VSTŘIKOVÁNÍ KAPALNÉHO LPG - MODERNÍ ZPŮSOB TVOŘENÍ SMĚSI PRO VOZIDLOVÉ ZÁŽEHOVÉ MOTORY

Rozměr: px
Začít zobrazení ze stránky:

Download "VSTŘIKOVÁNÍ KAPALNÉHO LPG - MODERNÍ ZPŮSOB TVOŘENÍ SMĚSI PRO VOZIDLOVÉ ZÁŽEHOVÉ MOTORY"

Transkript

1 INTERNATIONAL SYMPOSIUM MF th International Symposium Tatranské Matliare, June, 14-17, 2010 Slovak Republic Summary LIQUID LPG INJECTION - MODERN WAY OF FUEL MIXTURE FORMATION FOR SPARK IGNITION ENGINES Ondřej DRÁB, Stanislav BEROUN, Martin HOŠEK Technical University of Liberec Czech Republic This paper shows LPG as a quality fuel mixture and explains adventures and problems connected with liquid LPG fuel mixture creation. Requirements to arrangement of LPG fuel system are determined on the basis of our own experiences with LPG injection, theoretical analysis of this problem and results of an experimental research. Representative results of this project, focused on technical solutions of engines and conducted in the engine laboratory, Department of Vehicles and Engines TUL are purposed in this report as well. 1 ISBN

2 VSTŘIKOVÁNÍ KAPALNÉHO LPG - MODERNÍ ZPŮSOB TVOŘENÍ SMĚSI PRO VOZIDLOVÉ ZÁŽEHOVÉ MOTORY Ing. Ondřej DRÁB, prof. Ing. Stanislav BEROUN, CSc., Martin HOŠEK Technická univerzita v Liberci Česká Republika Souhrn Příspěvek ukazuje LPG jako kvalitní motorové palivo a vysvětluje výhody i problémy tvoření směsi vstřikováním kapalného LPG. Na základě vlastních zkušeností se vstřikováním kapalného LPG, teoretické analýzy problému a výsledků experimentálního výzkumu jsou stanoveny požadavky na uspořádání palivového systému pro vstřikování kapalného LPG. V příspěvku jsou prezentovány vybrané výsledky prací výzkumného programu zaměřeného na technická řešení motorů na alternativní paliva, který je realizován v laboratoři motorů Katedry vozidel a motorů na strojní fakultě Technické univerzity v Liberci (KVM TUL). 1. Úvod Pro zážehové pístové spalovací motory je klasickým palivem benzin, velmi kvalitní vlastnosti motorového paliva mají ale i tekuté rafinérské plyny, označované podle jejich anglického pojmenování Liquified Petroleum Gas zkratkou LPG. LPG je již delší dobu považován jako užitečná alternativa k benzinu pro vozidlové zážehové motory. Vedle ekonomických důvodů poskytuje LPG jako motorové palivo i významné ekologické efekty. Pro snížení emisí výfukových emisí je důležité, že u LPG je hmotnostní podíl uhlíku na 1 kg paliva pro LPG (60/40) 0,825 kg uhlíku. Při porovnání s hmotnostním obsahem uhlíku u benzinu nebo nafty, který je cca 0,86 0,87 kg je zřejmé, že při optimálním seřízení motoru pro provoz na LPG se dosáhne nižší produkce CO 2, nižší jsou i emise plynných výfukových škodlivin a emise pevných částic ve výfukových plynech (pozitivní vliv na snížení emisí výfukových škodlivin mají jednodušší molekuly propanu a butanu proti složitým molekulám uhlovodíků v benzinu). Na obr.1 je uvedeno porovnání vybraných složek výfukových plynů moderního vozidlového motoru při provozu na BA-95 a na LPG: výkonové parametry motoru při provozu na LPG (vícebodový vefuk plynného LPG do sání motoru) byly o 4-6% nižší proti provozu motoru na BA-95. Nižší koncentrace NO x za katalyzátorem jsou důsledkem vhodnějšího seřízení bohatosti směsi při provozu motoru na LPG, které vede ke zvýšení účinnosti katalyzátoru. LPG jako alternativa k benzinu se používá pro nepřeplňované i přeplňované vozidlové zážehové motory: motor je vybaven dvěma palivovými systémy a je provozován buď na benzin, nebo na LPG. Palivové systémy pro benzin i LPG jsou zpravidla postaveny pro vnější tvoření směsi s přívodem plynného (odpařeného LPG) paliva do nasávaného (plnicího) vzduchu pomocí směšovače nebo vefukovače (injektoru). U moderních zážehových motorů, které jsou vybaveny elektronickou regulací bohatosti směsi, je elektronická řídící jednotka palivového systému pro LPG připojena k původní elektronické řídící jednotce pro benzinový provoz. Nejjednodušším řešením úpravy zážehového motoru pro provoz na LPG je tvoření směsi ve směšovači, tato koncepce je dnes stále používaná u plynových motorů pro motorové vozíky a pro nevozidlové aplikace. Dalším vývojovým stupněm této koncepce je řízené jednobodové MF ISBN

3 vefukování plynu. Moderní vozidlové různopalivové motory na benzin i LPG pro kategorii osobních automobilů používají ke tvoření plyno-vzdušné směsi řízené vícebodové vefukování plynu do sacího potrubí před sacími kanály v hlavě válců. Vefukovací ventily (někdy označované jako injektory) jsou umístěny buď jednotlivě na sacích trubkách jednotlivých válců, nebo jsou sesazeny do bloku a plynné palivo je do sacích trubek jednotlivých válců přiváděno hadičkami. 35 NOX CO NOx [ppm] CO2 [%] n [1/min] Obr.1 Koncentrace CO 2 a NO x (měření ve vzorku suchých výfukových plynů za katalyzátorem) moderního zážehového motoru při provozu na BA-95 a na LPG (tenké čáry jsou pro BA-95, silné pro LPG). Významným efektem provozu na LPG jsou nižší koncentrace CO 2 ve výfukových plynech. 8 U nepřeplňovaných motorů s vnější tvorbou směsi se při přechodu provozu z benzinu na LPG poněkud sníží výkonové parametry motoru. To je dáno snížením hmotnosti nasávaného vzduchu do válce motoru v důsledku většího objemu plynného paliva ve směsi. Objem paliva v čerstvé náplni válce ovlivňuje teplota čerstvé směsi na konci plnění válce, která se od teploty vzduchu na začátku sání liší v důsledku ohřevu vzduchu od stěn sacího kanálu, stěn uvnitř válce motoru a především smícháním se zbytkem spalin ve válci motoru. Na teplotu směsi na konci plnění válce má vliv i odpařování paliva během sání. Při nástřiku benzinu na sací ventil se může odpařit až 100% paliva a s ohledem na destilační křivku BA probíhá velká část odpařování při teplotách nad C (účinkem vysoké teploty talířku sacího ventilu). Palivové páry BA budou ve stavu plynném (přehřáté páry) a tepelný obsah odpařeného BA může zvýšit teplotu čerstvé směsi (k odpařování se neodebírá teplo z nasávaného vzduchu, ale ze stěn sacího kanálu a stěny talářku sacího ventilu). Hmotnostní naplnění válce čerstvým vzduchem je tedy i při provozu motoru na BA nepříznivě ovlivněno objemem benzinových par (úplné odpaření BA během sání ale má pozitivní vliv na kvalitu vytvořené směsi a na spalovací proces). Pokus je při provozu na LPG vytvářena směs pomocí směšovače, pokles výkonu motoru je významný, až 10%. Při tvoření směsi vefukováním plynného LPG je pokles výkonu menší (4-6%), neboť při expanzi z tlaku vefukovaného plynu na tlak v sacím traktu se teplota plynného LPG snižuje a to může přispívat k určitému snížení teploty nasávané směsi a to poněkud eliminuje pokles hmotnosti vzduchové náplně válce, ke kterému dochází přítomností plynného paliva v nasávané směsi. Provoz zážehových různopalivových motorů na benzin nebo LPG, založených na koncepci tvoření směsi směšováním plynného paliva se vzduchem, je často vystaven riziku MF ISBN

4 častějších problémů, způsobených nespolehlivou kvalitou LPG (přítomností těžko odpařitelných složek a dalších nežádoucích příměsí v LPG). Prakticky bezproblémovou koncepcí různopalivového motoru na benzin i LPG (vzhledem k obtížím spojených s odpařeným LPG) se ukazuje vstřikování kapalného LPG. Při tvoření směsi vstřikováním kapalného LPG do sání dojde k intenzivnímu odpařování LPG v sacím kanále a tím se snižuje teplota nasávané směsi. Výkonové parametry motoru při provozu na benzin a na LPG jsou při použití tohoto způsobu tvoření směsi potom srovnatelné. Při přestavbě moderních zážehových motorů pro provoz na BA nebo na LPG je zapotřebí upravit řízení doby otevření vefukovacích ventilů LPG (s ohledem na rozdílné průtokové vlastnosti ventilů pro BA a LPG i rozdílnou hustotu BA a LPG). Řídicí jednotka LPG přepočítává velikost dávky vefukovaného LPG podle naprogramované mapy pro dávkování BA v původní řídící jednotce (vč. obohacování směsi při vyšších zatíženích motoru). V moderních benzínových motorech se v poslední době prosazují systémy přímého vstřiku paliva do spalovacího prostoru motoru. Této systém vstřikování lze využít i pro vstřikování kapalného LPG přímo do válce motoru. K dopravě LPG z nádrže do palivového systému se stejně jako u vstřikování kapalného LPG do sání motoru používá membránové čerpadlo, které zvýší tlak paliva. Srdcem systému je jednotka pro volbu paliva, označena pod anglickým pojmenováním Fuel Selector Unit (FSU), která umožňuje bezproblémové přepínání pro BA nebo LPG. FSU zajišťuje dodávku LPG k originálnímu vysokotlakému čerpadlu pro BA, které zvýší tlak paliva až na 100 bar a jeho přivedení k původním vstřikovačům. Všechny funkce benzinové řídicí jednotky zůstávají zachovány. Výhodou přímého vstřikování BA nebo LPG je velice přesné dávkování paliva a plné využití všech funkcí motormanagementu, které zajišťují splnění požadavků na extrémně nízké výfukové emise (norma Euro 5). 2. Palivový systém pro vstřikování kapalného LPG do sacího potrubí motoru Pro spolehlivé udržení LPG v kapalném stavu v potrubí před vstřikovači LPG při všech provozních podmínkách musí být palivový systém LPG vybaven čerpadlem, které zvyšuje tlak LPG na přívodu ke vstřikovačům (tlak LPG v nádrži závisí na teplotě LPG), neboť v motorovém prostoru se zvyšuje teplota LPG v potrubí palivového systému a bez dostatečného tlaku při větším ohřátí paliva v palivovém potrubí by mohlo dojít k přeměně kapalné fáze LPG na plynnou. Provoz zážehového motoru se vstřikováním kapalného LPG musí být konstrukčně zajištěn takovým řešením vstřikovače LPG do sacího potrubí, které zabrání vzniku námrazy v oblasti vstřikovače nebo v nasávaném vzduchu. Známá řešení využívají vstřikovačů LPG, sestavených z elektromagneticky ovládaného vstřikovacího ventilu, ze kterého je LPG přiváděno v jednotlivých dávkách na pracovní oběh (tlakem, který je v přívodním potrubí LPG k elektromagnetickému ventilu) a koncové části vstřikovače s kanálkem, ve kterém dochází k expanzi se současným odpařováním LPG a z tohoto kanálku je potom LPG (zčásti již odpařené jako mokrý plyn) vstřikováno do nasávaného vzduchu. K odpařování LPG v kanálku koncové části vstřikovače dochází při teplotě, která závisí na tlaku LPG v tomto kanálku. Pokud po přívodu LPG ze vstřikovacího ventilu do koncové části vstřikovače poklesne v kanálku tlak pod 3 bar, změna skupenství LPG probíhá při teplotě pod 0 0 C a na vnějším povrchu koncové části vstřikovače se začne vytvářet námraza (namrzání vlhkosti z atmosférického vzduchu). Zvýšení tlaku LPG v kanálku koncové části vstřikovače vypařování LPG v kanálku zpomaluje a tím se omezuje riziko lokálního podchlazení se vznikem námrazy. Uspořádání celého vstřikovače kapalného LPG (tj. elektromagnetického vstřikovacího ventilu a koncové části vstřikovače) ukazuje obr.2. MF ISBN

5 Tělo vstřikovače LPG Vstup paliva Výstup paliva Pouzdro vstřikovače Sestavený vstřikovač LPG Vstřikovací tryska LPG Příruba na sacím potrubí Obr.2 Levá strana obrázku zobrazuje detailní pohled na jednotlivé části vstřikovače. Hlavní částí je tělo vstřikovače LPG, které obsahuje elektromagnetický ventil pro regulaci množství vstřikovaného paliva do koncové části vstřikovače (vstřikovací trysky). Tělo vstřikovače je vsazeno do pouzdra a těsnícími kroužky zajištěno proti úniku kapalného paliva do okolního prostředí. Na rozdíl od vstřikovačů na BA, které jsou zapojeny paralelně (palivo je přivedeno z tlakového potrubí do slepé větve ke vstřikovači a zpět do nádrže se navrací přepadem z tlakového potrubí), jsou vstřikovače na LPG zapojeny do série (palivo prochází jednotlivě přes všechny vstřikovače od prvního až k poslednímu a následně se vrací do hlavní nádrže). Sériové zapojení má zajistit udržení teploty LPG (při ohřátí paliva by mohlo dojít k vytváření parních bublin odpařováním kapalného LPG v palivovém systému). Příruba je nesnímatelně připevněna na jednotlivých kanálech sacího traktu motoru a slouží pro uložení elektromagnetického ventilu a koncové části vstřikovače s tryskou. Na pravé straně je umístěn sestavený vstřikovač připravený na montáž (koncová část vstřikovače s výtokovou tryskou je jiného typu než na levém snímku rozloženého vstřikovače). 3. Teoretický rozbor problému Tvoření směsi vstřikováním kapalného LPG do sacího potrubí motoru vyžaduje správně řešenou zástavbu vstřikovače LPG do sacího tarktu jednotlivých válců a především aplikaci opatření, která zabrání (nebo alespoň výrazně omezí) vzniku námrazy v sacím traktu. Velký vliv má konstrukční provedení samotného vstřikovače a řešení koncovkové části vstřikovací trysky. MF ISBN

6 Možnosti zamezení tvorby námrazy na vnější stěně koncové části vstřikovače jsou: a) Přivedením dostatečné množství tepla, tak aby nedocházelo k ochlazení vnějšího povrchu koncové části vstřikovače pod bod mrazu, které má za následek vznik námrazy. To by bylo možné zajistit umístěním celého vstřikovače do hlavy válců (s výstupem vstřikovaného LPG do sacího kanálu). K tomuto řešení však jsou potřeba značné konstrukční úpravy hlavy válců. b) Provedení změn v geometrii vnitřního kanálku koncové části vstřikovače tak, aby v kanálku neklesl tlak pod hodnotu, při které dochází k intenzivnímu odpařování kapalného LPG a teploty klesají pod bod mrazu. Hodnota tohoto tlaku závisí na složení LPG (poměru složek propanu a butanu ve směsi) a pokud bude tlak LPG v kanálku vyšší než tlak nasycených par při 0 C (pro dané složení LPG), námraza na těle koncové části vstřikovače by se neměla tvořit. Nelze však vyloučit vznik námrazy kolem partie výtokového otvoru, neboť po výstupu LPG (kapaliny nebo mokré páry) z výtokového otvoru dojde k velmi intenzivnímu přechodu LPG do stavu přehřáté páry a tato změna, která bude probíhat od nejtěsnější blízkosti ústí výtokového otvoru vyvolá výrazný pokles teploty a v důsledku toho začne kolem výtokového otvoru vznikat námraza. Závislosti tlaku nasycených par na teplotě a složení směsi LPG ukazují křivky v grafu na obr. 3. Obr. 3 Stav LPG v nádrži je vyznačen bodem 1, palivovým čerpadlem se tlak zvyšuje o 5 bar na tlak vstřikovací (bod 2). Ze vstřikovacího ventilu je LPG přivedeno do vstřikovací trysky, ve které tlak výrazně klesne. Pokud klesne tlak v kanálku trysky na tlak cca atmosférický (bod 3), bude teplota vypařování -28 C. Pokud se (hypoteticky) tlak sníží na 2 bar (1 bar přetlak bod 4), začne intenzivní vypařování při teplotě cca C (bod 4). Při poklesu tlaku na 4 bary (bod 5) zvýší se teplota vypařování na 8 C. Znázorněné schéma současně naznačuje i možné opatření proti vzniku námrazy. MF ISBN

7 c) Zvýšení tlaku LPG na vstupu do elektromagnetického ventilu a koncepční změna v řešení palivového systému zážehového motoru pro BA i LPG, která umožní vstřikování LPG vstřikovači pro BA (řešení s přepínáním paliva do stejných vstřikovačů buď BA, nebo LPG). Hodnota tlaku LPG a uspořádání palivového systému LPG musí zajistit udržení kapalného stavu LPG i při ohřevu vstřikovače na vyšší teplotu. Charakter vstřiku LPG se při vyšším vstřikovacím tlaku změní (proti řešení současných provedení vstřikovačů LPG), výtok LPG ze vstřikovače probíhá vyšší rychlostí a vznik námrazy je výrazně potlačen. Ověření možnosti této varianty vstřikování kapalného LPG bylo v laboratoři KVM TUL provedeno vizualizací vstřiku LPG výsledek je zřejmý z fotografií na obr. 4. Obr. 4 Vstřikování LPG zvýšeným vstřikovacím tlakem (18 bar) benzinovým vstřikovačem. Při volnoběhu (vlevo) nedochází na vstřikovači ke vzniku námrazy, ve 100% zatížení (vpravo) se tvoří pod vstřikovačem námraza ve výrazně menším rozsahu než u obvyklých řešení vstřikovačů (a vstřikovacích tlaků) LPG. 4. Experimentální výzkum vstřikování kapalného LPG do nasávaného vzduchu Výzkumný program v laboratoři KVM TUL se zaměřením na vstřikování kapalného LPG do nasávaného vzduchu je veden především experimentálně, studium řešeného problému výpočty je využíváno jako podpůrný nástroj a s ohledem na složitost vyšetřovaných dějů zatím nedává očekávaný výsledek. Experimentální práce byly orientovány na variantu b) uvedenou v předcházející kapitole. K zajištění dostatečného tlaku v kanálku trysky je nutné provézt konstrukční úpravy tak, aby teplota odpařování paliva byla během hlavní fáze vstřiku nad bodem mrazu. V okrajových fázích vstřiku (otevření a zavření vstřikovacího ventilu) není možné zajistit dostatečný tlak v palivu a dojde vždy k odpařování LPG. V oblasti výtokového otvoru trysky bude také vždy docházet k odpařování LPG, jelikož tlak v místě výtokového otvoru je rovný tlaku v sacím potrubí motoru. Je tedy nutné docílit dostatečného tlaku v kanálku trysky a minimalizovat ovlivnění koncové části trysky v místě výtoku, která je pro tvorbu icingu nejnáchylnější. Experimentální výzkum s měřením teplot a vizualizací vstřikování LPG bylo prováděno na modelovém sacím potrubí, ve kterém byl umístěn vstřikovač LPG a dále termočlánky k měření teplot na koncové části vstřikovače a v nasávaném vzduchu. Uspořádání celého pracoviště ukazuje fotografie na obr. 5. MF ISBN

8 Ovládací panel vstřikováni Vstřikovač LPG Modelové sací potrubí Měřící ústředna HBM Motor Daewoo - Avia Obr. 5 Uspořádání modelového měřícího stanoviště. Motor Daewoo Avia (D A) je využíván k simulaci reálného proudění v modelovém sacím potrubí motoru a zároveň spaluje vytvořenou směs vzduchu s LPG (motor D-A přitom pracuje jako dvoupalivový, spaliny z motoru jsou odváděny odsávacím potrubím mimo laboratoř). Ovládací panel vstřikování umožňuje nastavování velikosti vstřikované dávky LPG (doba otevření elektromagnetického ventilu možnost nastavení od 1ms do 22ms) a také frekvence vstřikování (otáčky motoru pro 4dobý motor od /min do /min). V modelovém sacím potrubí jsou umístěné termočlánky (plášťované, průměr pláště 0,35 mm) k měření teplot nasávaného vzduchu. Termočlánky jsou upevněny také na vstřikovacích tryskách. Slouží ke sledování teplot na vnějším povrchu trysky - lze tak posoudit ve kterých místech a s jakou intenzitou dochází k odpařování paliva již v kanálku koncové části vstřikovací trysky. Termočlánky jsou připojeny ke sběrové kartě měřicí ústředny HBM. Výsledky experimentálního výzkumu (měření teplot, vizualizace vstřiku LPG) prováděného s různými typy koncových částí vstřikovačů (vstřikovacích trysek) kapalného LPG a jejich různým uspořádáním a umístěním v sacím traktu motoru a teoretická analýza problému vede k následujícím závěrům: 1. Z elektromagnetického vstřikovacího ventilu LPG vytéká palivo v kapalném stavu, který je zajištěn tlakem na přívodu LPG do vstřikovacího ventilu. 2. Po vstupu LPG do vedení paliva k výstřikovému otvoru (trysce, resp. konci trubičky, kanálku, kterým se LPG přivádí do nasávaného vzduchu) se tlak ve vedení paliva (kanálku) rychle snižuje a v určitém místě kanálku, při poklesu tlaku na hodnotu tlaku nasycených par LPG pro danou teplotu paliva začíná v kanálku (trubičce) vypařování paliva. 3. Na konci kanálku (v ústí výtokového otvoru) je tlak paliva prakticky shodný s tlakem v sacím potrubí a z výtokového otvoru vystupuje palivo (LPG) ve stavu mokré páry. K fázové přeměně (vypařování) paliva, která probíhá od místa v kanálku, kde poklesne tlak paliva na MF ISBN

9 hodnotu tlaku nasycených par až do volného (výtokového) konce kanálku, se teplota vypařování paliva snižuje a intenzita vypařování roste. 4. Teplo, potřebné k vypařování paliva, se odebírá ze stěny kanálku, teplota stěny se snižuje a na vnějším povrchu stěny kanálku (trubičky) vzniká námraza ze zkondenzované vlhkosti atmosférického vzduchu. 5. Postupným poklesem tlaku paliva protékajícího kanálkem a účinkem velmi intenzivního vypařování se bude výtoková rychlost LPG zvyšovat úměrně zvyšování měrného objemu LPG (výtok LPG probíhá ve stavu mokré páry). K velmi intenzivnímu vypařování potom dochází na konci kanálku v ústí výtokového otvoru a tím se zvyšuje tvoření námrazy v partii kolem výtokového otvoru. 6. Výsledky měření 1 2 Obr. 6 Původní koncová část vstřikovače s trubičkovou tryskou je vyrobena z ocelové trubky s vnitřním průměrem kanálku 1 mm a vnějším průměrem 3 mm. První termočlánek (1) je připevněn cca 5 mm nad ohybem. Druhý termočlánek (2) je připevněn v koncové části vstřikovací trysky. Naměřené teploty jsou zobrazeny na obr Obr. 7 Tryska krátká vyrobena z ocelové trubičky s vnitřním průměrem kanálku 0.4 mm a vnějším průměrem 0.6 mm. První termočlánek (1) je připevněn v ohybu trysky. Druhý termočlánek (2) je připevněn cca 3 mm před vyústěním trysky. Teploty na povrchu trysky popisuje obr. 10. MF ISBN

10 1 2 Obr. 8 Tryska dlouhá je vyrobena z ocelové trubičky s vnitřním průměrem kanálku 0.6 mm a vnějším průměrem 0.8 mm. První termočlánek (1) je připevněn v ohybu trysky. Druhý termočlánek (2) je připevněn cca 4 mm před vyústěním trysky z důvodu možného ovlivnění teplot vznikem lokální námrazy na koncové části trysky (při výstupu z trysky dochází k intenzivnímu opařování kapalného LPG vlivem vyrovnání tlaku s okolním prostředím a následnému výraznému snížení teplot). Naměřená data jsou zpracována v obr Termočlánek 1_1000 ot/min Termočlanek 1_2000 ot/min Termočlanek 1_3000 ot/min Termočlanek 1_4000 ot/min Termočlanek 1_5000 ot/min Termočlanek 2_1000 ot/min Termočlanek 2_2000 ot/min Termočlanek 2_3000 ot/min Termočlanek 2_4000 ot/min Termočlanek 2_5000 ot/min Teplota [ C] Doba otevření vstřikovače [ms] Obr. 9 Z grafu je viditelný průběh odpařování kapalného LPG. Díky velkému vnitřnímu průměru kanálku vstřikovací trysky dojde k postupnému snižování tlaku a následně k intenzivnějšímu odpaření v celé části kanálku trysky. Odvod tepla má za následek snížení teploty na vnějších stěnách trysky a následnou tvorbou námrazy. Při velice nízkých dávkách paliva (volnoběžné otáčky) je zajištěno přestupem tepla z okolního prostředí dostatečné množství energie k úplnému odpaření paliva v trysce. Se zvyšující se dávkou paliva a otáček dochází k intenzivnímu odpařování paliva v celém objemu vstřikovací trysky. Z okolní prostředí není možno přivést dostatečné množství energie (dochází ke tvorbě námrazy). MF ISBN

11 Termočlánek 1_1000 ot/min Termočlanek 1_2000 ot/min Termočlanek 1_3000 ot/min Termočlanek 1_4000 ot/min Termočlanek 1_5000 ot/min Termočlanek 2_1000 ot/min Termočlanek 2_2000 ot/min Termočlanek 2_3000 ot/min Termočlanek 2_4000 ot/min Termočlanek 2_5000 ot/min Teplota [ C] Doba otevření vstřikovače [ms] Obr. 10 Naměřené hodnoty na vstřikovací trysce o průměru 0.6 mm naznačují výrazné zvýšení teplot na povrchu trysky. Teploty pod bodem mrazu se vyskytují pouze pří nízkých dávkách paliva. V kanálku trysky nedochází k výraznému snížení tlaku, tím je zajištěno částečné odpaření paliva (k odpaření zbytku paliva dojde při vyrovnání tlaku v sacím potrubím motoru). 30 Termočlánek 1_1000 ot/min Termočlanek 1_2000 ot/min Termočlanek 1_3000 ot/min Termočlanek 1_4000 ot/min Termočlanek 1_5000 ot/min Termočlanek 2_1000 ot/min Termočlanek 2_2000 ot/min Termočlanek 2_3000 ot/min Termočlanek 2_4000 ot/min Termočlanek 2_5000 ot/min Teplota [ C] Doba otevření vstřikovače [ms] MF ISBN

12 Obr. 11 Zobrazuje naměřené teploty na povrchu vstřikovací trysky s vnitřním průměrem kanálku 0.8 mm. Ke snížení teploty pod bod mrazu na povrchu trysky dochází v nižších otáčkových režimech a nízkých vstřikovacích dávkách paliva. Při vyšších dávkách paliva je zajištěn dostatečný tlak v kanálku trysky a k odpařování LPG dochází nad bodem mrazu. K tvorbě námrazy dochází pouze v oblasti výtokového otvoru z trysky. V této oblasti dochází k velmi intenzivnímu odpařování paliva při tlaku okolního prostředí a teploty tedy klesají až na -30 C. 6. Závěr Cílem výzkumu je dosáhnout snížení vzniku námrazy na koncových částech vstřikovače pro vstřikování kapalného LPG do nasávaného vzduchu zážehového motoru. Navržené varianty vstřikovacích trysek byly měřeny na modelovém měřícím stanovišti, které simulovalo reálné podmínky v sacím traktu motoru. První výsledky měření na původním provedení koncových částí vstřikovačů ukázaly problémy s odpařováním kapalného LPG ve vnitřním kanálku vstřikovací trysky: intenzivním odpařováním paliva docházelo ke snížení teplot pod bod mrazu na povrchu trysky a v důsledku toho se na vnějším povrchu vstřikovací trubky vytvářela námraza z vlhkosti v atmosférickém vzduchu. Změnou geometrie koncové části vstřikovače a především zmenšením výtokového průřezu vstřikovací trysky se dosáhlo zvýšení tlaku v kanálku trysky. Varianty koncových částí vstřikovačů jsou připraveny k ověřovacím zkouškám a měřením na vozidlovém motoru, při kterých budou kromě sledování dějů v sacím traktu (měření teplot, vizualizace vstřiku) zjišťovány všechny běžné i nadstandardní vlastnosti zážehového motoru (vč. výfukových emisí) při provozu na LPG s tvořením směsi vstřikováním kapalného LPG do nasávaného vzduchu. Poděkování Acknowledgement Published results were acquired using the subsidization of the Ministry of Education of the Czech Republic; project 1M0568 Josef Božek Research Centre for Engine and Vehicle Technologies II. MF ISBN

Funkční vzorek vozidlového motoru EA111.03E-LPG

Funkční vzorek vozidlového motoru EA111.03E-LPG Funkční vzorek vozidlového motoru EA111.03E-LPG Funkční vzorek vozidlového motoru EA111.03E-LPG je výsledkem výzkumných, vývojových a optimalizačních prací, prováděných v laboratoři (zkušebně motorů) Katedry

Více

Technická univerzita v Liberci

Technická univerzita v Liberci Technická univerzita v Liberci Fakulta strojní Katedra vozidel a motorů (KVM) Výzkumné centrum spalovacích motorů a automobilů Josefa Božka Nízkoemisní autobusový motor ML 637 NGS na zemní plyn (Dokončení

Více

Palivová soustava Steyr 6195 CVT

Palivová soustava Steyr 6195 CVT Tisková zpráva Pro více informací kontaktujte: AGRI CS a.s. Výhradní dovozce CASE IH pro ČR email: info@agrics.cz Palivová soustava Steyr 6195 CVT Provoz spalovacího motoru lze řešit mimo používání standardního

Více

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný

Více

VÝVOJ PLYNOVÉHO MOTORU PRO OSOBNÍ AUTOMOBIL PASSENGER CAR GAS ENGINE DEVELOPMENT

VÝVOJ PLYNOVÉHO MOTORU PRO OSOBNÍ AUTOMOBIL PASSENGER CAR GAS ENGINE DEVELOPMENT XXXVIII. medzinárodná vedecká konferencia pracovníkov katedier a pracovísk spaľovacích motorov vysokých škôl na Slovensku a v Čechách, Bratislava, 2007 VÝVOJ PLYNOVÉHO MOTORU PRO OSOBNÍ AUTOMOBIL PASSENGER

Více

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný

Více

Vizualizace dějů uvnitř spalovacího motoru

Vizualizace dějů uvnitř spalovacího motoru Vizualizace dějů uvnitř spalovacího motoru Zpracoval: Josef Blažek Pracoviště: Katedra vozidel a motorů, TUL Tento materiál vznikl jako součást projektu In-TECH 2, který je spolufinancován Evropským sociálním

Více

Ústav automobilního a dopravního inženýrství PODPORA CVIČENÍ. Ing. Jan Vančura Ústav automobilního a dopravního inženýrství FSI VUTBR

Ústav automobilního a dopravního inženýrství PODPORA CVIČENÍ. Ing. Jan Vančura Ústav automobilního a dopravního inženýrství FSI VUTBR PODPORA CVIČENÍ 1 Sací systém spalovacího motoru zabezpečuje přívod nové náplně do válců motoru. Vzduchu u motorů vznětových a u motorů zážehových s přímým vstřikem paliva do válce motoru. U motorů s vnější

Více

Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2013, 30.+31.10. 2013 Roztoky -

Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2013, 30.+31.10. 2013 Roztoky - Popis obsahu balíčku WP03 Přizpůsobení motorů alternativním palivům a WP03: Přizpůsobení motorů alternativním palivům a inovativní systémy pro snížení znečištění a emisí GHG Vedoucí konsorcia podílející

Více

ČTYŘDOBÝ VÍCEVÁLCOVÝ SPALOVACÍ MOTOR S VYUŽITÍM TLAKOVÝCH PULZŮ VÝFUKOVÝCH PLYNŮ KE ZVÝŠENÍ NAPLNĚNÍ VÁLCŮ

ČTYŘDOBÝ VÍCEVÁLCOVÝ SPALOVACÍ MOTOR S VYUŽITÍM TLAKOVÝCH PULZŮ VÝFUKOVÝCH PLYNŮ KE ZVÝŠENÍ NAPLNĚNÍ VÁLCŮ ČTYŘDOBÝ VÍCEVÁLCOVÝ SPALOVACÍ MOTOR S VYUŽITÍM TLAKOVÝCH PULZŮ VÝFUKOVÝCH PLYNŮ KE ZVÝŠENÍ NAPLNĚNÍ VÁLCŮ Některé z možných uspořádání motoru se společnými ventily pro sání i výfuk v hlavě válce: 1 ČTYŘDOBÝ

Více

Palivová soustava zážehového motoru Tvorba směsi v karburátoru

Palivová soustava zážehového motoru Tvorba směsi v karburátoru Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.11.2013 Název zpracovaného celku: Palivová soustava zážehového motoru Tvorba směsi v karburátoru Úkolem palivové soustavy je dopravit

Více

Obsah. Obsah. Úvodem. Vlastnosti a rozdělení vozidel na LPG. Druhy zástaveb LPG ve vozidlech. Slovo autora... 9

Obsah. Obsah. Úvodem. Vlastnosti a rozdělení vozidel na LPG. Druhy zástaveb LPG ve vozidlech. Slovo autora... 9 Obsah Obsah Úvodem Slovo autora.................................................. 9 Vlastnosti a rozdělení vozidel na LPG Kde se vzalo LPG.............................................. 11 Fyzikální vlastnosti

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.11 Diagnostika automobilů Kapitola 25 Ventil

Více

Vliv paliv obsahujících bioložky na provozní parametry vznětových motorů

Vliv paliv obsahujících bioložky na provozní parametry vznětových motorů 185 Vliv paliv obsahujících bioložky na provozní parametry vznětových motorů doc. Ing. Josef Laurin, CSc., doc. Ing. Lubomír Moc, CSc., Ing. Radek Holubec Technická univerzita v Liberci, Studentská 2,

Více

Učební texty Diagnostika II. snímače 7.

Učební texty Diagnostika II. snímače 7. Předmět: Ročník: Vytvořil: Datum: Praxe 4. ročník Fleišman Luděk 28.5.2013 Název zpracovaného celku: Učební texty Diagnostika II. snímače 7. Snímače plynů, měřiče koncentrace Koncentrace látky udává, s

Více

VYUŽITÍ ENDOSKOPICKÉ VIZUALIZAČNÍ TECHNIKY PŘI VÝZKUMU USING ENDOSCOPIC VISUALIZATION EQUIPMENT AT THE COMBUSTION

VYUŽITÍ ENDOSKOPICKÉ VIZUALIZAČNÍ TECHNIKY PŘI VÝZKUMU USING ENDOSCOPIC VISUALIZATION EQUIPMENT AT THE COMBUSTION VYUŽITÍ ENDOSKOPICKÉ VIZUALIZAČNÍ TECHNIKY PŘI VÝZKUMU SPALOVACÍCH MOTORŮ USING ENDOSCOPIC VISUALIZATION EQUIPMENT AT THE COMBUSTION ENGINES RESEARCH Ing. Josef Blažek, Ph.D. Katedra vozidel a motorů,

Více

MAZACÍ SOUSTAVA MOTORU

MAZACÍ SOUSTAVA MOTORU MAZACÍ SOUSTAVA MOTORU Hlavním úkolem mazací soustavy je zásobovat všechna kluzná uložení dostatečným množstvím oleje o příslušné teplotě (viskozitě) a tlaku. Standardní je oběhové tlakové mazání). Potřebné

Více

Tepelně vlhkostní posouzení

Tepelně vlhkostní posouzení Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí

Více

Konstrukce motorů pro alternativní paliva

Konstrukce motorů pro alternativní paliva Souhrn Konstrukce motorů pro alternativní paliva Příspěvek obsahuje úvahy o využití alternativních paliv k pohonu spalovacích motorů u silničních vozidel zejména z hlediska zdrojů jednotlivých druhů paliv

Více

5.1.1 Nestacionární režim motoru

5.1.1 Nestacionární režim motoru 5. 1 Simulace a experimenty pro návrh a optimalizaci řízení motoru 5.1.1 Nestacionární režim motoru Podíl na řešení: 12 241.1 Miloš Polášek, Jan Macek, Oldřich Vítek, Michal Takáts, Jiří Vávra, Vít Doleček

Více

technických prohlídkách Nová technická řešení a jiná opatření ke snížení výfukových emisí:

technických prohlídkách Nová technická řešení a jiná opatření ke snížení výfukových emisí: Emisní vlastnosti automobilů a automobilových motorů Ochrana životního prostředí: podíl automobilové dopravy na celkovém znečištění ovzduší Emisní předpisy: CARB, EPA, ECE (EHK), národní legislativa Emisní

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.20 Integrovaná střední

Více

Mechanické regulátory tlaku

Mechanické regulátory tlaku Mechanické regulátory tlaku 102 Regulátory tlaku Základní údaje a technické informace Regulátory výkonu Regulátory výkonu typu ACP a CPHE jsou regulátory obtoku horkých par a slouží k úpravě chladícího

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.11 Diagnostika automobilů Kapitola 6 Ventil

Více

19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES

19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES 19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES ROZDĚLENÍ SPLAOVACÍCH MOTORŮ mechanická funkčnost pístové nebo rotační Spalovací motor pracuje

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Pístové spalovací motory-pevné části

Pístové spalovací motory-pevné části Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.8.2013 Definice spalovacího motoru Název zpracovaného celku: Pístové spalovací motory-pevné části Spalovací motory jsou tepelné stroje,

Více

Biopowers E-motion. Návod k obsluze zařízení pro provoz vozidla na E85

Biopowers E-motion. Návod k obsluze zařízení pro provoz vozidla na E85 Biopowers E-motion Návod k obsluze zařízení pro provoz vozidla na E85 MONTÁŽ ZAŘÍZENÍ BIOPOWERS E-MOTION SMÍ PROVÁDĚT POUZE AUTORIZOVANÉ MONTÁŽNÍ STŘEDISKO. OBSAH 1. Informace o obsluze vozidla a popis

Více

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové SPALOVACÍ MOTORY Druhy spalovacích motorů rozdělení podle způsobu zapalování podle počtu dob oběhu podle chlazení - zážehové = zvláštním zdrojem (svíčkou) - vznětové = samovznícením - čtyřdobé - dvoudobé

Více

OPTIMALIZACE NAPLNĚNÍ VÁLCE SPALOVACÍHO MOTORU

OPTIMALIZACE NAPLNĚNÍ VÁLCE SPALOVACÍHO MOTORU OPTIMALIZACE NAPLNĚNÍ VÁLCE SPALOVACÍHO MOTORU Summary Radek Tichánek 1, Marcel Diviš 1 Oldřich Vítek 2 1 Ústav pro výzkum motorových vozidel, s.r.o Výzkumné centrum Josefa Božka Lihovarská 12, 180 68

Více

Systémy tvorby palivové směsi spalovacích motorů

Systémy tvorby palivové směsi spalovacích motorů Systémy tvorby palivové směsi spalovacích motorů zážehové motory Úkolem systému je připravit směs paliva se vzduchem v optimálním poměru, s cílem dosáhnout - nejnižší spotřebu - nejmenší obsah škodlivin

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

KATALOG 2004 MOBILNÍ VYSOKOTLAKÉ STROJE

KATALOG 2004 MOBILNÍ VYSOKOTLAKÉ STROJE MOBILNÍ VYSOKOTLAKÉ STROJE Společnost S. U. P. spol. s r. o. je výhradním distributorem mobilních vysokotlakých zařízení dánského výrobce Aquila pro Českou a Slovenskou republiku. Tyto speciální stroje

Více

Katalogový list č. Verze: 01 ecocompact VSC../4, VCC../4 a aurocompact VSC D../4 06-S3

Katalogový list č. Verze: 01 ecocompact VSC../4, VCC../4 a aurocompact VSC D../4 06-S3 Verze: 0 ecocompact VSC../, VCC../ a aurocompact VSC D../ 0-S Stacionární kondenzační kotle s vestavěným zásobníkem teplé vody pro zajištění maximálních kompaktních rozměrů ve velmi elegantím designu.

Více

Emisní předpisy... 11 Měření emisí... 13

Emisní předpisy... 11 Měření emisí... 13 Obsah 1 Palivo a emise....................................... 11 Emisní předpisy.......................................... 11 Měření emisí............................................. 13 2 Z ûehovè a vznïtovè

Více

DIESEL PRÉMIOVÁ PALIVA ALL IN AGENCY 2009. výkon ekologie rychlost vytrvalost akcelerace

DIESEL PRÉMIOVÁ PALIVA ALL IN AGENCY 2009. výkon ekologie rychlost vytrvalost akcelerace DIESEL PRÉMIOVÁ PALIVA ALL IN AGENCY 2009 výkon ekologie rychlost vytrvalost akcelerace DIESEL PRÉMIOVÁ PALIVA Špičková prémiová paliva VERVA Diesel, výkon ekologie rychlost vytrvalost akcelerace VERVA

Více

Dávkovací čerpadla - INVIKTA

Dávkovací čerpadla - INVIKTA Dávkovací čerpadla - INVIKTA SLOŽENÍ SYSTÉMU 1 Šroubení výtlaku 2 Šroubení sání 3 Sací ventil Otočný regulátor otáček Vstup pro napájecí kabel Vstup senzoru hladiny 7 Nástěnná konzole OBSAH BALENÍ INVIKTA

Více

TECHNICKÁ ZAŘÍZENÍ BUDOV

TECHNICKÁ ZAŘÍZENÍ BUDOV Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Cvičení pro bakalářské studium studijního oboru Příprava a realizace staveb Cvičení č. 7 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly

Více

Technická specifikace mikrokogenerační jednotky

Technická specifikace mikrokogenerační jednotky Technická specifikace mikrokogenerační jednotky Gas module specification pro kombinovanou výrobu elektřiny a tepla Combined Heat and Power, Cleanergy C9G Stirling Modul Cleanergy C9G segas Stirlingovým

Více

Tisková informace. Autopříslušenství Čisté motory díky nové technice:jak budou vozidla se vznětovým motorem do budoucna moci splnit emisní limity

Tisková informace. Autopříslušenství Čisté motory díky nové technice:jak budou vozidla se vznětovým motorem do budoucna moci splnit emisní limity Tisková informace Autopříslušenství Čisté motory díky nové technice:jak budou vozidla se vznětovým motorem do budoucna moci splnit emisní limity Duben 2001 Čisté motory díky nové technice:jak budou vozidla

Více

Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o. Pro certifikaci dle Nařízení 303/2008/EK. 2010-01 Ing.

Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o. Pro certifikaci dle Nařízení 303/2008/EK. 2010-01 Ing. Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o Diagram chladícího okruhu Pro certifikaci dle Nařízení 303/2008/EK 2010-01 Ing. Jiří Brož Úvod k prezentaci Tato jednoduchá

Více

LOPATKOVÉ STROJE LOPATKOVÉ STROJE

LOPATKOVÉ STROJE LOPATKOVÉ STROJE Předmět: Ročník: Vytvořil: Datum: STROJÍRENSTVÍ ČTVRTÝ BIROŠČÁKOVÁ I. 22. 11. 2013 Název zpracovaného celku: LOPATKOVÉ STROJE LOPATKOVÉ STROJE Lopatkové stroje jsou taková zařízení, ve kterých dochází

Více

NOVÁ TECHNOLOGIE PRO ŠIROKÉ VYUŽITÍ

NOVÁ TECHNOLOGIE PRO ŠIROKÉ VYUŽITÍ NOVÁ TECHNOLOGIE PRO ŠIROKÉ VYUŽITÍ úžasně jednoduchý způsob, jak snížit emise, spotřebu paliva, dosáhnout lepšího výkonu vozu a ušetřit. Vhodné pro benzinové i naftové motory a motory na Etanol. Zkrátka

Více

K AUTORSKÉMU OSVĚDČENÍ

K AUTORSKÉMU OSVĚDČENÍ ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A (19) POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ [22) Přihlášeno 08 03 79 (21) (PV 1572-79) 203732 Щ f 81} (51) Int. Cl. 3 F 28 D 7/02 (40) Zveřejněno 30 06 80

Více

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému

Více

Z ûehovè a vznïtovè motory

Z ûehovè a vznïtovè motory 2. KAPITOLA Z ûehovè a vznïtovè motory 2. V automobilech se používají pístové motory. Ty pracují v určitém cyklu, který obsahuje výměnu a spálení směsi paliva se vzdušným kyslíkem. Cyklus probíhá ve čtyřech

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

Obecné cíle a řešené dílčí etapy

Obecné cíle a řešené dílčí etapy 5.1.3. Nestacionární zkoušky motorů Obecné cíle a řešené dílčí etapy 5.1.3. Nestacionární zkoušky motorů Ověření emisního chování vozidel při simulaci různých reálných provozních podmínek Verifikace spotřeby

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

Používání energie v prádelnách

Používání energie v prádelnách Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie v prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie 1

Více

THERM 20 LXZE.A 5, TLXZE.A 5 THERM 28 LXZE5.A, TLXZE5.A THERM 28 LXZE10.A, TLXZE10.A

THERM 20 LXZE.A 5, TLXZE.A 5 THERM 28 LXZE5.A, TLXZE5.A THERM 28 LXZE10.A, TLXZE10.A 0 LXZE.A, TLXZE.A a LXZE.A, TLXZE.A a LXZE0.A, TLXZE0.A 0 LXZE.A, TLXZE.A LXZE.A, TLXZE.A LXZE0.A, TLXZE0.A TŘÍDA NOx Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do 0 popř. kw. Ohřev teplé

Více

Výstup chladicí kapaliny pro vnější topení. Obecné

Výstup chladicí kapaliny pro vnější topení. Obecné Chladicí kapalina může být využita pro vnější topení. Například kabiny jeřábů, skříňové nástavby, atd. Teplo se odebírá z proudění v bloku motoru a vrací se trubkou za chladičem. DŮLEŽITÉ! Následující

Více

ZM - A - ZKUŠEBNÍ METODIKA SILNIČNÍCH VOZIDEL 02 - MALÁ SÉRIE KONTROLA VOZIDLA PO ZÁSTAVBĚ PLYNOVÉHO ZAŘÍZENÍ NA ZKUŠEBNÍ STANICI

ZM - A - ZKUŠEBNÍ METODIKA SILNIČNÍCH VOZIDEL 02 - MALÁ SÉRIE KONTROLA VOZIDLA PO ZÁSTAVBĚ PLYNOVÉHO ZAŘÍZENÍ NA ZKUŠEBNÍ STANICI 1 Zpracovatel: ÚSMD a.s. Systém jednotných zkušebních metodik ZM - A - ZKUŠEBNÍ METODIKA SILNIČNÍCH VOZIDEL 19 - POHON NA ZKAPALNĚNÉ ROPNÉ PLYNY 02 - MALÁ SÉRIE KONTROLA VOZIDLA PO ZÁSTAVBĚ PLYNOVÉHO ZAŘÍZENÍ

Více

Závěsné kondenzační kotle

Závěsné kondenzační kotle Závěsné kondenzační kotle VU, VUW ecotec plus Výhody kondenzační techniky Snižování spotřeby energie při vytápění a ohřevu teplé užitkové vody se v současné době stává stále důležitější. Nejen stoupající

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Palivové soustavy vznětového motoru

Palivové soustavy vznětového motoru Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.1.2014 Název zpracovaného celku: Palivové soustavy vznětového motoru Tvorba směsi u vznětových motorů je složitější,než u motorů zážehových.

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

Nepřímé vstřikování benzínu Mono-Motronic

Nepřímé vstřikování benzínu Mono-Motronic Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 18.12.2013 Název zpracovaného celku: Nepřímé vstřikování benzínu Mono-Motronic Vstřikováním paliva dosáhneme kvalitnější přípravu směsi

Více

Závěsné kondenzační kotle

Závěsné kondenzační kotle VC 126, 186, 246/3 VCW 236/3 Závěsné kondenzační kotle Technické údaje Označení 1 Vstup topné vody (zpátečka) R ¾ / 22 2 Přívod studené vody R ¾ / R½ 3 Připojení plynu 1 svěrné šroubení / R ¾ 4 Výstup

Více

Metody měření provozních parametrů strojů. Metodika měření. absolutní a měrná spotřeba paliva. měření převodového poměru,

Metody měření provozních parametrů strojů. Metodika měření. absolutní a měrná spotřeba paliva. měření převodového poměru, Metodika měření měření převodového poměru, měření setrvačné hmotnosti vozidla, menší motory se roztáčejí elektromotory, větší motory se roztáčí motorem vozidla, vlastní akcelerace měřeného motoru, měření

Více

Oberflächentechnik Surface Engineering. Příprava lakování. WOLF - Univerzální přípravná stání pro lakování a SPOT opravy.

Oberflächentechnik Surface Engineering. Příprava lakování. WOLF - Univerzální přípravná stání pro lakování a SPOT opravy. Oberflächentechnik Surface Engineering Příprava lakování WOLF - Univerzální přípravná stání pro lakování a SPOT opravy s námi na špici Univerzální přípravná stání Přípravná stání a na nich prováděné pracovní

Více

Spalovací motory. Palivové soustavy

Spalovací motory. Palivové soustavy 1 Spalovací motory Palivové soustavy Úkolem palivové soustavy je přivést, ve vhodný okamžik vzhledem k poloze pístu potřebné množství paliva do spalovacího prostoru nebo sacího potrubí. Zážehové motory

Více

Funkční vzorek. Měření průtoku pomocí výšky hladiny při výtoku z více otvorů

Funkční vzorek. Měření průtoku pomocí výšky hladiny při výtoku z více otvorů Technická univerzita v Liberci Ústav pro nanomateriály, pokročilé technologie a inovace Evidenční list funkčního vzorku stupeň utajení: bez utajení Funkční vzorek Měření průtoku pomocí výšky hladiny při

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací motory Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací motory Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv Spalovací motory Ing. Jan Andreovský Ph.D. Spalovací motory Základní informace Základní dělení Motor

Více

PŘÍSPĚVEK PLYNOFIKOVANÉ AUTOBUSOVÉ DOPRAVY K OZDRAVĚNÍ OVZDUŠÍ VE MĚSTECH MOST A LITVÍNOV

PŘÍSPĚVEK PLYNOFIKOVANÉ AUTOBUSOVÉ DOPRAVY K OZDRAVĚNÍ OVZDUŠÍ VE MĚSTECH MOST A LITVÍNOV PŘÍSPĚVEK PLYNOFIKOVANÉ AUTOBUSOVÉ DOPRAVY K OZDRAVĚNÍ OVZDUŠÍ VE MĚSTECH MOST A LITVÍNOV Beroun Stanislav 1), Scholz Celestýn 1), Tuček Gerhard 2) 1) Katedra strojů průmyslové dopravy, Fakulta strojní,

Více

Měření na rozprašovací sušárně Anhydro návod

Měření na rozprašovací sušárně Anhydro návod Měření na rozprašovací sušárně Anhydro návod Zpracoval : Doc. Ing. Pavel Hoffman, CSc. ČVUT Praha, strojní fakulta U218 Ústav procesní a zpracovatelské techniky Datum: leden 2003 Popis laboratorní sušárny

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

THERM DUO 50.A, 50 T.A, 50 FT.A

THERM DUO 50.A, 50 T.A, 50 FT.A THERM DUO 0.A, 0 T.A, 0 FT.A THERM DUO 0.A, 0 T.A, 0 FT.A TŘÍDA NOx Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do kw. Vytápění objektu s vyšší tepelnou ztrátou (až 0 kw) je možné s výhodou

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Závěsné kondenzační kotle. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. VU 466/4-5 ecotec plus VU 656/4-5 ecotec plus

Závěsné kondenzační kotle. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. VU 466/4-5 ecotec plus VU 656/4-5 ecotec plus Proč Vaillant? Tradice, kvalita, inovace, technická podpora. VU 466/4-5 ecotec plus VU 656/4-5 ecotec plus VU ecotec plus Zvláštní přednosti - závěsný kotel s nerezovým kondenzačním výměníkem - hodnota

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.11 Diagnostika automobilů Kapitola 7 Lambda

Více

Závěsné kotle. Modul: Kondenzační kotle. Verze: 02 VU 466/4-5, VU 656/4-5 ecotec plus 02-Z2

Závěsné kotle. Modul: Kondenzační kotle. Verze: 02 VU 466/4-5, VU 656/4-5 ecotec plus 02-Z2 Nové závěsné kondenzační kotle VU 466/4-5 a 656/4-5 ecotec plus se odlišují od předchozích VU 466-7 ecotec hydraulickým zapojením. Původní kotel VU 466-7 ecotec byl kompletně připraven pro napojení nepřímotopného

Více

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics. www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.cz OBSAH Úvod... 3 Technická specifikace... 4 Popis filtru... 6 Popis činnosti

Více

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo,

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, sluneční energie, termální teplo apod.). Nejčastější je kotelna.

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Funkce, rozdělení, parametry, začlenění parního kotle do schémat

Více

Zpráva ze vstupních měření na. testovací trati stanovení TZL č. 740 08/09

Zpráva ze vstupních měření na. testovací trati stanovení TZL č. 740 08/09 R Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba Zpráva ze vstupních měření na testovací trati stanovení TZL č. 740 08/09 Místo

Více

POWER OF THE SELF-IGNITION MOTOR FOR PURE PLANT OIL VÝKON VZNĚTOVÉHO MOTORU NA ČISTÝ ROSTLINNÝ OLEJ

POWER OF THE SELF-IGNITION MOTOR FOR PURE PLANT OIL VÝKON VZNĚTOVÉHO MOTORU NA ČISTÝ ROSTLINNÝ OLEJ POWER OF THE SELF-IGNITION MOTOR FOR PURE PLANT OIL VÝKON VZNĚTOVÉHO MOTORU NA ČISTÝ ROSTLINNÝ OLEJ Hlavenka T., Fajman M., Čupera J. Ústav techniky a automobilové dopravy, Agronomická fakulta, Mendelova

Více

1 PALIVOVÁ SOUSTAVA ZÁŽEHOVÝCH MOTORŮ... 7 2 PALIVOVÁ SOUSTAVA VZNĚTOVÝCH MOTORŮ... 70

1 PALIVOVÁ SOUSTAVA ZÁŽEHOVÝCH MOTORŮ... 7 2 PALIVOVÁ SOUSTAVA VZNĚTOVÝCH MOTORŮ... 70 OBSAH 1 PALIVOVÁ SOUSTAVA ZÁŽEHOVÝCH MOTORŮ......... 7 1.1 Palivová soustava zážehových motorů s karburátory............. 8 1.2 Karburátory............................................ 13 1.2.1 Rozdělení

Více

VY_32_INOVACE_FY.15 SPALOVACÍ MOTORY II.

VY_32_INOVACE_FY.15 SPALOVACÍ MOTORY II. VY_32_INOVACE_FY.15 SPALOVACÍ MOTORY II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Motory s vnitřním spalováním U těchto

Více

Předávací stanice tepla v soustavách CZT (III) Tlakově nezávislé předávací stanice

Předávací stanice tepla v soustavách CZT (III) Tlakově nezávislé předávací stanice Stránka č. 1 z 7 Vytištěno z internetového portálu TZB-info (www.tzb-info.cz), dne: zdroj: http://www.tzb-info.cz/t.py?t=2&i=5236 Předávací stanice tepla v soustavách CZT (III) Datum: Autor: Ing. Miroslav

Více

CNG zemní plyn. Alternativní palivo v dopravě

CNG zemní plyn. Alternativní palivo v dopravě CNG zemní plyn Alternativní palivo v dopravě CNG (compressed natural gas) stlačený zemní plyn Hlavní výhody zemního plynu CNG levný Ekonomické efekty jsou nejvíce patrné u vozidel s vyšším počtem ujetých

Více

PRI-TeO-PO3-05.13F Palivová soustava vznětového motoru - dopravní (podávací) čerpadla 2 / 5

PRI-TeO-PO3-05.13F Palivová soustava vznětového motoru - dopravní (podávací) čerpadla 2 / 5 1 DOPRAVNÍ (PODÁVACÍ) PALIVOVÁ ČERPADLA Zabezpečují dopravu paliva z palivové nádrže do plnicí komory vstřikovacího čerpadla. Druhy dopravních palivových čerpadel : pístová dopravní čerpadla jednočinné

Více

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics. www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.cz OBSAH Úvod... 3 Technická specifikace... 4 Popis filtru... 6 Popis činnosti

Více

Úprava vzduchu sušení

Úprava vzduchu sušení Úprava vzduchu sušení Zařízení pro vysokou úroveň úpravy stlačeného vzduchu. Úprava vzduchu pro všechny provozy. Naše sušičky spolehlivě odstraní kondenzát a v kombinaci s námi dodávanou filtrací zajistí

Více

Olejové, plynové a dvoupalivové hořáky

Olejové, plynové a dvoupalivové hořáky Olejové, plynové a dvoupalivové hořáky Řady 6 až 6 Skupina Výkon 4 400 kw OLEJOVÉ, PLYNOVÉ A DVOUPALIVOVÉ HOŘÁKY Řady 6 až 6 4 400 kw Hořák Výkon Rozměry v mm Hmotnost kw L L *) B B H ø D kg KP-6 4-0 30

Více

Tento dokument vznikl v rámci projektu Zkvalitnění výuky prostřednictvím ICT Registrační číslo: CZ.1.07/1.5.00/34.0459.

Tento dokument vznikl v rámci projektu Zkvalitnění výuky prostřednictvím ICT Registrační číslo: CZ.1.07/1.5.00/34.0459. Tento dokument vznikl v rámci projektu Zkvalitnění výuky prostřednictvím ICT Registrační číslo: CZ.1.07/1.5.00/34.0459 Autor: Ing. Jaroslav Zikmund Datum vytvoření: 2. 11. 2012 Ročník: II. Předmět: Motorová

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

(mechanickou energii) působením na píst, lopatky turbíny nebo využitím reaktivní síly Používají se jako #3

(mechanickou energii) působením na píst, lopatky turbíny nebo využitím reaktivní síly Používají se jako #3 zapis_spalovaci 108/2012 STR Gc 1 z 5 Spalovací Mění #1 energii spalovaného paliva na #2 (mechanickou energii) působením na píst, lopatky turbíny nebo využitím reaktivní síly Používají se jako #3 dopravních

Více

PLYNOVÉ KOGENERAČNÍ JEDNOTKY

PLYNOVÉ KOGENERAČNÍ JEDNOTKY PLYNOVÉ KOGENERAČNÍ JEDNOTKY Záleží nám na prostředí, ve kterém žijeme. Mnoho lidí, organizací a státních institucí nám předkládá modely ekologického chování, které mají chránit životní prostředí, zvláště

Více

Dopravní nehoda automobilu s LPG a CNG

Dopravní nehoda automobilu s LPG a CNG SDH Klášterec nad Orlicí Odborná příprava členů výjezdové jednotky Dopravní nehoda automobilu s LPG a CNG Ondřej Janeček, janecek.ondrej@gmail.com leden 2013 Obsah Nebezpeční plynných paliv CNG LPG Identifikace

Více

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021.

Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021. Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021. Stroje na dopravu kapalin Čerpadla jsou stroje, které dopravují kapaliny a kašovité

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ _ 20. 12. Autor: Ing. Luboš Veselý Datum vypracování: 28. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu

Více

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více