Modelování ustáleného a neustáleného proudění v okolí plynových sond. Mgr. Hana Baarová

Rozměr: px
Začít zobrazení ze stránky:

Download "Modelování ustáleného a neustáleného proudění v okolí plynových sond. Mgr. Hana Baarová"

Transkript

1 Modelování ustáleného a neustáleného proudění v okolí plynových sond Mgr. Hana Baarová

2 Prezentace výsledků Říjen 2010, mezinárodní konference Permon 2010, SR Nové poznatky v oblasti vŕtania, ťažby, dopravy a uskladňovania uhľovodíkov Evaluation of well test results in underground gas storage Journal of Petroleum Science and Engineering Modelling reservoir boundary conditions in PanSystem and Eclipse; comparison with seismic prospecting

3 1. Co to je welltest Parametry modelu Vlastnosti těžené vrstvy v oblasti drenáže Produkční vlastnosti (potenciální produkce na ústí sondy a v ložisku a výkonové kapacity) Propustnost (k, součin kh) Nehomogenity(okrajové podmínky) Kvalita otvírky obzoru Skin (základní, turbulentní, tlaková deprese) poškození sondy Tlakové ztráty ve stupačkách

4 Průběh čerpací zkoušky Stabilizovaný tlak v ložisku Stabilizovaný tlak na ústí sondy Hlubinný manometr Úsťový manometr Složení plynu Sycení plynem Parametry otvírky (poloměr vrtu, efektivní mocnost otvírky, porozita) Ustálení tlaku na ústí vrtu Ustálení ložiskového tlaku Těžební perioda (flow perioda) Nástup tlaku Opakování flowperiod a nástupů Závěrečné ustálení tlaku v ložisku a na ústí

5 swpansystem Jak analytické tak numerické řešení Vyhodnocení: tzv. wellbore storage (hromadění plynu v prostoru sondy) Log-log plot: objem sondy, poloměru oblasti drenáže Radiální část proudění (ideální nekonečné ložisko) Semi-log plot: výpočet k, s, účinnosti sondy 3. Interpretace Okrajová podmínka určení typu a vzdálenosti Hornerova aproximace, typová křivka

6 Analytická řešení nástupová křivka tlaku Oblast wellbore storage Oblast radiálního proudění Projev okrajové podmínky

7 Oblast radiálního proudění Analytická řešení nástupová křivka tlaku

8 Analytická řešení nástupová křivka tlaku Oblast wellbore storage Oblast radiálního proudění Naladění OP

9 Tlakové ztráty prouděním ve stupačkách Počítají se z koeficientů a, b, c. Snížení absolutní potenciální produkce na úroveň produkce skutečné (na ústí).

10 Analytická řešení poklesová křivka tlaku Verifikace výsledků shodují se křivky? LIT= z poklesů tlaku Trans=z nástupů tlaku

11 Numerické řešení

12 Numerické řešení

13 Děkuji Vám za pozornost

14 sw PQT Well Test Analysis 2. Teorie v pozadí Těžební periody: pseudo-ustálené proudění rovnice toku do vrtu Potenciální produkce pro ústí a pro ložisko Výkonové kapacity Ztráty ve stupačkách Nástupy tlaku: neustálené proudění (mění se poloměr drenáže) Difúzní rovnice pro radiální proudění v homogenním prostředí (Q=c) Vyhodnocení propustnosti, skinu, účinnosti sondy, vzdálenosti OP Hornerova aproximace, typové křivky Podle změn produkčních vlastností vrtu se navrhuje oprava sondy

15 Potenciální produkce v ložisku (absolutní) 3. Těžební perioda 2. Těžební perioda 1. Těžební perioda

16 Výkonové kapacity v ložisku Počítají se z koeficientů a, b, c.

17 Analytická řešení poklesová křivka tlaku Sc=S+DQ 3. Těžební perioda 1. Těžební perioda 2. Těžební perioda

18 Typové křivky Průběh tlaku v ložisku a jeho derivace Typová křivka: p, dp

19 Hornerova aproximace Radiální část proudění Prokládám přímku se směrnicí m a určím propustnost k Osa x:

20 3. Interpretace ANALYTICKÉ ŘEŠENÍ Hydrodynamické vlastnosti spočtené na základě ustáleného a neustáleného proudění Kontrola správnosti interpretace= shoda mezi absolutní produkcí vypočtenou z neustáleného a ustáleného proudění (z flowperiod a z nástupů tlaků) Sandface Deliverability Plot Verifikace výsledků = SHODA ANALYTICKÉ A NUMERICKÉ ŘEŠENÍ Numerické řešení simulační nástroje Quick Match History Match Advanced Match

21 Před zahájením interpretace je třeba vyčlenit periody a data upravit odstranit šumy (teplotní nestabilita manometrů).

Stanovení migračních parametrů jako podklad pro využití nanoželeza při sanaci podzemních vod Ivan Landa, Pavel Šimek, Markéta Sequensová,, Adam Borýsek Úvod do MZ nezbytné údaje o podmínkách šíření znečištění

Více

edb žný hydrogeologický pr zkum Hodov ... z provedené erpací zkoušky na vrtu

edb žný hydrogeologický pr zkum Hodov ... z provedené erpací zkoušky na vrtu Tak ne předběžný hydrogeologický průzkum Hodov... z provedené čerpací zkoušky na vrtu ČI 1 vyplývá, že při čerpání vydatnosti 0,2 l/s (1 000 l/den) poklesla hladina ve vrtu zhruba o 1/3 (ustálená HPV před

Více

VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT. RNDr.František Pastuszek VODNÍ ZDROJE, a.s.

VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT. RNDr.František Pastuszek VODNÍ ZDROJE, a.s. VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT RNDr.František Pastuszek VODNÍ ZDROJE, a.s. EXPERT je soustavou kalkulátorů, které zjednodušují práci při zpracovávání hydrogeologických

Více

Proudový model. Transportní model(neovlivněný stav)

Proudový model. Transportní model(neovlivněný stav) Základy technologií a odpadového hospodářství - Počítačovásimulace podzemního proudění a transportu rozpuštěných látek část 2 Jan Šembera, Jaroslav Nosek Technickáuniverzita v Liberci / Technische Universität

Více

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů - Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:

Více

BR 52 Proudění v systémech říčních koryt

BR 52 Proudění v systémech říčních koryt BR 52 Proudění v systémech říčních koryt Přednášející: Ing. Hana Uhmannová, CSc., doc. Ing. Jan Jandora, Ph.D. VUT Brno, Fakulta stavební, Ústav vodních staveb 1 Přednáška Úvod do problematiky Obsah: 1.

Více

HYDRAULICKÉ PARAMETRY ZVODNĚNÝCH SYSTÉMŮ

HYDRAULICKÉ PARAMETRY ZVODNĚNÝCH SYSTÉMŮ HYDRAULICKÉ PARAMETRY ZVODNĚNÝCH SYSTÉMŮ CHARAKTERIZUJÍ FILTRACI PROSTÉ PODZEMNÍ VODY O URČITÉ KINEMATICKÉ VISKOZITĚ Předpoklad pro stanovení : Filtrační (laminární proudění) Znalost homogenity x heterogenity

Více

MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI

MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI Technická univerzita v Liberci MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI J. Nosek, M. Černík, P. Kvapil Cíle Návrh a verifikace modelu migrace nanofe jednoduše

Více

Matematické modely a způsoby jejich řešení. Kateřina Růžičková

Matematické modely a způsoby jejich řešení. Kateřina Růžičková Matematické modely a způsoby jejich řešení Kateřina Růžičková Rovnice matematické fyziky Přednáška převzata od Doc. Rapanta Parciální diferencíální rovnice Diferencialní rovnice obsahujcí parcialní derivace

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

Přehled provedených prací a použité metody Česká geologická služba

Přehled provedených prací a použité metody Česká geologická služba Přehled provedených prací a použité metody Česká geologická služba Renáta Kadlecová a kol. Cíle projektu Zhodnotit přírodní zdroje podzemních vod v 56 rajonech s použitím moderních technologií, včetně

Více

v okolí hlubinného úložiště radioaktivního odpadu Tomáš Kuchovský

v okolí hlubinného úložiště radioaktivního odpadu Tomáš Kuchovský Research group for radioactive waste repository and nuclear safety (CZ.1.07/2.3.00/20.0052) Vliv tepla produkovaného vysoce aktivním odpadem na proudění podzemních vod v okolí hlubinného úložiště radioaktivního

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

TÉMATICKÉ OKRUHY. ke státním závěrečným zkouškám v navazujícím magisterském studijním programu Krajinné inženýrství studijním oboru

TÉMATICKÉ OKRUHY. ke státním závěrečným zkouškám v navazujícím magisterském studijním programu Krajinné inženýrství studijním oboru TÉMATICKÉ OKRUHY ke státním závěrečným zkouškám v navazujícím magisterském studijním programu Krajinné inženýrství studijním oboru ENVIRONMENTÁLNÍ MODELOVÁNÍ 2016 PŘEDMĚTY STÁTNÍ ZÁVĚREČNÉ ZKOUŠKY I. POVINNÉ

Více

Sypaná hráz výpočet ustáleného proudění

Sypaná hráz výpočet ustáleného proudění Inženýrský manuál č. 32 Aktualizace: 3/2016 Sypaná hráz výpočet ustáleného proudění Program: MKP Proudění Soubor: Demo_manual_32.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Proudění při analýze

Více

Modelování proudění vzdušiny v elektroodlučovači ELUIII

Modelování proudění vzdušiny v elektroodlučovači ELUIII Konference ANSYS 2009 Modelování proudění vzdušiny v elektroodlučovači ELUIII Richard Matas, František Wegschmied Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. III Název: Proudění viskózní kapaliny Pracoval: Matyáš Řehák stud.sk.: 16 dne: 20.3.2008

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Modelování přepadu vody přes pohyblivou klapkovou konstrukci

Modelování přepadu vody přes pohyblivou klapkovou konstrukci Konference ANSYS 2011 Modelování přepadu vody přes pohyblivou klapkovou konstrukci V. Jirsák, M. Kantor, P. Sklenář České vysoké učení v Praze, Fakulta stavební, Thákurova 7, 166 29 Praha 6 Abstract: The

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH

MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH Ing., Martin KANTOR, ČVUT Praha Fakulta stavební, martin.kantor@fsv.cvut.cz Annotation This article deals with CFD modelling of free surface flow in a rectangular

Více

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha 7.12.2011 -

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha 7.12.2011 - 53A107 Systematický výzkum vlastností vybraného konstrukčního materiálu (litina, slitiny lehkých kovů) typického pro teplotně exponované díly motoru (hlava, blok, skříně turbodmychadla ) s ohledem na kombinované

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Praktikum IV

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Praktikum IV Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum IV Úloha č. A13 Určení měrného náboje elektronu z charakteristik magnetronu Název: Pracoval: Martin Dlask. stud. sk.: 11 dne:

Více

Únik plynu plným průřezem potrubí

Únik plynu plným průřezem potrubí Únik plynu plným průřezem potrubí Studentská vědecká konference 22. 11. 13 Autorka: Angela Mendoza Miranda Vedoucí práce: doc. Ing. Václav Koza, CSc. Roztržení, ocelové potrubí DN 300 http://sana.sy/servers/gallery/201201/20120130-154715_h.jpg

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

MECHANIKA HORNIN A ZEMIN

MECHANIKA HORNIN A ZEMIN MECHANIKA HORNIN A ZEMIN podklady k přednáškám doc. Ing. Kořínek Robert, CSc. Místnost: C 314 Telefon: 597 321 942 E-mail: robert.korinek@vsb.cz Internetové stránky: fast10.vsb.cz/korinek Konsolidace zemin

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Analytická geometrie (AG)

Analytická geometrie (AG) Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie

Více

Verifikace modelu Symos. Mgr. Ondřej Vlček Mgr. Zdenka Chromcová, Ph.D. Oddělení modelování a expertiz Úsek ochrany čistoty ovzduší, ČHMÚ

Verifikace modelu Symos. Mgr. Ondřej Vlček Mgr. Zdenka Chromcová, Ph.D. Oddělení modelování a expertiz Úsek ochrany čistoty ovzduší, ČHMÚ Verifikace modelu Symos Mgr. Ondřej Vlček Mgr. Zdenka Chromcová, Ph.D. Oddělení modelování a expertiz Úsek ochrany čistoty ovzduší, ČHMÚ Ochrana ovzduší ve státní správě, Třebíč 8. 11. 2016 Osnova Motivace

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Nejdůležitější výsledky modelů proudění podzemních vod. M. Martínková

Nejdůležitější výsledky modelů proudění podzemních vod. M. Martínková Nejdůležitější výsledky modelů proudění podzemních vod M. Martínková Osnova presentace Základní koncepce modelů proudění Modelové scénáře včetně vlivu klimatu na vývoj infiltrace Hlavní výsledky pro oblast

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MODEL DYNAMICKÉHO TEPELNÉHO CHOVÁNÍ KONSTRUKČNÍCH DETAILŮ

MODEL DYNAMICKÉHO TEPELNÉHO CHOVÁNÍ KONSTRUKČNÍCH DETAILŮ Simulace budov a techniky prostředí 2008 5. konference IBPSA-CZ Brno, 6. a 7. 11. 2008 MODEL DYNAMICKÉHO TEPELNÉHO CHOVÁNÍ KONSTRUKČNÍCH DETAILŮ Ondřej Šikula Ústav technických zařízení budov, Fakulta

Více

Průtokové metody (Kontinuální měření v proudu kapaliny)

Průtokové metody (Kontinuální měření v proudu kapaliny) Průtokové metody (Kontinuální měření v proudu kapaliny) 1. Přímé měření: analyzovaná kapalina většinou odvětvena + vhodný detektor 2. Kapalinová chromatografie (HPLC) Stanovení po předchozí separaci 3.

Více

TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček

TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček TERMOFYZIKÁLNÍ VLASTNOSTI Radek Vašíček Základní termofyzikální vlastnosti Tepelná konduktivita l (součinitel tepelné vodivosti) vyjadřuje schopnost dané látky vést teplo jde o množství tepla, které v

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán

Více

Modelování proudění podzemní vody a transportu amoniaku v oblasti popelových skládek závodu Chemopetrol Litvínov a.s.

Modelování proudění podzemní vody a transportu amoniaku v oblasti popelových skládek závodu Chemopetrol Litvínov a.s. Modelování proudění podzemní vody a transportu amoniaku v oblasti popelových skládek závodu Chemopetrol Litvínov a.s. 5. a 6. prosince, Litomyšl PROGEO s.r.o. : Ing. Jan Uhlík, Ph.D. Témata prezentace:

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Modelování zatížení tunelů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Poptávka služeb Zajištění hydrodynamických zkoušek na vrtu SM-2 v lokalitě Ševarlije Doboj, Bosna a Hercegovina Technické zadání vč. přílohy I.

Poptávka služeb Zajištění hydrodynamických zkoušek na vrtu SM-2 v lokalitě Ševarlije Doboj, Bosna a Hercegovina Technické zadání vč. přílohy I. Poptávka služeb Zajištění hydrodynamických zkoušek na vrtu SM-2 v lokalitě Ševarlije Doboj, Bosna a Hercegovina Technické zadání vč. přílohy I. Technické zadání: Předmětem prací je realizace hydrodynamických

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

Program KALKULÁTOR POLOHY HPV

Program KALKULÁTOR POLOHY HPV Program KALKULÁTOR POLOHY HPV Výpočet úrovně hladiny podzemní vody Dokumentace Teoretický základ problematiky Pokyny pro uživatele Jakub Štibinger, Pavel Kovář, František Křovák Praha, 2011 Tato dokumentace

Více

VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU

VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Bořivoj Šourek,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství 1 PŘÍLOHA KE KAPITOLE 15 2 Obrazová analýza Vysvětlivky pojmů k vyhodnocení struktury pomocí metod obrazové analýzy: Počet snímaných polí - počet (zde třikrát), kolikrát byla daná oblast scenována CCD

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

STOPOVACÍ ZKOUŠKY V PUKLINOVÉM PROSTŘEDÍ PREDIKČNÍ MODEL A TERÉNNÍ MĚŘENÍ

STOPOVACÍ ZKOUŠKY V PUKLINOVÉM PROSTŘEDÍ PREDIKČNÍ MODEL A TERÉNNÍ MĚŘENÍ STOPOVACÍ ZKOUŠKY V PUKLINOVÉM PROSTŘEDÍ PREDIKČNÍ MODEL A TERÉNNÍ MĚŘENÍ Gvoždík, Polák, Vaněček, Sosna 1H-PK/31 MPO ČR Metody a nástroje hodnocení vlivu inženýrských bariér na vzdálené interakce v prostředí

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

podzemních a povrchových vodách pro stanovení pohybu a retence infiltrujících srážek a napájení sledovaných vodních zdrojů.

podzemních a povrchových vodách pro stanovení pohybu a retence infiltrujících srážek a napájení sledovaných vodních zdrojů. Sledování 18 O na lokalitě Pozďátky Metodika Metodika monitoringu využívá stabilních izotopů kyslíku vody 18 O a 16 O v podzemních a povrchových vodách pro stanovení pohybu a retence infiltrujících srážek

Více

Jiří LUKEŠ 1 KAROTÁŅNÍ MĚŖENÍ VE VRTECH TESTOVACÍ LOKALITY MELECHOV WELL LOGGING MEASUREMENT ON TESTING LOCALITY MELECHOV

Jiří LUKEŠ 1 KAROTÁŅNÍ MĚŖENÍ VE VRTECH TESTOVACÍ LOKALITY MELECHOV WELL LOGGING MEASUREMENT ON TESTING LOCALITY MELECHOV Jiří LUKEŠ 1 KAROTÁŅNÍ MĚŖENÍ VE VRTECH TESTOVACÍ LOKALITY MELECHOV WELL LOGGING MEASUREMENT ON TESTING LOCALITY MELECHOV Abstract In the year 2007 research program on test locality Melechov continued

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti...

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti... Poznámky k ekonomickému ukazateli IRR (Remarks on the economic criterion the Internal Rate of Return ) Carmen Simerská IRR... vnitřní míra výnosnosti, vnitřní výnosové procento, výnos do splatnosti...

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

Základy vakuové techniky

Základy vakuové techniky Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Mikroekonomie I. Přednáška 3. Trh výrobních faktorů ekonomický koloběh. Podstatné z minulé přednášky. Křivka nabídky (S) Zákon rostoucí nabídky

Mikroekonomie I. Přednáška 3. Trh výrobních faktorů ekonomický koloběh. Podstatné z minulé přednášky. Křivka nabídky (S) Zákon rostoucí nabídky Přednáška 3. Mikroekonomie I 3. přednáška Poptávka substituční a důchodový efekt, konkurence, elasticita poptávky Poptávka substituční a důchodový efekt, konkurence, elasticita poptávky Podstatné z minulé

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

ekologie Pavel Fibich rovnice rovnice Pavel Fibich Shrnutí Literatura

ekologie Pavel Fibich rovnice rovnice Pavel Fibich Shrnutí Literatura a diferenční - nalévárna pavel.fibich@prf.jcu.cz 27. září 2012 Obsah 1 2 3 4 5 6 7 Proč povídat o diferenciálních (δr) a diferenčních rovnicích ( R) v kurzu? δr a R jsou vhodné pro popisy vztahů a vývoje

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce

Více

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Konference ANSYS 2009 Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Regina Holčáková, Martin Marek VŠB-TUO, FEI, Katedra elektrických strojů a přístrojů Abstract: Paper focuses

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

prof. Ing. Petr Bujok, CSc. 1, Ing. Martin Klempa, 2 V 2 Ing. Jaroslav Němec, DrSc. 2, Ing. Petr Němec, Ph.D. 3

prof. Ing. Petr Bujok, CSc. 1, Ing. Martin Klempa, 2 V 2 Ing. Jaroslav Němec, DrSc. 2, Ing. Petr Němec, Ph.D. 3 prof. Ing. Petr Bujok, CSc. 1, Ing. Martin Klempa, 2 V 2 Ing. Jaroslav Němec, DrSc. 2, Ing. Petr Němec, Ph.D. 3 VYUŽITÍ OPUŠTĚNÝCH DŮLNÍCH DĚL A UZAVŘENÝCH HLUBINNÝCH UHELNÝCH DOLŮ PRO GEOSEKVESTRACI CO

Více

Rebilance zásob podzemních vod

Rebilance zásob podzemních vod Rebilance zásob podzemních vod Česká geologická služba Doba řešení projektu 7/2010 12/2015 náklady: 623 mil. Kč Konec projektu 3/2016 Renáta Kadlecová a kol. OPŽP - Prioritní osa 6, oblast podpory 6.6.

Více

Mikroekonomie. Vyučující kontakt. Doporoučená literatura. Podmínky zápočtu. GRAF (funkce) Téma cvičení č. 1: 5.10.2015

Mikroekonomie. Vyučující kontakt. Doporoučená literatura. Podmínky zápočtu. GRAF (funkce) Téma cvičení č. 1: 5.10.2015 Vyučující kontakt Mikroekonomie Konzultační hodiny: pondělí: 13.00-14.30 jinak dle dohody Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU kancelář : 16 telefon : 38 777 2419 e-mail: jsetek@ef.jcu.cz

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

CFD ANALÝZA CHLAZENÍ MOTORU

CFD ANALÝZA CHLAZENÍ MOTORU CFD ANALÝZA CHLAZENÍ MOTORU Ing. Zdeněk PORUBA, Ph.D., VŠB TU Ostrava, zdenek.poruba@vsb.cz Ing. Jan SZWEDA, Ph.D., VŠB TU Ostrava, jan.szweda@vsb.cz Anotace česky (slovensky) Předložený článek prezentuje

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více

Modelování ve vodním hospodářství II. Modeling in Water Management

Modelování ve vodním hospodářství II. Modeling in Water Management Design, performance and operation of selected water structures Kosice, 2012 LLP IP Erasmus No. 11203-1660/KOSICE03 Modelování ve vodním hospodářství II. Modeling in Water Management Ing. Hana Uhmannová,

Více

EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY

EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY 10 th conference on Power System Engineering, Thermodynamics & Fluid Flow - ES 2011 June 16-17, 2011, Pilsen, Czech Republic EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY TŮMA Jan, KUBATA Jan, BĚTÁK

Více

Proudění podzemní vody

Proudění podzemní vody Podpovrchová voda krystalická a strukturní voda vázaná fyzikálně-chemicky adsorpční vázaná molekulárními silami na povrchu částic hygroskopická (pevně vázaná) obalová (volně vázaná) volná voda kapilární

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Analytická geometrie v prostoru

Analytická geometrie v prostoru Analytická geometrie v prostoru Jméno autora: Ivana Dvořáková Období vytvoření: prosinec 2012 Ročník: 4. ročník střední odborné školy Tematická oblast: Matematické vzdělávání Předmět: Matematika 4. ročník

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

Ž ř ú ř ř ř Šř ř ř ú ň Ž Ž ů ú ů šř ů ú ů ř ř Ž ř ř Č ř ř ř Č šř ů Ú Ř Ú ů ř ú ů š šř ř š ú š ř ř š š ř ř ú Ž Š ů š ř š ř Ž ů ú ů Ú Ž ř ú ř Ú ú šř ů š ů Ž Ž ř ů Ž Ú ů Ž ř ř ř ť ů ň ř ů Á ř ň ř ů Ř ú ó

Více

FLUENT přednášky. Metoda konečných objemů (MKO)

FLUENT přednášky. Metoda konečných objemů (MKO) FLUENT přednášky Metoda konečných objemů (MKO) Pavel Zácha zdroj: [Bakker, 2008], [Vodička, 2011], [Runchal, 2008], [Kozubková, 2008] Historie - zřejmě nestarší způsob řešení parciálních diferenciálních

Více

Zakládání ve Scia Engineer

Zakládání ve Scia Engineer Apollo Bridge Apollo Bridge Architect: Ing. Architect: Miroslav Ing. Maťaščík Miroslav Maťaščík - Alfa 04 a.s., - Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Více

ČVUT V PRAZE FAKULTA DOPRAVNÍ

ČVUT V PRAZE FAKULTA DOPRAVNÍ ČVUT V PRAZE FAKULTA DOPRAVNÍ BAKALÁŘSKÁ PRÁCE 2010 Jana Kuklová originál zadání bakalářské práce Prohlášení Prohlašuji, že jsem předloženou práci vypracovala samostatně a že jsem uvedla veškeré použité

Více

PŘENOS KYSLÍKU V BIOTECHNOLOGII. Úvod. Limitace metabolismu kyslíkem

PŘENOS KYSLÍKU V BIOTECHNOLOGII. Úvod. Limitace metabolismu kyslíkem PŘENOS KYSLÍKU V BIOTECHNOLOGII Při aerobních procesech katalyzovaných buňkami nebo enzymy je nutné zabezpečit dostatečný přívod kyslíku do fermentačního média reaktoru (fermentoru). U některých organismů

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Učební materiály (využívány průběžně): Poznámky Umí provádět operace

Více

Úkoly hydrogeologie při posuzování možnosti vsakování odpadních a srážkových vod do půdní vrstvy RNDr. Svatopluk Šeda

Úkoly hydrogeologie při posuzování možnosti vsakování odpadních a srážkových vod do půdní vrstvy RNDr. Svatopluk Šeda Úkoly hydrogeologie při posuzování možnosti vsakování odpadních a srážkových vod do půdní vrstvy RNDr. Svatopluk Šeda seda@ohgs.cz Seminář 10.1.2011 Přírodovědecká fakulta UK Česká asociace hydrogeologů

Více

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek Občejné diferenciální rovnice počáteční úloha KMA / NGM F. Ježek (JEZEK@KMA.ZCU.CZ) Základní pojm Tp rovnic a podmínek, řád rovnice Počáteční úloha pro občejné diferenciální rovnice Řád metod a počet kroků

Více

Pelantová Věra Technická univerzita v Liberci. Předmět RJS. TU v Liberci

Pelantová Věra Technická univerzita v Liberci. Předmět RJS. TU v Liberci Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Řízení kvality Pelantová Věra Technická univerzita v Liberci Předmět RJS Technická

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více

Střední průmyslová škola, Karviná. Protokol o zkoušce

Střední průmyslová škola, Karviná. Protokol o zkoušce č.1 Stanovení dusičnanů ve vodách fotometricky Předpokládaná koncentrace 5 20 mg/l navážka KNO 3 (g) Příprava kalibračního standardu Kalibrace slepý vzorek kalibrační roztok 1 kalibrační roztok 2 kalibrační

Více

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE Autoři: Ing. Petr ŠVARC, Technická univerzita v Liberci, petr.svarc@tul.cz Ing. Václav DVOŘÁK, Ph.D., Technická univerzita v Liberci, vaclav.dvorak@tul.cz

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY STŘEDNÍ P RŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 22 TEMATICKÝ PLÁN VÝUKY Studijní 78 42 - M/01 Technické Zaměření: obor: lyceum Předmět: Matematika MAT Ročník: Počet hodin týdně: 4 3. Počet hodin celkem:

Více

Makroekonomie I cvičení

Makroekonomie I cvičení Téma Makroekonomie I cvičení 25. 3. 015 Dvousektorový model ekonomiky Spotřební funkce Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Model 45 - jak je dosaženo rovnovážného HDP Východiska - graf: Osa x.

Více

Popis metod CLIDATA-GIS. Martin Stříž

Popis metod CLIDATA-GIS. Martin Stříž Popis metod CLIDATA-GIS Martin Stříž Říjen 2008 Obsah 1CLIDATA-SIMPLE...3 2CLIDATA-DEM...3 2.1Metodika výpočtu...3 2.1.1Výpočet regresních koeficientů...3 2.1.2 nalezených koeficientu...5 2.1.3Výpočet

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

A7-0277/84

A7-0277/84 10. 9. 2013 A7-0277/84 84 Bod odůvodnění 23 a (nový) 23a) Prahové hodnoty stanovené pro produkci ropy a zemního plynu z konvenčních zdrojů v příloze I směrnice 2011/92/EU nezohledňují specifičnost prahových

Více