DIFERENCIÁLNÍ ROVNICE. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Miroslava Jarešová Bohumil Vybíral

Rozměr: px
Začít zobrazení ze stránky:

Download "DIFERENCIÁLNÍ ROVNICE. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Miroslava Jarešová Bohumil Vybíral"

Transkript

1 DIFERENCIÁLNÍ ROVNICE Studijní text pro řešitele FO a ostatní zájemce o fyziku Miroslava Jarešová Bohumil Vybíral Obsah Úvod pojem diferenciální rovnice 3 Příklad1 radioaktivnírozpad Obyčejné diferenciální rovnice 1. řádu Jakřešitjednoduššídiferenciálnírovnice1.řádu Řešení diferenciálních rovnic 1. řádu metodou separace proměnných Příklad2 separaceproměnných Příklad3 separaceproměnných Příklad4 integrálníkřivka Řešení lineárních diferenciálních rovnic 1. řádu metodou variacekonstant Příklad5 variacekonstant Příklad6 variacekonstant Cvičení Úlohyvedoucíkřešenídiferenciálníchrovnic1.řádu Příklad7 barometrickárovnice Příklad8 nabíjeníkondenzátoru Příklad9 vlivcívkynaprůchodprouduvel.obvodupřipřechodovémději Příklad10 výtokkapalinyznádoby Příklad11 vedenítepla Příklad12 diskotáčejícísevkapalině Příklad13 závěsnýmost Cvičení Obyčejné diferenciální rovnice 2. řádu Jakřešitobyčejnédiferenciálnírovnice2.řádu Příklad14 řešenídiferenciálnírovnicesníženímřádu Homogenní lineární diferenciální rovnice 2. řádu s konstantnímikoeficienty Cvičení

2 Příklad 15 diferenciální rovnice 2. řádu s konstantními koeficienty Příklad 16 diferenciální rovnice 2. řádu s konstantními koeficienty Příklad 17 diferenciální rovnice 2. řádu s konstantními koeficienty Cvičení Úlohyvedoucíkřešenídiferenciálníchrovnic2.řádu Příklad18 mechanickýoscilátor Příklad 19 kmity kapalinového sloupce ve spojených nádobách 36 Příklad20 myšlenkovýprůletkamenezemí Příklad 21 dvoutělesový oscilátor- model kmitů v dvouatomovémolekule Příklad22 Padajícířetěz Příklad23 Otáčejícísetrubka Cvičení Ukázky náročnějších úloh vedoucích k řešení diferenciálních rovnic 45 Příklad24 závěsnýmost řetězovka Příklad25 úlohaokřivcenejkratšídoby Fermatůvprincip. 49 Příklad 26 úloha o křivce nejkratší doby brachystochrona Shrnutí návod, jak sestavovat diferenciální rovnice podle podmínek úloh 54 Řešení cvičení 56 Cvičení Cvičení Cvičení Cvičení Cvičení Literatura 60 2

3 Úvod pojem diferenciální rovnice Při výpočtech, v nichž se vyskytují derivace funkcí, zjišťujeme, že mezi funkcemi ajejichderivacemiplatířadavztahů.např.profunkci y(t) = Asintplatí y (t)=acost, y (t)= Asint.Potom y (t)+y(t)=0. (1) Vezmeme-lijinoufunkci y(t),např. y(t)=be t,je y (t)=be t,pakmůžeme psát y (t) y(t)=0. (2) Rovnice, v nichž se jako neznámá vyskytuje funkce a její derivace, nazýváme diferenciální rovnice. My se však budeme zabývat problémem opačným: k danému vztahu mezi funkcí a jejími derivacemi a nezávisle proměnnou, budeme hledat funkce, které tentovztahsplňují.vztahy(1)a(2)budemetedychápatjakorovnice,vnichž budeme hledat neznámou funkci y(t). Pak můžeme říci, že např. funkce y(t)=asintjeřešenímrovnice(1).řešenímrovnice(1)jevšaktakéfunkce y(t)=bcost,nebotakéfunkce y(t)=asint+bcost-přesvědčteseotom derivováním a dosazením do(1). Řešením diferenciální rovnice budeme rozumět takové funkce, jejichž dosazením do diferenciální rovnice dostaneme identitu. Je vidět, že řešení dané diferenciální rovnice není jediné, ale může jich být i nekonečně mnoho. V praktických(v našem případě fyzikálních) úlohách však většinou ještě budeme znát podmínky(počáteční, okrajové, doplňující), které nám umožní z nekonečně mnoha řešení vybrat takové, které odpovídá dané situaci. Ukažme si toto na následujícím jednoduchém příkladu. Uvažujme rovnoměrný přímočarý pohyb tělesa. Z fyziky víme, že velikost rychlostijederivacídráhypodlečasu,tj. s (t)=v(t).přirovnoměrnémpřímočarémpohybuje v(t)=v=konst.dostanemepak s (t)=v, (3) což je vlastně diferenciální rovnice pro dráhu s(t). Integrací dostaneme s(t)=vt+c, (4) kde C je libovolná integrační konstanta. Integračníkonstantu Curčímezpočátečníchpodmínek:nechťvčase t=t 0 urazilotělesojiždráhu s 0,tj. s(t 0 )=s 0.Dosadíme-lidorovnice(4)za t=t 0, dostaneme C= s 0 vt 0.Pakmůžemepsát s(t)=s 0 + v(t t 0 ). 3

4 Zkusme nyní obdobným způsobem popsat rovnoměrně zrychlený pohyb, tj. a(t) = a = konst..víme,žeplatí s (t) = v(t), v (t) = a(t) = a,zčehož dostaneme rovnici s (t)=a. (5) Po první integraci dostaneme další integrací s (t)=at+c 1, (6) s(t)= 1 2 at2 + C 1 t+c 2, (7) kde C 1, C 2 jsoulibovolnéintegračníkonstanty.určímejezdanýchpočátečních podmínek:včase t=0je s(0)=s 0, s (0)=v 0.Podosazenídovztahu(6) dostaneme v 0 = a 0+C 1,tj. C 1 = v 0,podosazenídovztahu(7)dostaneme s 0 = 1 2 a 02 +C 1 0+C 2,tj. C 2 = s 0.Jetedy s(t)=s 0 +v 0 t+ 1 2 at2.přesvědčte se dosazením, že tato funkce je skutečně řešením rovnice(5). Uvědomme si ještě jednu věc: viděli jsme, že v případě rovnoměrného pohybu diferenciální rovnice 1. řádu, stačilo zadat jednu počáteční podmínku, zatímco v případě rovnoměrně zrychleného pohybu diferenciální rovnice 2. řádu bylonutnézadatdvěpočátečnípodmínky.nenítonáhoda.zhlediska fyziky obvykle zadáváme tolik počátečních podmínek, kolik je řád nejvyšší derivace obsažené v rovnici pak dostaneme právě jedno řešení odpovídající dané situaci. Při řešení diferenciálních rovnic bývá zvykem značit derivace různými způsoby: y, d2 y dx 2, ÿ, d2 y dt 2.Tečkaprooznačeníderivacesepoužívávpřípadě,žederivujemepodlečasu,tj. ẏ = dy dt, ÿ = d2 y dt 2.Ovšemproměnnápřiřešenírovnicenemusíbýtvždyčas;pakpoužívámenapř.značení y = dy dx, y = d2 y dx 2, derivujeme-li podle proměnné x. pojem derivace, pouze vystačíme s limitou lim x Nyní si ukážeme dva různé postupy, jak řešit úlohu, jejíž výsledkem bude exponenciální funkce. Při řešení úlohy 1 prvním způsobem ( nepotřebujeme znát 1+ x) 1 x =e.nevýhodatohoto postupu ovšem spočívá v tom, že je příliš zdlouhavý a použitelný pouze pro typy úloh, kde je výsledkem exponenciální funkce(což ne vždy na začátku řešení úlohy poznáme). Druhý způsob využívá derivace, řeší se zde jednoduchá diferenciální rovnice. Postup je rychlejší, lze jej použít i u typů úloh, kde výsledkem není jen exponenciální funkce. 4

5 Příklad 1 radioaktivní rozpad Rychlost rozpadu prvku rádium je přímo úměrná jeho hmotnosti. Určete, kolik procenthmotnosti m 0 rádiaserozpadneza200let,jestliževíte,žepoločas rozpadu rádia, tj. doba, za níž se rozpadne právě polovina jeho původního množství(resp. hmotnosti), je roven 1590 let. Rychlost rozpadu uvažujeme jako m t. Řešení Úlohu vyřešíme dvěma způsoby, a to a) bez užití derivací, b) s užitím derivací. a) Rozdělme si uvažovanou dobu t rozpadu rádia na n stejných časových intervalů t.označmedále múbytekhmotnostičásticzadobu t.zamalý časový interval t je hmotnost rádia, které se rozpadne, rovna λm t, kde m je hmotnost rádia v daném časovém okamžiku, λ > 0 koeficient úměrnosti. Tatáž hmotnost vzatá s opačným znaménkem(hmotnost nerozpadlých částic ubývá), je rovna přírůstku hmotnosti rozpadlých částic za dobu t: m= λm t. (8) Nechťmárádiumnapočátku1.časovéhointervaluhmotnost m 0,2.časového intervaluhmotnost m 1 = m 0 + m,3.časovéhointervaluhmotnost m 2 = = m 1 + m,...,nakonciuvažovanédoby m n = m. Platí m 1 = m 0 λm 1 t, odkud m 1 = m 0 1+λ t, m 2 = m 1 λm 2 t, odkud m 2 = m 1 1+λ t = m 0 (1+λ t) 2,..., m nakonciuvažovanédoby t=n tje m n = 0 (1+λ t) n. Přitěchtoúvaháchpředpokládáme,žehmotnosti m 0, m 1,..., m n majívčasových intervalech t stálou velikost. Podosazeníza t = t n dostaneme m=m m 0 n= ( 1+λ n) t n. Označme λ t n =1,odkud n=λtx. x Podosazenídovztahupro mdostaneme m= m 0 [( 1+ 1 ) x ] λt. x 5

6 Řešení úlohy bude tím přesnější, čím větší počet úseků n zvolíme. ( Bude-li v limitě n (tímtaké x ),dostanemeužitímvztahu lim 1+ 1 x =e x x) vztah pro hmotnost m=m 0 e λt. (9) Konstantu λurčímezpodmínky:je-livčase t=t hmotnost m= m 0 2,je m 0 2 = m 0e λt,odkud λ= ln2 T,atudíž m(t)=m(0)e ln2 T t = m 0 2 t ( ) t T 1 T = m(0). 2 Prodanéhodnoty: m(200)=0,915m 0.Za200letserozpadne8,5%rádia. b) Vztah(8) přepíšeme pomocí diferenciálů dm = λmdt. Tutorovniciupravímenatvar dm m = λdt,(tzv.separace-odděleníproměnných).pointegracilnm= λt+lncaodlogaritmováníje m=c e λt. Počátečnípodmínka:včase t = 0je m = m 0,zčehož C = m 0,atudíž m = m 0 e λt.koeficient λurčímezdoplňujícípodmínky:včase t = T je m= m 0 2,tj. m 0 2 = m 0e λt,odkud λ= ln2 T,atudíž m(t)=m 0 e ln2 T t = m 0 2 t T = m 0 ( 1 2) t T, cožjestejnývýsledekjakovúlozea). Prodanéhodnoty: m(200)=0,915m 0.Za200letserozpadne8,5%rádia. Příklad 1 nám ukazuje, jak je výhodné naučit se řešit úlohy pomocí diferenciálních rovnic. Podívejme se tedy v další části na řešení diferenciálních rovnic podrobněji. Vzhledem k omezenému rozsahu textu se omezíme pouze na jednodušší typy obyčejných diferenciálních rovnic majících značné uplatnění při studiu fyzikálních jevů. 6

7 1 Obyčejné diferenciální rovnice 1. řádu 1.1 Jak řešit jednodušší diferenciální rovnice 1. řádu Z předchozího textu vyplývá, že obyčejnou diferenciální rovnicí n-tého řádu rozumíme vztah mezi nezávisle proměnnou, neznámou funkcí této proměnné a derivacemi této funkce až do n-tého řádu. Označíme-li nezávisle proměnnou x a neznámou funkci y, pak můžeme obyčejnou diferenciální rovnici n-tého řádu psát ve tvaru ϕ(x,y,y,y,...,y (n) )=0, (10) kde ϕjefunkce(n+2)proměnných. Konkrétněnapř. y + xy=0, y +4y sin(x)=0jsouobyčejnédiferenciální rovnice1.a2.řádu. Řešit(integrovat) diferenciální rovnici(10), znamená nalézt všechny funkce y = ϕ(x), které vyhovují dané diferenciální rovnici. Každá funkce, která vyhovuje dané diferenciální rovnici, se nazývá integrál diferenciální rovnice,např.rovnici y + y = 0vyhovujefunkce y = sinx. Mohlibychomseotompřesvědčitdosazenímdodanérovnice.Nenítoale jediný integrál této rovnice, protože dané rovnici vyhovuje také každá funkce y= Csinxnebo y= Ccosxnebo y= ±Ce x,kde Cjelibovolnákonstanta. Nyní se už začneme zabývat jednoduchými rovnicemi 1. řádu. Takovou rovnicilzepsátobecněvetvaru ϕ(x,y,y )=0. (11) Dokážeme-liztétorovnicevypočítat y jakofunkciproměnných x, y,dostaneme rovnici(11) ve tvaru y = f(x,y). Nejjednodušší typ této rovnice můžeme zapsat ve tvaru y = f(x), (12) což vede k hledání primitivní funkce. Zintegrálníhopočtuvíme,žeje-li F(x)primitivnífunkcekfunkci f(x), paktakékaždáfunkce F(x)+C,kde Cjelibovolnákonstanta,jeprimitivní funkcíkfunkci f(x). Dáletakévíme,žeplatí:jsou-li F 1 (x)af 2 (x)dvěrůznéprimitivnífunkce kfunkci f(x),pakjejejichrozdílrovenkonstantě,tj. F 1 (x) F 2 (x)=c. 7

8 Dokážeme-li nalézt k funkci f(x) funkci primitivní, zvládneme již také vyřešit diferenciální rovnici(12). Potom y= f(x)dx+c, (13) kde C je libovolná konstanta. Z(13) je vidět, že hledaná funkce není rovnicí(13) určena jednoznačně, ale že rovnice(12) má řešení nekonečně mnoho. Každé takové řešení dostaneme, zvolíme-li za C v rovnici(13) nějaké číslo. Řešení ve tvaru(13), které obsahuje libovolnou konstantu C, nazýváme obecný integrál diferenciální rovnice(12). Každé řešení, které dostaneme z obecného integrálu, zvolíme-li za C nějaké libovolné číslo, se nazývá partikulární integrál diferenciální rovnice(12). Obecný integrál je tedy souhrnem všech integrálů partikulárních. Graf funkce, která je integrálem dané diferenciální rovnice, se nazývá integrální křivka danédiferenciálnírovnice.např.rovnice y =2xmáobecnýintegrál y=x 2 +C, kdežto y= x 2, y= x 2 1apod.jsoujejípartikulárníintegrály.Integrálníkřivky této diferenciální rovnice jsou paraboly ekvidistantně posunuté ve směru osy y. Vzhledem k tomu, že za konstantu C můžeme zvolit libovolné číslo, můžeme klást na hledanou funkci ještě nějaký další požadavek a snažit se, aby hledaná funkce zvolený požadavek splňovala pro hledanou funkci jsme zvolili počáteční podmínku.budemenapř.požadovat,abyhledanáintegrálníkřivka y=x 2 +C procházelanějakýmpředemzvolenýmbodem x 0 =[2,3].Pak3=2 2 + C, zčehož C= 1.Rovnicehledanékřivkytedybude y= x Řešení diferenciálních rovnic 1. řádu metodou separace proměnných Jednáseorovnicitypu Podosazení y = dy dx dostaneme y = f(x)g(y) (14) dy = f(x)g(y). (15) dx Zúvahyvyloučímeprozatímtybody,prokteréje g(y)=0.pakmůžemepsát dy = f(x)dx. (16) g(y) 8

9 Vrovnici(16)jsouoběproměnnéodsebeoddělenytak,ženalevéstraněrovnice se vyskytuje pouze funkce proměnné y a její diferenciál, na pravé straně pak jen součin funkce proměnné x a diferenciálu dx. V takovém případě jsou proměnné separovány(odděleny). Pokud existují kfunkcím 1 g(y) a f(x)primitivnífunkce,můžemepsát dy g(y) = f(x)dx+c. (17) Je-li g(y)=0,pak dy =0,tj. y= konst.adostávámetzv.singulárnířešení. dx Rovnici(17) nazýváme obecný integrál rovnice(15). Dokážeme-li rovnici (17)řešitvzhledemky,dostanemeobecnýintegrálrovnicevetvaru y= h(x)+ C. Příklad2 separaceproměnných 1 Řešte diferenciální rovnici xdy+ ydx=0. Řešení a)vyloučímeznašíúvahynejprvetybody,prokteréjebuď x=0(bodyosy y)nebo y=0(bodyosy x).pakmůžemedanourovnicidělitsoučinem xya upravit na tvar: dy y = dx x. Pointegraciln y = ln x +K,kde Kjelibovolnákonstanta.Zvolmedále K=ln C 1,kde C 1 >0.Pakdostaneme Po odlogaritmování dostaneme ln y = ln x +lnc 1. y = C 1 x, neboli xy =C 1,kde C 1 >0.Chceme-liodstranitabsolutníhodnotuztéto rovnice, musíme rozlišit dva případy: 1. xy >0,pak xy= C 1,nebo 9

10 2. xy <0,pak xy= C 1. Oba tyto případy lze vyjádřit jedinou rovnicí kde C R {0}. xy= C, b) Nyní vyřešíme původně vyloučené případy. Nejprve se podíváme na body, proněž y=0.tatorovniceznačíkonstantnífunkci,stálerovnounule.diferenciáltétofunkcejeovšemtakéstálerovennule,tj.dy=0.dosadíme-lido rovnice y=0atakédy=0,vidíme,žejetakétatorovnicesplněna.jetedy funkce y = 0 také integrálem dané rovnice. Integrální křivka je v tomto případě osa x. Podobnějetomuivedruhémpřípadě,tj.pro x=0.pakjeopěttakédx=0 a daná rovnice je zase splněna. Jedobrésiuvědomit,žerovnice xdy+ydx=0nevyjadřujetotéž,corovnice y = y x.všespočívávtom,ževtextuúlohynebylořečeno,zda-lidanárovnice vyjadřuje vztah mezi nezávisle proměnnou x a její funkcí y, nebo zda vyjadřuje vztahmezinezávisleproměnnou yajejífunkcí x.danárovniceotomtaké nicneříká.avšakrovnice y = y mluvívýslovněoderivacifunkce y(podle x nezávisle proměnné x). Skutečně také funkce x = 0, která je integrálem dané rovnicenenífunkcítvaru y= ϕ(x)aosa y,kterájegeometrickýmznázorněním rovnice x = 0 není také opravdu grafem žádné takové funkce. V geometrických úlohách je zpravidla potřeba uvažovat oba zmíněné případy, kdežto při vyšetřování funkcí musí být předem známo, která proměnná je nezávislá a která je její funkcí. Jinak řečeno: Hledáme-li jenom funkce tvaru y = ϕ(x), které dané rovnici vyhovují, potom samozřejmě x = 0 není řešením této úlohy. Všimněme si ještě jednou obou posledních integrálů naší rovnice. Ani jeden nebyl získán integrací dané rovnice, tj. nehledali jsme primitivní funkci. Jsou to tedyintegrályjinépovahynežintegrálytypu xy= C.Mohlobysezdát,žeoba tytointegrályjsouobsaženyvintegráluobecnémpro C=0,alenenítotak.Při integrováníjsmetotiždostalilnc 1,cožjetotéžjakoln C alogaritmovat C=0 nelze. Nemůžeme tedy v obecném integrálu zvolit C = 0. Takový integrál, který nelze dostat z integrálu obecného volbou integrační konstanty, se nazývá integrál singulární. Příklad3 separaceproměnných 2 Řešte rovnice: 10

11 a)2xdx+dy=0, b) dx xdy=0, c) y y=0. Řešení a) Rovnici lze upravit na tvar dy = 2xdx. Po integraci dostaneme y= x 2 + C. b)rovniciupravímenatvar,kdyjsoujižproměnnéseparovány,tj.dy= 1 x dx, pro x 0.Pointegracije y=ln x +C.Rovnicitakévyhovujeřešení x=0, tzv. singulární řešení. c)rovnicipřevedemenazápispomocídiferenciálů,tj. dy dx = y,poodstranění zlomkůdostanemedy= ydx,poseparaci dy =dxpro y 0. y Pointegraci dostaneme ln y = x+k, kde K je libovolnákonstanta. V tomto případě se ukazuje jako výhodné vyjádřit integrační konstantu K jakopřirozenýlogaritmusnějakéhokladnéhočísla C 1 >0.Tojemožnéučinit, protože každé reálné číslo lze považovat za přirozený logaritmus nějakého kladného čísla. Můžeme tedy psát Pak lze rovnici přepsat na tvar Poúpravěln y =lne x +lnc 1, Pro y <0je y = y,tj. K=lnC 1. ln y =x+lnc 1. y =C 1 e x. y= C 1 e x, pro y >0můžemepsát y= C 1 e x.obatytopřípadylzevyjádřitjedinourovnicí y=ce x, kde C R {0}. Potomln y =lne x +lnc. Poodlogaritmování y= Ce x. Je-li y = 0 dostaneme singulární řešení. 11

12 Příklad 4 integrální křivka Najděte křivku procházející počátkem soustavy souřadnic[0, 0], pro kterou směrnicetečnyvkaždémjejímbodě[x,y]jerovna2x+1. Řešení Dlezadáníplatí dy dx =2x+1, poseparaciaintegracidy=(2x+1)dx, y= x 2 + x+c. Konstantu C určíme z podmínky zadání: křivka musí procházet bodem[0, 0]. Jetedy0=0+0+C,zčehož C=0. Rovnicekřivkypotomje y= x 2 + x. Nyníurčíme,ojakoukřivkusejedná.Ponížepopsanéúpravěje y= x 2 + x= ( x+ 1 ) , cožjerovniceparabolysvrcholemvbodě V= [ 1 2, 1 4 ]. y V x Obr. 1 Graf integrální křivky 12

13 1.1.2 Řešení lineárních diferenciálních rovnic 1. řádu metodou variace konstant Lineární diferenciální rovnice jsou takové rovnice, které jsou lineární vzhledem k neznámé funkci a jejím derivacím. Ve speciálním případě je možno diferenciální rovnici(12) psát ve tvaru y + Py=Q, (18) kde P, Q jsou opět spojité funkce proměnné x v intervalu J. Speciálně dostaneme,jestližejevuvažovanémintervalu Q=0 y + Py=0. (19) Tato rovnice se nazývá homogenní lineární diferenciální rovnice, někdy také lineární diferenciální rovnice s nulovou pravou stranou. Rovnice(18) se pak nazývá nehomogenní(s nenulovou pravou stranou). V rovnici(19) je možno proměnné separovat: dy y = Pdx. Integrací(19) dostaneme její obecný integrál: ln y = Pdx+lnC, kde C >0, odtud potom y= Ce Pdx. (20) Mimotovyhovujerovnici(19)takéfunkce y=0,kterásiceodpovídávolbě konstanty C = 0, ale nedostaneme ji integrací.(proč?) K nalezení obecného integrálu nehomogenní rovnice(resp. s pravou stranou) (18) se užívá tzv. metody variace konstanty: 1. Nejprve řešíme danou homogenní rovnici a najdeme její obecný integrál ve tvaru(20). 2.Vevztahu(20)nahradímekonstantu Cfunkcí C= C(x),tj. y=c(x)e Pdx. (21) Profunkci C(x)pakhledámepodmínku,abyfunkce y=c(x)e Pdx vyhovovalarovnici(18).vypočítáme y adosadímedorovnice(18): y = C (x)e Pdx C(x)Pe Pdx, 13

14 C (x)e Pdx C(x)Pe Pdx + PC(x)e Pdx = Q, po úpravě dostaneme C (x)=qe Pdx. (22) To je diferenciální rovnice pro funkci C(x), jejíž řešení je možno napsat ve tvaru C(x)= Qe Pdx dx+k, (23) kde K je libovolná konstanta. Dosadíme-li tuto funkci do rovnice(20), obdržíme ( ) y=e Pdx K+ Qe Pdx dx, (24) což je obecný integrál dané diferenciální rovnice. Příklad5 variacekonstant 1 Řešterovnici y + y=e x metodouvariacekonstant. Řešení 1.Nejprveřešímepříslušnouhomogennírovnici y +y=0metodouseparace proměnných. dy y = dx, y= Ce x. 2.Předpokládáme C= C(x),potom y= C(x)e x, y = C (x)e x C(x)e x.podosazenídopůvodnínehomogennírovnice C (x)e x C(x)e x + C(x)e x = e x, C (x) = e 2x, C(x) = 1 2 e2x + K, kde K je libovolná konstanta. ( ) 1 Pak y= 2 e2x + K e x,neboli y= 1 2 ex + Ke x. 14

15 Příklad6 variacekonstant 2 Řeštediferenciálnírovnici xy y= x 2 metodouvariacekonstant: Řešení 1. Vyřešíme dříve uvedeným postupem homogenní rovnici: xy y = 0, xdy ydx = 0, dy y = dx x, ln y = ln x +lnc, y = Cx. 2.Předpokládáme C= C(x),potom y= C(x)x, y = C (x)x+c(x). Po dosazení do původní nehomogenní rovnice x[c (x)x+c(x)] C(x)x = x 2, x 2 C (x) = x 2, C (x) = 1, C(x) = x+k. Podosazenídovztahupro ydostaneme y=(x+k)x=x 2 + Kx. Cvičení 1 Řešte diferenciální rovnice: 1. y = ky, 2. y y=3, 3. y =2xy, 4. y y=e x 5. y + y= x. 15

16 1.2 Úlohy vedoucí k řešení diferenciálních rovnic 1. řádu Příklad 7 barometrická rovnice Určete závislost atmosférického tlaku na výšce nad hladinou moře, jestliže víte, žetlaknahladiněmořeje p 0 =1013hPaavevýšce h 1 =500mnadhladinou mořejetlak p 1 =940hPa.Předpokládejte,ževzduchmávšudestejnouteplotu. Řešení Protože teplota vzduchu je ve všech místech stejná, platí pv = konst. Tento zákonlzepřepsatdotvaru p 0 = V = 0,kde p, jsouhodnotyvevýšce h. p V 0 Dále budeme předpokládat, že ve vrstvě o tloušťce dh je hustota konstantní. Tentovztahvyžadujejinýfyzikálnívýklad viz[10].proúbytektlakuvtéto vrstvě pak dostáváme dp = gdh. Z Boylova-Mariottova zákona víme, že platí = p 0 p. Po dosazení do vztahu pro dp dostaneme 0 dp= 0 p 0 pgdh. Po separaci proměnných a integraci obdržíme dp p = 0 p 0 gdh, lnp= 0 p 0 gh+lnc. Poodlogaritmování p=ce 0 p 0 gh = Ce kh,kde k= 0 p 0 g. Okrajovépodmínky:vevýšce h=0jetlak p 0,zčehož C= p 0,atedy p= = p 0 e kh.konstantu kurčímepomocídruhépodmínky,tj.vevýšce h=500m jetlak940hpa: k= 1 h ln p p 0 =0, Hledanázávislostjetedy p=1013e 0,00015h hpa. Příklad 8 nabíjení kondenzátoru Kondenzátorokapacitě Cpřipojímevčase t=0kezdrojionapětí U 0.Nabíjímehopřesrezistoroodporu R.Jakýječasovýprůběhprouduanapětína kondenzátoru? 16

17 Řešení Zapojenímspínačedopolohy1(vizobr.2)připojímeobvodnazdrojonapětí U 0 = konst. u R u C 1 U 0 2 R C i Obr. 2 Nabíjení kondenzátoru Podle 2. Kirchhoffova zákona platí u R + u C U 0 =0. (25) Podosazeníza u R = Ri, u C = q C do(25)dostaneme Zderivujeme-li rovnici(26), dostaneme Ri+ q C U 0=0. (26) R di dt +1 dq =0. (27) Cdt Užitímvztahu i= dq dt můžemerovnici(27)upravitnatvar R di dt +1 C i=0. Po separaci proměnných, integraci a odlogaritmování dostáváme: di i = 1 RC dt, t i=k 1e RC, (28) kde K 1 jeintegračníkonstanta,kterouurčímezpočátečníchpodmínek.včase t=0jenapětínakondenzátoru u C =0(kondenzátornenínabitý)aproud 17

18 protékajícíobvodemje I 0.Podle(26)je RI 0 = U 0,odkud I 0 = U 0 R,podle(28) je I 0 = K 1.Pak i=i 0 e du C dt t RC. Průběhnapětínakondenzátoru u C jedánvztahem u C = 1 C q,poderivaci t = 1 dq Cdt = 1 C i= 1 C I 0e RC.Poseparaciproměnnýchaintegraci u C = 1 C du C = 1 C I 0e RC dt, U 0 R ( RC)e RC + K 2, t t t u C = U 0 e RC + K 2. (29) Integračníkonstantu K 2 určímezpočátečníchpodmínek:včase t=0 je u C =0,podosazenído(29)dostaneme:0=U 0 + K 2,odkud K 2 = U 0. Podosazeníza K 2 do(29)dostaneme ( u C = U 0 e t RC U 0 = U 0 1 e t RC ). Příklad9 vlivcívkynaprůchodprouduvel.obvodupřipřechodovém ději Do elektrického obvodu o napětí U zapojíme cívku o indukčnosti L a rezistor o odporu R. Určete proud procházející cívkou v časovém okamžiku t po zapojení. Řešení Po sepnutí spínače je podle 2. Kirchhoffova zákona součet obvodových napětí na cívce a na rezistoru trvale roven svorkovému napětí zdroje. Obvodovénapětínacívcejeurčenovztahem u L = L di dt.vkaždémokamžiku platí u R + u L = U.Podosazení Ri+L di = U. (30) dt 18

19 u R u L U R L i Obr.3Obvodscívkou Tuto rovnici vyřešíme tzv. metodou variace konstant: 1.Vyřešímerovnici spravoustranourovnounule,tj. Ri+L di dt =0. po separaci proměnných, integraci a odlogaritmování dostaneme i=k 1 e R L t. (31) 2.Nynípředpokládáme K 1 = K 1 (t),potom i=k 1 (t)e R L t. Po derivaci i a dosazení do úplné rovnice(30) dostáváme RK 1 (t)e R L t + L odkud K 1 (t)= U L e R L t, pointegraci K 1 (t)= U R e R L t + K 2. Po dosazení do(31) R di dt = K 1 (t)e L t K 1 (t) R L e R L t, (K 1 (t)e RL t K 1 (t) RL e RL t ) = U, i= U R + K 2e R L t. (32) Integračníkonstantu K 2 určímezpočátečníchpodmínek:včase t=0je i=0, zčehož K 2 = U R. Hledanéřešeníje i= U R (1 e RL t ). 19

20 Příklad10 výtokkapalinyznádoby Nádobatvarupolokouleopoloměru r=10cmjezcelanaplněnákapalinou. Vedněnádobyjeotvoroprůřezu S 0 =4mm 2.Zajakoudobupouvolnění otvoru klesne hladina kapaliny o polovinu poloměru, jestliže koeficient zúžení vytékajícího kapalinového proudu je k = 0,6? Řešení Nechť je výška hladiny kapaliny v počátečním časovém okamžiku t = 0 rovna r. Víme, že rychlost výtoku kapaliny v okamžiku, kdy výška její hladiny je rovna x,jeurčenatorricellihovztahem v 1 = 2gx.Uvažujeme-likoeficient zúžení vytékajícího kapalinového proudu k, pak je rychlost v určena vztahem v=k 2gx.Vnekonečněmalémčasovémintervalu tmůžemevýtokkapaliny považovat za rovnoměrný. Zadobu tvytečevýškovýmotvorem element sloupce kapaliny, S R r jehož výška je v t a plošný průřez S 0,cožmázanásledeksní- r dx x žení hladiny kapaliny v nádobě o x.vdůsledkutěchtoúvah dostáváme S 0 ks 0 2gx t= S x, Obr. 4 Nádoba s kapalinou kde S je okamžitý plošný průřez hladiny kapaliny. Pak pro nekonečně malé intervaly dt, dx dostaneme diferenciální rovnici dx dt = ks 0 2gx, S kde S= πr 2 = π [ r 2 (r x) 2] = π(2rx x 2 )(vizobr.4).podosazeníza S a separaci proměnných dostaneme Po integraci máme t= dt= π 2rx x 2 dx. ks 0 2g x ( ) 5 π 2 ks 0 2g 5 x rx 2 + C. 20

21 Počátečnípodmínky:včase t=0je x=r,atím C= 14 π r 2,takže 15 ks 0 2g t= πx ( ) x 2 ks 0 2g 5 x 4 3 r + 14 π r 2 r. 15 ks 0 2g Pro x= r 2 dostáváme 5 t= π r 2 r. 2kS 0 g 30 Pro dané hodnoty: hladinaklesnaopolovinupůvodníhodnotyza t=8min18s. Příklad 11 vedení tepla Teplotachlebavytaženéhozpeceběhem20minutkleslaze100 Cna60 C. Teplotaokolníhovzduchuje τ 0 =25 C.Zajakoudobuodpočátkuochlazování seteplotachlebasnížilana30 C? Řešení Rychlost ochlazování tělesa představuje pokles teploty τ za jednotku času t ajevyjádřenaderivací dτ dt.podlenewtonovazákonavedeníteplajerychlost ochlazování tělesa přímo úměrná rozdílu teplot tělesa a okolního prostředí. Je to nerovnoměrný proces. Se změnou rozdílu teplot se mění i rychlost ochlazování tělesa. Za předpokladu, že se teplota okolí nemění, bude mít diferenciální rovnice ochlazování chleba tvar dτ dt = k(τ τ 0), kde τ jeteplotachleba, τ 0 jeteplotaokolníhovzduchu, k >0jekoeficient úměrnosti. Nechť t je časový interval, ve kterém sledujeme chladnutí chleba. Po separaci proměnných a integraci dostaneme dτ τ τ 0 = kdt, ln(τ τ 0 )= kt+ln C, 21

22 po odlogaritmování dostaneme τ= τ 0 + Ce kt. Počátečnípodmínka:včase t=0je τ=100 C, τ 0 =25 C,atím C=75 C. Doplňujícípodmínka:včase t=20minutje τ =60 C, τ 0 =25 C.Po dosazenídovztahupro τdostaneme60=25+75e k 20,zčehož e k = ( ) 1 ( ) = ( ) t 7 20 Dostáváme τ=75 +25,kdeza tdosazujemečasvminutách. 15 Nyníurčíme tpro τ=30 C: ( ) t =75 +25, 15 ( ) 1 t 7 15 = Po zlogaritmování a vyjádření t dostaneme t = 71 minut. Chlebabudemítteplotu30 Cpo1hodiněa11minutách. Příklad12 diskotáčejícísevkapalině Na kruhový disk otáčející se v kapalině malou úhlovou rychlostí podle osy symetrie(obr. 5) působí třecí síla, která je přímo úměrná úhlové rychlosti pohybu. Najděte závislost této úhlové rychlosti na čase, jestliže víte, že počáteční otáčky disku100ot min 1 za1minutuklesnouna60ot min 1. Řešení Označme ωúhlovourychlostdisku, npočetotáček,pro ωplatí ω= 2πn 60.Při otáčení disku na disk působí třecí síla, která je lineárně závislá na úhlové rychlosti pohybu. Tato síla vzhledem k ose otáčení vyvolá určitý brzdný moment síly. Označme dω rychlostzměnyúhlovérychlostidiskuvkapalině( dω má dt dt význam úhlového zrychlení). 22

23 Napíšeme rovnici vyjadřující momentovou podmínku vzhledem k ose otáčení. R M= J dω dt, kde J je moment setrvačnosti disku vzhledem k ose otáčení. Zbývá určit velikost momentu M.Nechť Rjepoloměrdisku. Obr.5Diskvkapalině Pro zjednodušení předpokládejme, že tento moment vyvolává nějaká sílaf, kterápůsobínapoloměru R s = k 1 R,kde k 1 jekoeficientzávislýnaprofilu disku. Síla F jeúměrnáúhlovérychlostidisku F = k 2 ω(k 2 jekoeficientúměrnosti). Pro moment této síly platí M= k 1 k 2 Rω, znaménko minus je zde proto, že moment působí proti směru otáčení. Porovnáním vztahů pro moment M dostáváme diferenciální rovnici J dω dt = k 1k 2 Rω, Označme k= k 1k 2 R J dω dt = k 1k 2 R ω. J je konstanta pro daný disk. Potom dω dt = kω. Po separaci, integraci a odlogaritmování dostaneme ω= Ce kt. Počátečnípodmínka:včase t=0je ω= ω 0,zčehož C= ω 0. Potom ω= ω 0 e kt. Dlezadáníje ω= 10 ( ) 10 3 πs 1,pak ω= 3 π e kt. Doplňujícípodmínka:včase t=1min=60sje ω=2πs 1,zčehoždostáváme k= 1 60 ln

24 Potom po úpravě ω= ( ) ( ) 1 2π 5 e 60 ln5 t 3 3 ω=2π ( ) ( ) t 1 5 s 1. s 1, Příklad13 závěsnýmost 1 Určete tvar křivky řetězu závěsného mostu, předpokládáte-li, že zatížení je rozděleno rovnoměrně po délce řetězu v horizontální přímce. Hmotnost řetězu vzhledem k hmotnosti mostovky zanedbejte. Řešení Na řetěz mostu působí tíhová síla rovnoměrného rozložení závěsné mostovky a tahová síla realizovaná závěsy řetězu. Na část délky x působí tíhová síla F G = m l gx(mjecelkováhmotnostmostu)advětahovésílyovelikostech F 1, F 2 (vizobr.6). F1 y l FG F2 řetěz α x x mostovka Obr. 6 Závěsný most Nechťřetězsvíráshorizontálnírovinouvurčitémboděúhel α.proúhel α platí:tg α= dy(x) (dálejen y,kde y=y(x)jehledanárovnicekřivky). dx TahovousíluF2vlaněmůžemerozložitdodvousložek: F 2x = F 2 cosα, F 2y = F 2 sinα. Protože řetěz je v rovnováze, musí být výslednice všech sil na něj působících rovnanule.složkově vesměru x: F 2 cosα=f 1,vesměru y: F 2 sinα= m l gx. 24

25 Ztohodostávámeprotg α= mg x. lf 1 Označme mg = k...konstantaprodanýdruhřetězu. lf 1 Pakdostaneme dy = k x.separacíaintegrací:dy= k xdx, y= kx2 2 + C. dx Konstantu Curčímezokrajovýchpodmínek:je-li x=0,jetaké y=0 viz obr.5.pak y= mg x 2lF 2. 1 Řetěz bude mít tvar paraboly. Cvičení 2 1.Motorováloďkasepohybujepoklidnéhladiněrychlostí v 0 =10km h 1. Vplnémchodujevypnutmotoraza40spotomserychlostzmenšína 4km h 1.Odporvodynechťjepřímoúměrnýrychlostipohybuloďky. Určete rychlost loďky za 2 minuty po vypnutí motoru. 2.Určete,zajakdlouhovytečevšechnavodaznádobyvpříkladu10. 3.Válcovýzásobníkovýšce h=6,00maprůměru D=4,00mmávedně kruhovýotvoroprůměru d=0,200m.zásobníkjeažpookrajnaplněn vodou.určetezávislostvýškyhladiny hnačase tadobu t 0,zakterou vyteče všechna voda. Koeficient zúžení vytékajícího kapalinového sloupce je k=0, Izolovanývodičmánáboj Q 0 =1000C.Protožeizolacenenídokonalá, dochází na vodiči postupně k úbytku náboje. Rychlost úbytku náboje na vodiči je v daném okamžiku přímo úměrná náboji na vodiči. Jaký náboj zůstane na vodiči po uplynutí 10,0 min, jestliže za první minutu ubyl náboj100c? 5.Zajakdlouhoteplotatělesazahřátéhona100 Cklesnena30 C,jestliže teplotaokolníhoprostředíjerovna20 Cazaprvních20minutsetěleso ochladilona60 C? 6. Úbytek velikosti intenzity světla při průchodu prostředím je úměrný velikosti intenzity dopadajícího světla a tloušťce vrstvy. Na hladině je velikost intenzityrovna I 0.Jakáčástintenzityprojdedohloubky30m,jestliže připrůchoduvrstvouvodyotloušťce3msevelikostintenzitysnížína polovinu? 25

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano

hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Tuhé těleso, hmotný bod, počet stupňů volnosti hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Stupně volnosti konstanta určující nejmenší

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického. Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

DYNAMIKA ROTAČNÍ POHYB

DYNAMIKA ROTAČNÍ POHYB DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Základní pojmy teorie ODR a speciální typy ODR1

Základní pojmy teorie ODR a speciální typy ODR1 ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

Dosazením a úpravou dostaneme. V 0 gh=(v 0 Sh 1)[ gh+ g(h h 1)],

Dosazením a úpravou dostaneme. V 0 gh=(v 0 Sh 1)[ gh+ g(h h 1)], Řešení úloh celostátního kola 51. ročníku fyzikální olympiády. Autoři úloh: I. Charvát(1), B. Vybíral(4), 2.a3.úlohajsoupřevzatyzčasopisuKvant. Konečná úprava P. Šedivý 1.a) Zpočátkujevnádobcevzduchoobjemu

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Kinematika II. Vrhy , (2.1) . (2.3) , (2.4)

Kinematika II. Vrhy , (2.1) . (2.3) , (2.4) Kinematika II Vrhy Galileo Galilei již před čtyřmi staletími, kdy studoval pád různých těles ze šikmé věže v Pise, zjistil, že všechna tělesa se pohybují se stálým zrychlením směřujícím svisle dolů můžemeli

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro

Více

9. Úvod do teorie PDR

9. Úvod do teorie PDR 9. Úvod do teorie PDR A. Základní poznatky o soustavách ODR1 Diferenciální rovnici nazveme parciální, jestliže neznámá funkce závisí na dvou či více proměnných (příslušná rovnice tedy obsahuje parciální

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

HARMONICKÉ KMITY MECHANICKÝCH SOUSTAV. Studijní text pro řešitele FO a ostatní zájemce o fyziku

HARMONICKÉ KMITY MECHANICKÝCH SOUSTAV. Studijní text pro řešitele FO a ostatní zájemce o fyziku HARMONICKÉ KMITY MECHANICKÝCH SOUSTAV Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý, Ivo Volf a Radmila Horáková ÚVFO Hradec Králové Obsah 1 Kinematika harmonických kmitů 2 2

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Teoretické úlohy celostátního kola 53. ročníku FO

Teoretické úlohy celostátního kola 53. ročníku FO rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C Řešení úloh. kola 49. ročníku fyzikální olympiády. Kategorie C Autořiúloh:J.Jírů(),P.Šedivý(2,3,4,5,6),I.VolfaM.Jarešová(7)..Označme v 0souřadnicirychlostikuličkyohmotnosti3mbezprostředněpředrázem a v

Více

7.[4body] Jedánautonomnísystém. 8.[4 body] Integrál

7.[4body] Jedánautonomnísystém. 8.[4 body] Integrál Písemná část zkoušky z Inženýrské matematiky, 9.2.20(60 minut) Body Jméno:... 2 3 4 5 6 7 8 První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách..[povinný] Pro mytí autobusů

Více

SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU

SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro udržitelný rozvoj v sítí spolupracujících škol,

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více