastí,platí-lisoučasnětytodvěpodmínky: ()Ωjeotevřenámnožina, 7 (2)Ωjesouvislámnožina(tzn.,žekaždédvabodyΩlzespojitkřivkouvΩ; přesněji: prokaždédvabody z,z 2 Ωexistujekřivka γ: a,b Ω taková,že γ(a)z, γ(b)z 2 ). Definice. Buď M C.Množinu K Mnazývámekomponentoumnožiny M, má-li současně tyto dvě vlastnosti: () K je souvislá množina; (2)je-li K Msouvislámnožinaobsahující K(tzn. K K ),je K K. 8 Poznámka. Dáseukázat, 9 žekaždámnožina M C jesjednocenímsystému všech svých komponent; tento systém je přitom disjunktní. Definice. OblastΩ C,jejíždoplněkvC (tj.množina C \Ω)máprávě n různých komponent, se nazývá n násobně souvislá oblast. Jednonásobně souvislá oblast se nazývá jednoduše souvislá oblast. 7 Vizstr.9. 8 Komponentoumnožinytedynazývámekaždoujejímaximální souvislou podmnožinu. 9 Viznapř.[5].

21 2 Příklady. a), C, C, U(z),kde z C,jsoujednodušesouvisléoblasti. b) P(z), C \ {z}, kde z C,jsoudvojnásobněsouvisléoblasti. c) U(,2002) \ {2,4,5+i}ječtyřnásobněsouvisláoblast. d) U(3,2) U(4i,3)neníoblast(nenísouvislá). e) C \ {z C: arg z 0, π 4 }neníoblast(neníotevřená).

22 22 3. Derivace komplexní funkce komplexní proměnné 3.. Derivace funkce. Definice. Buď f: C C. Derivacifunkce fvbodě z 0 Cdefinujemerovností existuje-li limita vpravo a je-li konečná. f (z 0 ) lim z z 0 f(z) f(z 0 ) z z 0, Řekneme,žefunkce fjeholomorfnínamnožiněω,je-liω Cotevřenámnožina aexistuje-li f (z)prokaždé z Ω. Řekneme,žefunkce f jeholomorfnívbodě z 0 C,je-li f holomorfnínanějakémokolíbodu z 0 (tj.má-liderivacivkaždémboděnějakéhookolí U(z 0 )). Poznámka. Všimněme si, že definice derivace je formálně totožná s definicí derivace reálné funkce reálné proměnné. Formálně stejné by byly formulace i důkazymnohavěto počítání derivací. 20 Nebudemejeprotouvádět. Věta3.. Má-lifunkce f: C Cderivacivbodě z 0 C,je fvbodě z 0 spojitá. Důkaz. Z předpokladu f (z 0 ) lim z z 0 f(z) f(z 0 ) z z 0 C plyneexistenceprstencovéokolí P(z 0 )takového,žeplatí aprototaky z P(z 0 ): f(z) f(z 0 ) z z 0 < f (z 0 ) +, z P(z 0 ): 0 f(z) f(z 0 ) < ( f (z 0 ) + ) z z 0. Vezměmenynílibovolnouposloupnost(z n )takovou,že z n z 0. Zvýšeuvedenéhotvrzenípakvyplývá,že f(z n ) f(z 0 ) 0,aproto f(z n ) f(z 0 ). Právějsmedokázalispojitostfunkce fvbodě z Mámenamyslinapř.větyoderivovánísoučtu,rozdílu,součinu,podílu,složenéfunkce,... 2 VizVětu2.3.nastraně8.

23 Věta3.2. Funkce f u+ivmávbodě z 0 x 0 +iy 0 derivaciprávětehdy,platí-li tyto dvě podmínky: (i) uavjsoudiferencovatelnévbodě(x 0,y 0 ), 22 (ii) uavsplňujívbodě(x 0,y 0 )tzv.cauchyho Riemannovypodmínky: 23 u x (x 0,y 0 ) v y (x 0,y 0 ), u y (x 0,y 0 ) v x (x 0,y 0 ). Navíc,pokud f (z 0 )existuje,platí: f (z 0 ) u x (x 0,y 0 )+i v x (x 0,y 0 ) v y (x 0,y 0 ) i u y (x 0,y 0 ). Poznámka k výše uvedené větě. Vyjádření f pomocíparciálníchderivací funkcí u a v a z něho plynoucí Cauchyho Riemannovy podmínky by neměly být poprohlédnutínásledujícíchřádkůžádnýmpřekvapením. 23 Všimněmesi:existuje-li f (z 0 ),je f (z 0 ) lim z z 0 f(z) f(z 0 ) z z 0 lim h 0 h R f(x 0 + h+iy 0 ) f(x 0 + iy 0 ) (x 0 + h+iy 0 ) (x 0 + iy 0 ) lim h 0 h R u(x 0 + h,y 0 )+iv(x 0 + h,y 0 ) u(x 0,y 0 ) iv(x 0,y 0 ) (x 0 + h x 0 )+i(y 0 y 0 ) u(x 0 + h,y 0 ) u(x 0,y 0 ) v(x 0 + h,y 0 ) v(x 0,y 0 ) lim + ilim h 0 h h 0 h u x (x 0,y 0 )+i v x (x 0,y 0 ), 22 Připomeňmesidůležitétvrzení-postačujícípodmínkudiferencovatelnosti: Buď ϕ: R 2 R.Jsou-lifunkce ϕ x a ϕ y spojitévbodě(x 0, y 0 ), jefunkce ϕdiferencovatelnávbodě(x 0, y 0 ). 23 Jetřebasiovšemdomysletsmyslvýrazůtypu: lim.... h 0 h R

24 24 apodobně f (z 0 ) lim z z 0 f(z) f(z 0 ) z z 0 lim s 0 s R lim s 0 s R f(x 0 + i(y 0 + s)) f(x 0 + iy 0 ) (x 0 + i(y 0 + s)) (x 0 + iy 0 ) u(x 0,y 0 + s)+iv(x 0,y 0 + s) u(x 0,y 0 ) iv(x 0,y 0 ) (x 0 x 0 )+i(y 0 + s y 0 ) v(x 0,y 0 + s) v(x 0,y 0 ) lim + s 0 s i lim u(x 0,y 0 + s) u(x 0,y 0 ) s 0 s v y (x 0,y 0 ) i u y (x 0,y 0 ). Příklad. Zjistěte,vekterýchbodechmáfunkce f(z) def. e z derivaci,avyjádřete ji. Řešení:Prokaždé x+iy Cplatí: f(x+iy)e x+iy e x cos y } {{ } def. u(x,y) u x (x,y)ex cos y v y (x,y), +ie x siny } {{ } u y (x,y)ex siny v x (x,y)., def. v(x,y) Protožefunkce uavjsounavíczřejmědiferencovatelnévkaždémbodě(x,y) R 2, platíprokaždé z x+iy C: f (z)f (x+iy) u x (x,y)+i v x (x,y)ex cos y+ie x sinye x+iy f(x+iy)f(z) Harmonické funkce, harmonicky sdružené funkce. Definice. Buď M R 2 otevřenámnožina. Řekneme,žefunkce ϕ: R 2 Rje harmonickánamnožině M,platí-liprokaždýbod(x,y) Mtytodvěpodmínky: () ϕmávbodě(x,y)spojitévšechnyparciálníderivaceaždodruhéhořádu včetně, 24 (2) ϕ(x,y) def. 2 ϕ x 2 (x,y)+ 2 ϕ y 2 (x,y)0. 24 Tj. ϕjetřídy C 2 na M.

25 25 Příklad. a) Funkce ϕ(x,y) def. x+y+e x cos yjeharmonickána R 2. b) Funkce ϕ(x,y) def. Im ( ln(x+iy) ) neníharmonickána R 2 \ {(0,0)}. 25 Úmluva. V dalším budeme psát zkráceně(ale nepříliš přesně), že funkce ϕ je harmonickánamnožiněω C,místosprávného: funkce ϕjeharmonickána množině {(x,y) R 2 : x+iy Ω}. Pozorování. Předpokládejme,žefunkce f u+ivmávkaždémboděoblasti Ω Cderivacidruhéhořádu 26 ažefunkce uavjsoutřídy C 2 namnožině {(x,y) R 2 : x+iy Ω}. ZVěty3.2. pakplyne,žeprokaždýbod x+iy Ω platí: f (x+iy) u x (x,y)+i v v (x,y) (x,y) i u x y y (x,y), f (x+iy) 2 u x 2(x,y)+i 2 v x 2(x,y) 2 u y 2(x,y) i 2 v y 2(x,y). Zaměřme nyní svoji pozornost na poslední z uvedených rovností: porovnáním reálných a imaginárních částí zjistíme, že x+iy Ω: u(x,y)0 v(x,y), neboli,žefunkce uavjsounaoblastiωharmonické. Následující věta toto pozorování ještě zobecňuje. Věta3.3. Nechťfunkce f u+ivjeholomorfnínaoblastiω C. Pakfunkce uavjsouharmonickénaω. Definice. Řekneme,žefunkce u,v: R 2 Rjsouharmonickysdruženénaoblasti Ω C, platí-li současně: () uavjsouharmonickénaω, (2) u a v splňují na Ω Cauchyho Riemannovy podmínky. tj. 25 Otázkačtenáři:Proč? 26 Buď n N.Definujme(n+) níderivacifunkce f: C Cvbodě z 0 Cindukcí: existuje-li limita vpravo a je-li konečná. f (n+) (z 0 ) ( f (n)) (z0 ), f (n+) f (n) (z) f (n) (z 0 ) (z 0 ) lim, z z 0 z z 0

26 26 Pozorování. Všimněme si, že harmonicky sdružené funkce tvoří právě reálné a imaginární části holomorfních funkcí. Příklad. Najděte(existuje-li) holomorfní funkci f u + iv, je-li u(x,y) def. x 2 y 2 +2xy. Řešení:Hledejmefunkci v: R 2 R svázanou Cauchyho Riemannovýmipodmínkami s funkcí u: u v (x,y)2x+2y x y (x,y) v(x,y)2xy+ y2 + ϕ(x), kde ϕ: R R.NynídosaďmedodruhézCauchyho Riemannovýchpodmínek: aproto u v (x,y)2y 2x y x (x,y)2y+ ϕ (x), Snadnoselzepřesvědčit, 27 žefunkce ϕ(x) x 2 + c,kde c R, v(x,y)2xy+ y 2 x 2 + c. f(x+iy) def. x 2 y 2 +2xy+ i(2xy+ y 2 x 2 + c) jepřikaždévolbě c Rholomorfnína C. Věta 3.4. Nechť u resp. v je harmonická funkce na jednoduše souvislé oblasti Ω C. Potom existuje až na ryze imaginární resp. reálnou konstantu jednoznačně určenáfunkce f: C C taková,že fjeholomorfnínaω, prokaždé x+iy Ωplatí: u(x,y)re f(x+iy) resp. v(x,y)imf(x+iy). Cvičení. a) Najdětevšechnynaoblasti C \ {0}holomorfnífunkce f u+iv,kde b) Dokažte,žejefunkce v(x,y) def. y x 2 + y 2. v(x,y) def. ln(x 2 + y 2 ) harmonickánaoblasti C \ {0},ažepřestoneexistujefunkce u: R 2 R taková,aby f def. u+ivbylaholomorfnína C \ {0} 27 Stačíověřitpodmínky(i)a(ii)zVěty3.2.

27 3.3. Poznámkake geometrickémuvýznamu derivace. Předpokládejme, žejefunkce f: C Cholomorfnívbodě z 0 Caže 0 f (z 0 ) f (z 0 ) e iarg f (z 0 ). 27 Z definice derivace pak plyne, že lim z z 0 f(z) f(z 0 ) z z 0 f (z 0 ) R +, aprotopro z blízké bodu z 0 ječíslo f(z) f(z 0 ) blízké číslu f (z 0 ) z z 0. Jinakřečeno:pro malá δ >0se f obrazkružnice {z C: z z 0 δ} málo liší odkružnice {w C: w f(z 0 ) f (z 0 ) δ}. Ukažme si nyní, jak lze geometricky interpretovat arg f (z 0 ). Buď γ libovolnýhladkýobloukvctakový,že γ(t 0 )z 0. Pakčísloarg γ (t 0 )udáváúhel, kterýsvírátečnývektor γ (t 0 )skladnoučástíreálnéosy. 28 Teďuvažujme(na dostatečněmalém okolíbodu t 0 korektnědefinovanou)křivkuγ(t) def. f(γ(t)) azkoumejmeodchylkutečnéhovektoruγ (t 0 )odkladnéčástireálnéosy,tj. argumentγ (t 0 ).ProtožeΓ (t 0 )f ( γ(t 0 ) ) γ (t 0 )f (z 0 )γ (t 0 ),je arg f (z 0 )+arg γ (t 0 ) ArgΓ (t 0 ). Jinakřečeno: čísloarg f (z 0 )udáváúhel,okterýjetřebaotočitsměrovývektor tečnyhladkéhooblouku γvbodě γ(t 0 )z 0 tak,abychomdostalisměrovývektor tečnykřivkyγ def. f γvboděγ(t 0 )f(z 0 ),přičemžnakonkrétnívolběkřivky γnezáleží. Tyto úvahy nás vedou k následující definici. Definice. Buďfunkce f: C Cholomorfnívbodě z 0 abuď f (z 0 ) 0. Číslo f (z 0 ) nazývámekoeficientemroztažnostifunkce fvbodě z Čísloarg f (z 0 )nazývámeúhlemotočenífunkce fvbodě z Kresletesiobrázek! 29 Je-linavíc f (z 0 ) <resp. f (z 0 ) >,mluvímeněkdyokontrakciresp.dilatacifunkce fvbodě z 0.

28 28 4. Konformní zobrazení 4.. Základní vlastnosti. Definice. Řekneme,žefunkce f: C C jekonformnínaotevřenémnožině G C,platí-li: () fjespojitáaprostána G, (2) f existujevevšechbodechmnožiny Gsvýjimkounejvýšekonečněmnoha. Cvičení. Rozmyslete si, na jakých oblastech jsou konformní funkce: e z,lnz,sinz, z 2, z 4,.... Definice. Řekneme,žeotevřenémnožiny G, G 2 C jsoukonformněekvivalentní,existuje-lifunkce f: C C taková,že () fjekonformnína G, (2) f(g )G 2. Vlastnosti konformních funkcí. (i)je-li fkonformnína G,je f (z) 0provšechna z Gsvýjimkounejvýše dvoubodů:bodu (pokudpatřído G)abodu(je-livGtakový),jehož f obrazemje. 30 (ii) Funkce inverzní ke konformnímu zobrazení je konformní. (iii) Obrazem oblasti při konformním zobrazení je oblast. (iv)rozdělmenynívšechnyjednodušesouvisléoblastivc dočtyřskupin:. skupina obsahuje pouze prázdnou množinu, 2.skupinaobsahujepouze C, 3.skupinaobsahujevšechnyoblastitvaru C \ {z 0 },kde z 0 C, 4.skupinaobsahujevšechnyostatníjednodušesouvisléoblasti. 3 Pakplatí:jednodušesouvisléoblastiΩ aω 2 jsoukonformněekvivalentní právě tehdy, patří-li obě do stejné skupiny. Prozkoumejme nyní podrobněji jeden velice důležitý typ konformních zobrazení. 30 Všimněmesi, žeodtudvyplývá, žekonformnífunkce f zachovává úhly mezi křivkami vycházejícímizbodu z 0 (z 0 G, z 0 f(z 0 )) vizgeometrickývýznamarg f (z 0 )na straně27.tétovlastnostifunkce fseříkákonformnostvbodě z 0. 3 Tzn. všechnyneprádnéjednodušesouvisléoblasti,jejichždoplněkobsahujealespoň dva body.

29 Lineární lomené funkce. Definice. Lineárnílomenoufunkcírozumímekaždézobrazení f : C C, kněmužexistujíčísla a, b, c, d Ctaková,že ad bc 0aže f(z) { az+b cz+d, je-li z C, a c, je-li z. Vlastnosti lineárních lomených funkcí. (i)lineárnílomenéfunkcejsoujedinákonformnízobrazení C na C. (ii) Inverzní zobrazení k lineární lomené funkci je lineární lomená funkce. (iii) Obrazem zobecněné kružnice při lineárním lomeném zobrazení je zobecněná kružnice.(zobecněnou kružnicí rozumíme kružnici(v C) nebo přímku ktépočítámeibod.) (iv)nechť každá z množin {z,z 2,z 3 }, {w,w 2,w 3 } obsahuje tři navzájem různáčíslazc. Pakexistujeprávějednalineárnílomenáfunkce f, pronižje f(z )w, f(z 2 )w 2 a f(z 3 )w 3. (v) Speciálním případem lineárních lomených zobrazení jsou lineární funkce, tj.funkcedefinovanépředpisem f(z) def. az+ b,kde a,b C, a Příklad. Najděte obraz kružnice přizobrazení f(z) def. z. K {z C: z } Řešení: Protožeprobody0,2,+i Kplatí: f(0), f(2) 2, f(+i) 2 2i,jeobrazemkružnice Kpřímka:33 f(k){z C: Re z 2 } { }. 32 Rozmysletesi,žekaždoulineárnífunkcilzezískatsloženímtřízobrazení: otočení(z e iarg a z),stejnolehlosti(z a z)aposunutí(z z+ b). 33 Vizvlastnost(iii)lineárníchlomenýchfunkcí.

30 30 5. Integrál komplexní funkce. Cauchyho věty. Cauchyho vzorce. 5.. Integrál komplexní funkce reálné a komplexní proměnné. Věta 5.. (Jordanova). Nechť γ je jednoduchá uzavřená křivka v C. Potom C \ γ Ω Ω 2, kdeω aω 2 jsoudvědisjunktní, 34 neprázdnéajednodušesouvisléoblasti,jejichž společnou hranicí je γ. Definice. UvažujmesituacizJordanovyvěty. TuzoblastíΩ,Ω 2,kteráneobsahuje,nazývámevnitřkemkřivky γaznačímeint γ,tu,která obsahuje, nazýváme vnějškem křivky γ a značíme ext γ. Definice. Buďfunkce f u+iv: R Cspojitánaintervalu a,b (a,b R; a < b). 35 Pakdefinujeme b a f(t)dt b a u(t)+iv(t)dt def. b a b u(t)dt+i v(t) dt. a Definice. Buď γ: a,b Cpočástechhladkákřivkaabuďfunkce f u+iv: C Cspojitána γ.pakdefinujeme 36 γ f(z)dz def. (γ) u(x,y)dx v(x,y)dy+ i v(x,y)dx+u(x,y)dy, (γ) kde integrály na pravé straně rovnosti jsou křivkové integrály 2. druhu(γ zde chápemejakokřivkuvr 2 ). Věta5.2. Nechť γ: a,b Cjehladkýobloukanechťfunkce f: C Cje spojitá na γ. Potom platí γ f(z)dz b a f(γ(t))γ (t)dt. 34 Tzn.Ω Ω Tzn.,žefunkce u(t) def. Re f(t), v(t) def. Im f(t): R Rjsouspojiténa a, b. 36 Pomůckaprosnadnějšízapamatování: f(z)dz(u+iv)(dx+idy)udx vdy+ i(vdx+udy).

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY 3 Jiří Bouchala. Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.

SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY 3 Jiří Bouchala. Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb. SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY 3 Jiří Bouchala Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 2000 3 Předmluva Tato sbírka doplňuje přednášky z Matematické

Více

Obsah. 1. Komplexní čísla

Obsah. 1. Komplexní čísla KOMPLEXNÍ ANALÝZA - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Komplexní čísla 1 2. Holomorfní funkce 3 3. Elementární funkce komplexní proměnné 4 4. Křivkový integrál 7 5. Index bodu vzhledem ke křivce 9 6.

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3 VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady...... 2 1.2 Základnívlastnostiřad..... 3 2 Řady s nezápornými členy 3 2.1 Kritériakonvergenceadivergence...... 3 3 Řady absolutně

Více

MATEMATIKA B 2. Integrální počet 1

MATEMATIKA B 2. Integrální počet 1 metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

Spojitost funkcí více proměnných

Spojitost funkcí více proměnných Reálné funkce více proměnných Reálnou funkcí n reálných proměnných rozumíme zobrazení, které každé uspořádané n ticireálnýchčíselznějaképodmnožinykartézskéhosoučinur R=R n přiřazuje nějaké reálné číslo.

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu.

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu. Inženýrská matematika Robert Mařík Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Kapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada.

Kapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada. Kapitola 5 Číselné řady 5. Základní pojmy Definice 5...Symbol a + a 2 + +a n +,kde n N, a n R,se nazývá číselná řada. Jiná označení: n= a n, a n (vynecháme-lipodmínku pro n,uvažujemečlenyodnejmenšího n

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

M. Hojdarová, J. Krejčová, M. Zámková

M. Hojdarová, J. Krejčová, M. Zámková VŠPJ Matematika II pro studenty oboru Finance a řízení M. Hojdarová, J. Krejčová, M. Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN 978-80-88064-07-7

Více

Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013. Luboš Pick

Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013. Luboš Pick Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013 Luboš Pick Obsah Popis předmětu 1 Zápočet 1 Zkouška 2 Celkové hodnocení zkoušky 4 Seznamy požadovaných

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

V. Riemannův(dvojný) integrál

V. Riemannův(dvojný) integrál V. Riemannův(dvojný) integrál Obsah 1 Základní pojmy a definice 2 2 Podmínky existence dvojného integrálu 4 3 Vlastnosti dvojného integrálu 4 4 Výpočet dvojného integrálu; převod na dvojnásobný integrál

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10 1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz

Více

a n (z z 0 ) n, z C, (1) n=0

a n (z z 0 ) n, z C, (1) n=0 Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Cyklometrické funkce

Cyklometrické funkce Cyklometrické funkce Definice. Cyklometrické funkce jsou funkce arcsin(x) (čteme arkussinus x), arccos(x) (čteme arkuskosinus x), arctg(x) (čteme arkustangens x) a arccotg(x) (čteme arkuskotangens x),

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Zadání I. série. Obr. 1

Zadání I. série. Obr. 1 Zadání I. série Termín odeslání: 21. listopadu 2002 Milí přátelé! Vítáme vás v XVI. ročníku Fyzikálního korespondenčního semináře Matematicko-fyzikální fakulty Univerzity Karlovy. S první sérií nám prosím

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Obsah 1 KOMPLEXNÍ ROZŠÍŘENÍ PROSTORU 7 1 Komplexní rozšíření vektorového prostoru........... 7 Komplexní rozšíření reálného afinního

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více