PRAVDĚPODOBNOST A STATISTIKA

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "PRAVDĚPODOBNOST A STATISTIKA"

Transkript

1 SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá

2 SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru.

3 SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Nechť že e áhodá proměá terá má dstrbučí fuc F(x ϑ). Provedeme pousů ( měřeí). Výsledy těchto pousů sou popsáy áhodým výběrem ( ) a eho realzací x ( x x ). Nezámý parametr ϑ zísáme pomocí bodového odhadu. Statstcý soubor převedeme a tříděý statstcý soubor. Předpoládeme že sme dostal m tříd a příslušé četost f. Nechť -tá třída e: estovací rtérum: x ( x x ) x x fˆ pa teoretcá četost se spočítá: ( F( x t m ) F( x doplě rtcého oboru: de e vatl Pearsoova rozděleí s =m - q- stup volost. W ( f 0 fˆ fˆ ) ))

4 SP esty dobré shody Lbor Žá esty dobré shody - prcp esty dobré shody vycházeí z porováí teoretcé pravděpodobost a odhaduté pravděpodobost pomocí relatví četostí u áhodé velčy terá může abývat oečého počtu možostí. Vychází se z Multomcého rozděleí teré defue pravděpodobost př výběru (s opaováím) z oečého počtu možostí.

5 SP esty dobré shody Lbor Žá esty dobré shody - prcp Multomcé rozděleí Mu(p p ) Náhodý vetor ~ Mu( p p ) Nechť x x Pa pravděpodobost ( ) N má multomcé rozděleí p ( p p ) (0) e pevě zvoleá -tce pro terou platí: P x x! p( x) p( x x x x ) p p x! x! x! p x e defovaá tvarem: p x

6 SP esty dobré shody Lbor Žá esty dobré shody - prcp Multomcé rozděleí Mu(p p ) Charatersty: E( ) p D ) p ( p ) ( C( středí hodota: varačí matce: Platí: h var( ) ) p p E ) ( ) E( ) ( p p var( ) dag ( p) pp var( ) dag p p

7 SP esty dobré shody Lbor Žá Přpomeutí pomů áhodý vetor ( ( ) ) E( ) μ μ var( ) Σ Náhodý výběr: ( ) ( ) ) z E( ) μ Výběrový součet: ( ) ( ) cov( ) var( ) Σ Σ ( 0 ) ( E( ) μ var( ) Σ Nechť sou ezávslé se steým rozděleím. Pa podle as cetrálí lmtí věty platí: ~. NE( ) var( ) Př ozačeí V var() dostáváme: E( ) V E( ) ~ ( h( V ))

8 SP esty dobré shody Lbor Žá esty dobré shody - Multomcé rozděleí Platí: Nechť ( ) ~ Mu( p p ) pa pro áhodý vetor Y platí: Y ~ N ( 0 Q) de Q I u u u Pro áhodou: ( de Y p p Y Y ) Y ~ ( ) p p p p

9 SP esty dobré shody Lbor Žá esty dobré shody př zámých parametrech Předpolady: ( ) áhodá proměá e popsáa pomocí pravděpodobost p p p p sou přede zvoleá čísla pro teré platí: Nechť a 0 0 p (0) ( ) eho realzace. x x p 0 0 abývá hodot 0 a p 0 e áhodý výběr ( x) ( x x x ) eho realzace. e výběrový součet a můžeme považovat za aměřeé četost můžeme považovat za aměřeé četost ( ) ( ) ( x x x )

10 SP esty dobré shody Lbor Žá esty dobré shody př zámých parametrech Platí: p p 0 0 as. ~ ( ) Hypotéza: H testovací rtérum : p p0 p p0 vzhledem x p 0 x p 0 p 0 H A : p p 0 doplě rtcého oboru: W 0 ( podmía: p 5 0 ebo (Yaroldovo rterum př 3: p 0 5q tříd s x 5. ) de q e podíl

11 SP esty dobré shody Lbor Žá esty dobré shody př zámých parametrech Přílad: Hod ostou celem ste hodly 38x ostou a čísla až 6 Vám padly s ásleduícím četostm: - 9x - 6x 3-7x 4-7x 5-5x 6-34x Na hladě výzamost 005 otestute hypotézu že osta e deálí. Přílad: Volebí straa YZ s udělal průzum své voltelost. Z 00 dotázaých by daou strau vollo e erozhodutých a zbyte by strau evoll. Na hladě výzamost 00 otestute hypotézu že stau volí 30% erozhodutých e 0% a evolí strau 50%.

12 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Předpolady: ( ) ~ Mu( p( θ) p ( θ)) ) m m ) θ ( θ θ m ) R edegerovaý uzavřeý omezeý terval 3) p ( θ) p ( ) sou fuce proměé θ a platí: p ( θ) θ 4) c 0; p ( θ) c p (θ) p ( θ) 5) dervace a exstuí a sou spoté l q p p ( θ) 6) matce má hodost m. l l m

13 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Parametr θ θ dostaeme m rovc : hledáme ao mmum fuce: p p θ θ p ( θ) 0 l m p ( θ) Řešeí θ ~ azýváme odhad metodou modfovaého mma. l Platí: Nechť ) ~ Mu( p ( θ ) p ( )) ( 0 θ0 θ 0 θ ) ( 0 θ m 0 e vtřím bodem. Nechť platí předpolady ) 6). Pa soustava modfovaého mma má právě ede oře θ ~ a teto oře e ozstetí odhad θ 0.a platí: ~ ~ p ( ) as. θ ( θ ) ~ ~ ( m ) p ( θ )

14 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Hypotéza: H - áhodý výběr - tříděý statstcý soubor : ~ F( x θ) vzhledem - odhad parametrů ~ ) Pa p θ ~ p ( θ ) x p ( θ ~ ) testovací rtérum ~ p ( θ ) doplě rtcého oboru: W : emá F( x θ) podmía: p ( θ ~ ) 5 (Yaroldovo rterum elze použít platí pouze pro zámé parametry) H A ( as. ~ ( x p 0 ( m ) m ) ( θ ~ )

15 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Pozáma: - ečastě se test používá ao test pro ověřeí typu rozděleí (testy o rozděleí) a ao test ezávslost u otgečích tabulách. esty o rozděleí : - poud se edá o dsrétí rozděleí s oečým záladím souborem volí se třídy ta aby v aždé třídě byla eda hodota ze záladího souboru. Pa hodota pravděpodobostí fuce odpovídá hledaým pravděpodobostem p p popřípadě p ( θ) p ( ) θ - poud se edá o spoté rozděleí volba tříd by měla porývat celou oblast dy e hustota větší ež 0. řídy by měly být taové aby měl zhruba steou 5 teoretcou četost. Pro 80 by počet tříd měl být přblžě 5. 00

16 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Pozáma: esty o rozděleí : - v případě ezámých parametrů u NP s dstr. fucí F dostáváme: ( f ˆ fˆ ( θ)) f ( θ) ( F( x θ) F( x θ)) t( θ) fˆ ( θ) pa hledáme mmum θ ~ a zšťueme zda ~ t( θ ) W 0 ( m ) ~ Mmum θ ~ a hodota t(θ ) závsí a volbě tříd. teto postup e áročý a výpočet eboť hledáí mma θ ~ e řešeí eleárích rovc - často s využtím umercých (teračích) metod. Často se tedy mmu epočítá a ezámé parametry se odhadou pomocí bodového odhadu. Pa ž postupueme ao testech dobré shody pro zámé ~ parametry. Pa ale platí: t t(θ ) tedy můžeme zamítou platou hypotézu.

17 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Přílad - est dobré shody z Expoecálího rozděleí. Měme hypotézu: H : Y ~ Exp (0 ) vzhledem : Y emá Exp (0 ). e Hustota: f ( y ) 0 y H A x 0 dstrbučí fuce: a e F( y ) 0 y y 0 a Nechť Y Y Y e áhodý výběr.z Exp( 0 ) e uspořádáme do 3 tříd: Pa p ) p p J J F( ) 0 ( P Y J hh J ( ) 0 h h J F( h) F(( ) ) ( ) P Y h J F(( ) ) ( ) P Y h

18 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Přílad - est dobré shody z Expoecálího rozděleí. Nechť e počet hodot z áhodého výběru Y Y Y teré padou do - té třídy: J Parametr λ dostaeme řešeím rovce: ~ h Výslede: l h de h. řídy se volí taaby h / a /. Doplě rtcého oboru : W 0 ( ) p ( ) 0 p ( ) ~ Pro velé (v lmtím případě) lze použít: ~ x p ( ) estovaá statsta: ~ de x e realzace. p ( )

19 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Přílad - est dobré shody z Expoecálího rozděleí. Expoecálí rozděleí popsue čas mez áhodě se vysytuícím událostm. Budeme uvažovat rozděleí ve tvaru: Y ~ Exp (0 ) de f ( y ) F( y ) e 0 y e 0 y x 0 a y 0 a Měme 0aměřeých hodot: Otestuemehypotézu: H : Y ~ Exp (0 ) : Y emá Exp (0 ) H A

20 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Přílad - est dobré shody z Expoecálího rozděleí. E počet tříd = 9 dela třídy h= 7 Pa dostaeme: třída x- x+ střed třídy četost -x relat. čet. umul. čet počet stupňů volost:7 rtcá hodota pro α=005: vzhledem malému počtu ebudeme brát ohled a podmíu: p 5 0

21 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Přílad - est dobré shody z Expoecálího rozděleí. Poud za λ použeme odhad: dostaeme λ= χ = a p-hodotu: Poud za λ použeme odhad: dostaeme λ= χ = a p-hodotu: ~ h Poud za λ použeme odhad: l h dostaeme λ= χ = a p-hodotu: Poud za λ použeme odhad: dostaeme x ( ) h λ= χ = a p-hodotu: ~ y

22 SP esty dobré shody Lbor Žá esty dobré shody př ezámých parametrech Přílad: Měme tříděý stat. soubor: třída x- x+ četost Otestute a hladě výzamost 005 že se edá o realzac výběru z ormálího rozděleí.

23 Lbor Žá est Chí-vadrát (Pearsoův test) o rozděleí se používá u otgečích tabule př testech ezávslost. - edá se o sdružeou hypotézu prot alteratví - testovací rtérum: -doplě rtcého oboru: =(r-)(s-) stupě volost - požadave: 0 W p p p H : A p p p H : SP esty dobré shody 5 esty dobré shody Kategorálí aalýza r s r s..

24 SP esty dobré shody Lbor Žá Kategorálí aalýza čtyřpolí tabula Jestlže r= a c= a de o tzv. čtyřpolí tabulu pro alteratví (dchotomcé) statstcé zay a Y (apř. pro odpověd respodetů ao aebo e ) Pa Pearsoův test ezávslost a Y má testovací rtérum: W 0 - doplě rtcého oboru: = stupě volost.

25 SP esty dobré shody Lbor Žá esty dobré shody Kategorálí aalýza Přílad: Měme otgečí tabulu: Otestute a hladě výzamost 005 že hodoceí serálu ezávsí a vzděláí.

26 SP esty dobré shody Lbor Žá esty dobré shody Kategorálí aalýza Přílad: Spočítáme postupě: Vzděláí Ohodoceí serálu výborý velm dobrý dobrý špatý Suma ZŠ SŠ VŠ Suma Dostaeme: Vzděláí Ohodoceí serálu výborý velm dobrý dobrý špatý Suma ZŠ SŠ VŠ Suma

27 SP esty dobré shody Lbor Žá esty dobré shody Kategorálí aalýza Přílad: Dále: Vzděláí Ohodoceí serálu výborý velm dobrý dobrý špatý Suma ZŠ SŠ VŠ Suma E Vzděláí Ohodoceí serálu výborý velm dobrý dobrý špatý Suma ZŠ SŠ VŠ Suma alfa= 005 rterum 6469 H - zamítá t. volost= 6 rt. hod. 596

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2 SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Náhodý vektor PRAVĚPOOBNOS A SAISIKA Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor přpomeutí pomů z SP V prví část kurzu SP s rozšíříme pomy o áhodém vektoru z SP: Nechť e áhodý vektor eho složky:

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu

Více

SP2 Korelační analýza. Korelační analýza. Libor Žák

SP2 Korelační analýza. Korelační analýza. Libor Žák Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Statistická rozdělení

Statistická rozdělení Úvod Statstcá rozděleí Václav Adamec vadamec@medelu.cz Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí

Více

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

a další charakteristikou je četnost výběrového souboru n.

a další charakteristikou je četnost výběrového souboru n. Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu

Více

8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy

8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy cvičící 8. cvičeí 4ST1 Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST1 Neparametricé testy Neparametricétesty využíváme,

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

PRAVDĚPODOBNOST A STATISTIKA. Testy hypotéz

PRAVDĚPODOBNOST A STATISTIKA. Testy hypotéz SP3 Tey hypoéz PRAVDĚPODOBNOST A STATISTIKA Tey hypoéz Lbor Žá SP3 Tey hypoéz Lbor Žá Tey hypoéz- úvod Nechť X X e áhodý výběr T X X X áhodý veor ezávlé ložy erý má rozděleí závlé a parameru θ Θ Θ R Ozačme:

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charatersty a parametry áhodýh velč Úolem této aptoly je zavést pomoý aparát, terým budeme dále popsovat pomoí jedoduhýh prostředů áhodé velčy. Taovýmto aparátem jsou tzv. parametry ebo haratersty áhodé

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

S1P Popisná statistika. Popisná statistika. Libor Žák

S1P Popisná statistika. Popisná statistika. Libor Žák SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Pro orientaci v této problematice jsme se seznámili s nkolika novými pojmy:

Pro orientaci v této problematice jsme se seznámili s nkolika novými pojmy: Ig. Marta Ltschmaová Statsta I., cveí 8 LIMITNÍ VTY Lmtí vty jsou tvrzeí, terá jsou dležtá pro pops pravdpodobostích model v pípad rostoucího potu áhodých pous.. ro oretac v této problematce jsme se sezáml

Více

Téma 1: Pravděpodobnost

Téma 1: Pravděpodobnost ravděpodobot Téma : ravděpodobot ředáša - ravděpodobot áhodého evu Náhodý pou a áhodý ev Náhodý pou - aždá čot, eíž výlede eí edozačě urče podmíam, za terých probíhá apř hod otou, měřeí dély, běh a 00

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

Digitální učební materiál

Digitální učební materiál Dgtálí učebí materál Číslo projetu CZ..07/.5.00/34.080 Název projetu Zvaltěí výuy prostředctvím ICT Číslo a ázev šabloy líčové atvty III/ Iovace a zvaltěí výuy prostředctvím ICT Příjemce podpory Gymázum,

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

( NV, )} Řešením Schrödingerovy rovnice pro N částic

( NV, )} Řešením Schrödingerovy rovnice pro N částic Partčí fuc { E ( V, )} Řším Schrödgrovy rovc pro částc Zdoduší (?) H = H E = E Ψ= Ψ BOSOY stavy sou obsazováy bz omzí FERMIOY frmoy mohou být v stém stavu Přílady: Ply (ízý tla) => mzmolulové trac zadbáy

Více

11. Popisná statistika

11. Popisná statistika . Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př

Více

12. Neparametrické hypotézy

12. Neparametrické hypotézy . Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,

Více

2. TEORIE PRAVDĚPODOBNOSTI

2. TEORIE PRAVDĚPODOBNOSTI . TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D.

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D. 3. část: Teorie hromadé obsluhy Ig. Michal Dorda, h.d. Zálady teorie pravděpodobosti Náhodý pous je děj, jehož výslede eí ai při dodržeí všech předepsaých podmíe předem zám. Náhodý jev je výsledem áhodého

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Úvod do teorie měření

Úvod do teorie měření Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

9 Kombinatorika, teorie pravděpodobnosti a matematická statistika

9 Kombinatorika, teorie pravděpodobnosti a matematická statistika 9 Kombatora, teore pravděpodobost a matematcá statsta Te, do argumetue průměrým platem, e s velou pravděpodobostí vysoce adprůměrý vůl s hluboce podprůměrým vzděláím (Mloslav Drucmüller) 9. Kombatora Kombatora

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210 VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a pravděpodobos AIIKA VZORCE RO 4 a 4 verze 8 posledí aualzace:. 9. 8 K 8 opsá sasa p p =,,...,... () () ( ),, z, ( z ) ( z ) ( z), z

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc.

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc. Metody statstcké aalýzy doc. Ig. Dagmar Blatá, CSc. Bakoví sttut vysoká škola, a.s. Praha 0 METODY STATISTICKÉ ANALÝZY Autor: Recezet: Vydal: Tsk: Vydáí: doc. Ig. Dagmar Blatá, CSc. doc. Ig. Jří Trešl,

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Testujeme hypotézu: proti alternativě. Jednoduché třídění:

Testujeme hypotézu: proti alternativě. Jednoduché třídění: Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

7 LIMITNÍ VĚTY. Čas ke studiu kapitoly: 70 minut. Cíl:

7 LIMITNÍ VĚTY. Čas ke studiu kapitoly: 70 minut. Cíl: 7 LIMITNÍ VĚTY Čas ke studu kaptoly: 70 mut Cíl: o prostudováí tohoto odstavce budete umět formulovat a používat lmtí věty aproxmovat já rozděleí rozděleím ormálím - 96 - Výklad: V této kaptole adefujeme

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národí iformačí střediso pro podporu vality Problémy s uazateli způsobilosti a výoosti v praxi Dr.Jiří Michále, CSc. Ústav teorie iformace a automatizace AVČR Uazatel způsobilosti C p Předpolady: ormálí

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

Přednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs.

Přednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs. Předáška V. Úvod do teore odhadu Pojmy a prcpy teore odhadu Nestraé odhady Metoda mamálí věrohodost Průměr vs. medá Opakováí výběrová dstrbučí fukce Sestrojíme výběrovou dstrbučí fukc pro výšku a váhu

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

SP NV Normalita-vlastnosti

SP NV Normalita-vlastnosti SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI

8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI 8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -

Více

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Základy teorie pravděpodobnosti a teorie grafů

Základy teorie pravděpodobnosti a teorie grafů Vysoá šola báňsá Techcá uverzta Ostrava Faulta strojí Zálady teore pravděpodobost a teore grafů Autoř : Doc. Ig. Mluše Vítečová, CSc., Bc. řdal etr, Ig. Koudela Tomáš Ostrava 006 Obsah Obsah SEZNAM OUŽITÉHO

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210 VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a ravděodobos AIIKA VZORCE RO 4 a 4 verze 8 osledí aualzace:. 9. 8 K 8 osá sasa,,...,... ( ( (,, z +, ( z ( z + ( z+, z H H H G... R ma

Více